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Abstract

Transgenic mice expressing eGFP under population specific promoters are widely used in neuroscience to identify specific
subsets of neurons in situ and as sensors of neuronal activity in vivo. Mice expressing eGFP from a bacterial artificial
chromosome under the Nr4a1 promoter have high expression within the basal ganglia, particularly within the striosome
compartments and striatal-like regions of the extended amygdala (bed nucleus of the stria terminalis, striatal fundus, central
amygdaloid nucleus and intercalated cells). Grossly, eGFP expression is inverse to the matrix marker calbindin 28K and
overlaps with mu-opioid receptor immunoreactivity in the striatum. This pattern of expression is similar to Drd1, but not
Drd2, dopamine receptor driven eGFP expression in structures targeted by medium spiny neuron afferents. Striosomal
expression is strong developmentally where Nr4a1-eGFP expression overlaps with Drd1, TrkB, tyrosine hydroxylase and
phospho-ERK, but not phospho-CREB, immunoreactivity in ‘‘dopamine islands’’. Exposure of adolescent mice to
methylphenidate resulted in an increase in eGFP in both compartments in the dorsolateral striatum but eGFP expression
remained brighter in the striosomes. To address the role of activity in Nr4a1-eGFP expression, primary striatal cultures were
prepared from neonatal mice and treated with forskolin, BDNF, SKF-83822 or high extracellular potassium and eGFP was
measured fluorometrically in lysates. eGFP was induced in both neurons and contaminating glia in response to forskolin but
SKF-83822, brain derived neurotrophic factor and depolarization increased eGFP in neuronal-like cells selectively. High levels
of eGFP were primarily associated with Drd1+ neurons in vitro detected by immunofluorescence; however ,15% of the
brightly expressing cells contained punctate met-enkephalin immunoreactivity. The Nr4a1-GFP mouse strain will be a useful
model for examining the connectivity, physiology, activity and development of the striosome system.
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Introduction

Principle neurons in the telencephalon are organized into layers

with distinct circuit and ensemble functions that can be surmised

simply based on the location of the nuclei but the anatomical

organization of the striatum has proven more challenging. This is

because the striatum does not possess the readily identified laminar

organization of most telencephalic structures and because the

majority of striatal neurons are of one class, the GABAergic

Medium Spiny Neuron (MSN) [1]. Recent studies have made use

of the major distinction in MSN classes, differential expression of

dopamine receptors (Drd1 or Drd2-GFP) in putative direct and

indirect pathway neurons [2], respectively, to examine differential

plasticity in the striatum but this technique only addresses one

level of striatal complexity. The striatum is grossly divided into

Dorsolateral (DLS), Dorsomedial (DMS) and ventral/Nucleus

Accumbens (NAc). These divisions are roughly equivalent to

motor, associative and limbic subdivisions but exist more as a

dorsolateral to ventromedial gradient [3]. Regions can readily be

identified for gross analysis but there is yet another layer of

afferent-efferent and neurochemical heterogeneity within the

striatum, the striosome-matrix organization.

Little is known about the differential function of the striosomes

compared with the surrounding matrix. Existing data indicate that

the dorsolateral matrix primarily serves motor functions [4] while

partial ablation of dorsal striosomes impairs rotorod learning [5],

suggesting cross talk between these regions during skill acquisition.

Striosomes are a preferred striatal region for self-stimulation with

implanted electrodes [6] and receive preferential and regionally

selective innervation from the basolateral amygdala, prelimbic,

infralimbic, orbitofrontal and anterior cingulate cortices and

project primarily to the substantia nigra pars compacta (SNpc;

reviewed in [7,8,9]). This is in contrast to dorsolateral matrix

neurons, which receive innervation from sensorimotor cortex

[4,10,11]. Matrix neurons are high in enkephalin, a marker of

indirect pathway neurons, and project to the external segment of

the globus pallidus (GPe) [2,7]. The matrix neurons are also the

main target of vesicular glutamate transporter type two-containing

thalamostriatal efferents [12]. Striosomal neurons contain sub-

stance P and dynorphin, markers of direct pathway neurons

[2,13,14,15,16]. Direct pathway neurons should therefore con-

centrate in the striosomes while indirect pathway neurons should

concentrate in the matrix. This simple division has not been

supported with data using Drd1 or Drd2-driven eGFP, however,
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and is further complicated by the observation that a 5-17% of

striatal neurons co-express Drd1 and Drd2 depending on the

region [2]. Combined, these data indicate that striatal organiza-

tion and function is far more complex than either direct-indirect or

striosome-matrix dichotomies imply.

Much of what is known about striosome-matrix organization

and development has relied on catecholamine fluorescence

[17,18], receptor binding [17,19,20,21] and immunohistochemis-

try [22,23,24] but eGFP expression has recently been used to

address differential development and plasticity in the two

compartments. The proenkephalin-eGFP mouse has preferential

matrix expression [25] and the early innervation by dopaminergic

fibers using the Tyrosine Hydroxylase (TH)-eGFP mouse has been

exploited to identify striosomes developmentally [26]. Fluorescent

protein expression offers a static view based on differential

transcriptional activity between neuronal populations but eGFP

expression can also be used as a sensor of neuronal ensemble and

immediate-early promoter activity [27]. Identification of a

reporter line with differential expression in the striosome and

matrix that is also a reporter of pathway/ensemble plasticity and

activity would greatly expand our ability to address more

sophisticated questions about striosome-matrix physiology in vivo

and in situ.

The GENSAT database (www.gensat.org) was screened for

images with differential striosome vs. matrix expression and we

identified the Nr4a1 (Nuclear receptor subfamily 4, group A,

member 1) line as a candidate activity-dependent reporter. The

Nr4a1 gene (Entrez Gene ID: 15370, http://www.ncbi.nlm.nih.

gov/gene/15370) is also known as GFRP1, Gfrp, Hbr-1, Hbr1,

Hmr, N10, NGFI-B, NGFIB, NP10, TIS1, TR3 and Nur77.

Nr4a1 is a widely expressed orphan of the steroid-thyroid

hormone receptor superfamily that is readily inducible at the level

of transcription. Nuclear Nr4a1 monomers bind the NGFI-B

response element while homodimers bind the Nur77 response

element and Nr4a1 heterodimerizes with the retinoic acid receptor

to bind the DR5 motif (reviewed by [28]). The Nr4a1 promoter

contains consensus sites for multiple transcription regulators and is

induced by calcium, protein kinase C, mitogen-activated protein

kinases and cAMP dependent transactivation depending upon the

cell type [29,30,31,32,33] while Nr4a1 protein is subject to

extensive post-transcriptional regulation [34,35,36]. Nr4a1 induc-

tion parallels other immediate early genes within the basal ganglia.

Nr4a1 mRNA [37], but not protein [38], is enriched in direct

pathway neurons. Nr4a1 is induced by psychostimulant exposure

[39,40,41] and during opiate withdrawal [42,43]. Antipsychotics

also induce Nr4a1 expression throughout the basal ganglia,

although the pattern and level of induction vary with drug

subclass and even among members of the same pharmacological

class [44]. Together, these data implicate the Nr4a1 gene in

plasticity in the basal ganglia that occurs during psychostimulant

and antipsychotic exposure and suggest that the pattern of

induction may be reflective of differential pharmacological effects

within the circuit.

A reporter mouse strain with inducible expression would

therefore be useful for identifying circuits involved in short and

long term plasticity after stimulant and antipsychotic exposure but

also with striatal-based learning paradigms. Here we report the

characterization of striosome-matrix and activity-dependent

expression of eGFP from the Nr4A1 promoter as both an

anatomical marker for striosomes and a reporter for activity in the

extended striatum. Expression occurs primarily in Drd1+ neurons

but the level of basal and stimulated expression varies with

compartment, thereby differentiating Drd1 striosome neurons

from Drd1 matrix neurons. These mice will be useful for

examination of drug- or activity-dependent Nr4a1 induction in

the extended striatum associated with learning and plasticity as

well as for in situ identification of neurons differentially activated

within the striosome and matrix compartments.

Results

Distribution of Nr4a1-eGFP in the Mature Basal Ganglia
Nr4a1 promoter driven eGFP expression was observed in distinct

cell populations throughout the brain and periphery (Figs. S1 and

S2). eGFP levels were particularly high in the mature striatum but

the pattern was distinct from both Drd1-eGFP and Drd2-eGFP

expression (Fig. 1). Expression in the dorsal striatum was striosome-

like in the Nr4a1 strain (Fig. 1 A1) but uniform in both the Drd1

(Fig. 1 B1) and Drd2 (Fig. 1 C1) strains. The expression pattern is in

agreement with previous reports using the Drd1 and Drd2 strains

[2]. Nr4a1-eGFP was laminar in the ventromedial striatum and

patch/swirl-like in the shell of the NAc (Fig. 1 A2). A similar

heterogeneous expression pattern was apparent in the Drd1-eGFP

strain (Fig. 1 B2) although these regions of intense expression in the

NAc shell covered a larger area in the Drd1-eGFP strain. Drd2-

eGFP expression was more uniform in the ventral striatum and NAc

(Fig. 1 C2) but, unlike the Nr4a1 and Drd1 strains, was low in the

NAc shell. Expression within fibers in the GP was low in both the

Nr4a1 (Fig. 1 A3) and Drd1 (Fig. 1 B3) strains but robust in the

Drd2 strain (Fig. 1 C3). Expression was also detected in fibers in the

SN of both the Nr4a1 (Fig. 1 A4) and Drd1 (Fig. 1 B4) strains.

Regions of patchy innervation were sometimes observed in the

SNpc of the Nr4a1 strain (Fig. 1 A4). In contrast, expression in the

ventral mesencephalon of the Drd2 strain was mainly restricted to

somata within the SN and Ventral Tegmental Area (VTA; Fig. 1

C4). This pattern of expression is consistent with Nr4a1 expression

being primarily in direct pathway neurons but is not identical to

Drd1-eGFP expression. Direct pathway neurons project primarily

to the SN, however, collaterals also innervate the GP [45,46],

therefore expression in this region may be eGFP in these collaterals,

fibers en passant or could represent a subpopulation of indirect

pathway neurons that express Nr4a1-eGFP [39]. The differential

intensity of the innervation of the SNpc may represent the terminals

of striosome neurons, which are known to project preferentially to

the SNpc and have segmented striosome-matrix projections [7,9].

Serial sections through the striatum and amygdala (Fig. 2)

revealed striosomes that form near-contiguous layers. The

subcallosal streak and lateral striatal streak have contiguous

expression, framing the striatum (Fig. 2 rows 1, 2). These cells

were similar in intensity and proximity to fiber tracts as cells of the

lateral and medial Intercalated Cells (ITC) of the amygdala (Fig. 2

row 6). Apparent layers in the striatum are often interrupted by

blood vessels and fiber bundles, particularly in dorsomedial

regions, but resemble the laminar organization previously

demonstrated in a serial reconstruction [47]. Rows in the matrix

have been identified in anterograde tracer studies from motor

cortex [11] but these lamina also resemble striosomes innervation

from deep layer prefrontal cortex developmentally and in the adult

[48], indicating that the projections to the striosome and matrix

may be arranged in parallel. Striosomes were also frequently

observed in close proximity to and surrounding large blood vessels,

as has previously been noted [49]. Layers were curved parallel to

the corpus callosum in the dorsal and lateral regions of the rostral

striatum but formed dorsomedial to ventrolateral layers in the

ventral striatum (Fig. 2 rows 2, 3). Nr4a1-eGFP expression in the

NAc, Bed Nucleus of the Stria Terminalis (BNST) and amygdala

was high and variable between animals but was never uniform

(Fig. 2 rows 4–6). High expression was evident in the striatal
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fundus (Interstitial Nucleus of the Posterior limb of the Anterior

Commissure, IPAC, Fig. 2 row 5) that continued into the ITC of

the amygdala and the Central nucleus of the Amygdala

(CeA). The CeA contained numerous intensely fluorescent

MSN-like cells. eGFP expression within the lateral amygdala

and basolateral amygdala was sparse with low level expression in

large neurons.

Multi-label immunofluorescence was used to verify striosomal

expression of eGFP in the Nr4a1 strain (Fig. 3). Calbindin 28K is a

marker for matrix neurons in the mature striatum [50,51,52] and

reciprocal expression occured between Nr4a1-eGFP and the

matrix-associated calcium-binding protein calbindin 28K in the

striatum (Fig. 3, A1–B3). This was apparent in both rostral (Fig. 3,

A1–A3) and caudal regions (Fig. 3, B1–B3). Fluorescence was also

apparent in the surrounding matrix cells in the adult mouse brain

but at a lower intensity. Calretinin immunoreactive fibers from the

paraventricular nucleus of the thalamus were present in striosomes

(Fig. 3, C1–C3) in the limbic and associative striatum in a gradient

that increased from the dorsolateral to ventromedial direction and

along the septal pole [53,54]. eGFP overlapped with this marker in

more dorsomedial regions but eGFP was stronger in the weakly

calretinin innervated subcallosal streak while calretinin-immuno-

reactive fibers were more dense in the medial and ventral striatum

(see below). The classical striosomal marker, the mu-OR, also

colocalized with Nr4a1-eGFP in the dorsal striatum (Fig 3, D1–

D3).

Heterogeneous eGFP expression was also observed in the

extended striatum, including the NAc, BNST, ITC and the CeA.

Images through the extended striatum (Fig. 4) reveal overlap with

the mu-OR in the ventral striatum and NAc in laminar and

swirled patterns (Fig. 4, A1–A3). ‘‘Columns’’ and ‘‘zones’’ have

been used to described these regions based on differential

Figure 1. Nr4a1-eGFP expression in the basal ganglia. Nr4a1-eGFP expression (A1–A4) in the striatum and striatal projection areas compared
to Drd1-eGFP (B1–B4) and Drd2-eGFP (C1–C4) expression in the mature mouse. The DLS is shown in row 1, ventral striatum in row 2, globus pallidus
in row 3 and SN/VTA in row 4. The scale bar, 200 mm, applies to all images.
doi:10.1371/journal.pone.0016619.g001
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neuropeptide and calcium binding protein expression

[53,55,56,57]. Anterograde tracing of deep layer prefrontal

afferents identified a similar laminar distribution in the ventral

striatum and NAc [48]. Most subregions of the BNST (Fig. 4, B1–

B3) contain mu-OR and Nr4a1 colocalization; however, interest-

ingly, the IPAC at the lateral edge and ventral to the posterior

commissure does not contain high levels of mu-OR but expresses

Nr4a1-eGFP (arrow, Fig. 4 B3).

Figure 2. Serial sections through the striatum and extended amygdala of a mature Nr4a1-eGFP mouse. Striosomes appear brighter
than the surrounding matrix, particularly the subcallosal streak (rows 1–2) and lateral striatal streak (rows 3–5), while a laminar organization is
apparent in the ventromedial striatum (rows 1–4). Regions of intense expression are also present within the BNST (rows 4 and 5), the striatal fundus
(IPAC, row 5) and within the intercalated cells of the amygdala (row 6). A uniform background level was subtracted from these images using Image J.
When sections were missing or damaged, adjacent or contralateral sections were substituted. Intervals - range from 80–120 mm. Due to differences in
mouse strain of the reference atlas (Allen Brain Atlas, C57/Bl6J) and tissue shrinkage the coordinates are approximate.
doi:10.1371/journal.pone.0016619.g002
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It has been previously suggested the ITC neurons are striatal in

origin [58] and recent studies have confirmed this by mapping

lineage-specific transcription factors [59,60]. Like striosomes, the

ITC is rich in mu-OR expression [61] and mu-OR immunore-

activity overlaps with Nr4a1-GFP expression in the ITC (Fig. 4,

C1–C3). The ITC is also rich in dopaminergic fibers [62] and TH

immunoreactivity overlaps with Nr4a1 expression in the ITC

(Fig. 4, D1–D3). This overlap is not as robust in the CeA where

Nr4a1 expression is lighter overall but areas of high Nr4a1-GFP

expression are observed, particularly in the medial region that

receives dense dopaminergic innervation (Fig. 4, D1–D3). For

comparison, Drd1-eGFP expression in the CeA and ITC revealed

both low Drd1 immunoreactivity and low eGFP levels in the CeA

but high expression in the ITC (Fig. 4, E1–E3). While Nr4a1

expression is consistent with the ITC being striosome-like, Drd1

immunoreactivity and Drd1-eGFP expression suggests the CeA

has fewer Drd1 and mu-OR expressing neurons and lower Nr4a1

expression under basal conditions than the ITC. Combined, this

Figure 3. Nr4a1-eGFP expression in the striatum compared to the matrix marker calbindin 28K and striosome markers calretinin
and mu-OR. eGFP is shown in the left column. Calbindin expression in the dorsolateral striatum (A2) and globus pallidus/caudal striatum (B2) is
merged with eGFP in A3 and B3. Calretinin immunoreactivity in the dorsomedial striatum is shown in C2 and merged with eGFP in C3. Mu-OR activity
(D2) is merged with eGFP in D3. The scale bar in A1 (100 mm) applies to all panels.
doi:10.1371/journal.pone.0016619.g003
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Figure 4. Nr4a1-eGFP expression compared with striosomal markers in the extended striatum and amygdala. Nr4a1-driven eGFP
expression is present in the NAc (A1), BNST (B1) and amygdala (C1, D1). Robust colocalization with mu-OR is observed in the NAc core but not the
shell (A2, A3). The BNST shows heterogeneous eGFP expression (B1) that overlaps with mu-OR immunoreactivity in most subregions (B2, B3). Mu-OR
immunoreactivity in the amygdala (C2) overlaps with Nr4a1-eGFP expression in the ITC (C3, arrows) but not in the CeA. TH immunoreactivity is not
uniform with greater innervation of the medial CeA (CeAM) than lateral CeA (CeAL) at this level (D2). TH+ fibers innervating the ITC were faint
compared to the medial CeA but overlapped with the ITC (D2, D3). Drd1-eGFP expression (E1, E3 merge) and Drd1 immunoreactivity (E2, E3) in the
amygdala are shown for comparison. Scale bars in A3 and B3 are 200 mm. Scale bar in E3 is 100 mm and applies to panels C–E.
doi:10.1371/journal.pone.0016619.g004
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pattern of immunoreactivity is consistent with the ITC being

derived from the lateral ganglionic eminence and phenotypically

striosome-like [59].

Nr4a1 is extensively regulated at the post-transcriptional level

and the protein has a short half-life of 2–4 hrs [36,63], therefore

eGFP levels (half-life ,26 hrs) may not reflect native protein levels

(supplemental text in [64]). Immunostaining for Nr4a1 in neonatal

mice indicated extensive overlap in expression of eGFP and

endogenous protein levels in the dorsal striatum (Fig. 5 A1-3, B1-

3). However, expression diverged in the adult striatum with very

little correlation between the endogenous nuclear protein levels

and eGFP, particularly in the matrix where Nr4a1 immunoreac-

tivity was detected in eGFP negative cells. Nr4a1 expression was

primarily localized to the nucleus in the developing and mature

animals (Fig. 5 A2, C2) but a background haze was also present,

consistent with descriptions of Nr4a1 mitochondrial localization

[34,35].

Development of Nr4a1-eGFP Expressing Striosomes
Dopaminergic innervation of the developing striatum has been

extensively studied. Striosome neurons are born first and occupy

‘‘dopamine islands’’ that are rich in dopamine and TH

Figure 5. Immunolocalization of endogenous Nr4a1 in the developing and adult striatum. Dorsolateral striatum from a neonatal (PN3/4,
A, B) and mature mouse (PN30, C, D). Higher power images indicate colocalization of eGFP and nuclear Nr4a1 in the developing dopamine islands
(A1–A3) that is present throughout the structure at low power (B1–B3). In contrast, there is little overlap between nuclear Nr4a1 expression and eGFP
in the mature striatum (C, D). High power images detected a speckled distribution (C2) in addition to nuclear localization. The lack of correlation
between eGFP levels and Nr4a1 is shown in low power images of the mature dorsolateral striatum (D1–D3). The scale bars in A and C are 50 mm,
100 mm for B and 200 mm for D.
doi:10.1371/journal.pone.0016619.g005
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immunoreactive fibers [18,65,66] and the Drd1 dopamine

receptor [67,68]. This pattern of expression extends into the

neonatal period [67,68,69,70]. When eGFP was examined in

horizontal sections from the newborn (Post Natal, PN 3/4) Nr4a1-

eGFP striatum, an island-like expression pattern was observed

with very little expression in the developing matrix compartment

(Fig. 6 A1, B1, C1). This pattern of expression overlapped with

Drd1 immunoreactivity (Fig. 6 A2, A3) and was not due to

differences in cell density observed with DAPI binding (Fig. 6 A4,

A5). A similar pattern of colocalization was observed with TH

immunoreactivity (Fig 6 B1–B3) and DAPI staining is shown for

comparison (Fig. 6 B4). Mu-OR staining showed robust overlap in

the medial striatum at this age (Fig. 6 C1–C3) but eGFP was

stronger in the ventrolateral and caudal regions where mu-OR

immunoreactivity was absent (Fig. 6 C3).

TH immunoreactivity in horizontal sections through the

neonatal striatum indicated selective dopaminergic innervation

of the developing striosomes and a close association between the

developing dopamine system and eGFP expression. Developing

striosomes are also rich in TrkB [71] and cortical afferents are the

main source of BDNF [72]. Thus, cortical afferents may play a

role in striatal maturation. Nr4a1 expression overlaps with TrkB in

both dorsal (Fig. 7, A1–A3) and ventral (Fig. 7, B1–B3) striosomes.

This was consistent throughout the striatum but not in the

subcallosal streak and the lateral striatal streak at PN3/4 (Fig. 7,

B1–B3) where Nr4a1-eGFP was expressed at high levels but TrkB

immunoreactivity was low. Concordance with these established

developmental patterns suggested that Nr4a1-eGFP is closely

associated with Drd1 expression and dopaminergic activity in the

developing striatum but association with TrkB suggests a role for

cortical afferents in Nr4a1-eGFP expression during striosome

development. Low expression of TrkB and mu-OR in the ventral/

lateral striatal streak suggests that these striosome-like regions may

be physiologically or developmentally divergent.

Nr4a1 induction can be mediated by numerous overlapping

signaling pathways but CREB is a common stimulus for activation

in multiple systems [28]. We therefore surmised that CREB and/

or ERK may be involved due to the overlap with Drd1 and TrkB

expression in the developing neonatal striatum. Surprisingly,

immunofluorescent detection of Ser 133 phosphorylated CREB

(p-CREB) revealed a reciprocal expression pattern relative to

Nr4a1-eGFP at PN3/4 (Fig. 8, A1–A3). pCREB was also observed

in the adjacent vasculature at PN3/4. By PN7, pCREB

immunoreactivity increased in both compartments and overlap

could be observed in cells at the edges of the striosomes and in

scattered matrix cells (Fig. 8, B1–B3). In contrast, ERK activation

overlaps with Nr4a1-driven eGFP expression at both PN3/4

(Fig. 8, C1–C3) and PN7 (Fig. 8, D1–D3), although the dominant

pattern of immunoreactivity shifted with time. At PN3/4, pERK

was present primarily within striosomal nuclei (Fig. 8, C1) but this

shifted to a combined diffuse and nuclear pattern by PN7 (Fig. 8,

D1). pCREB is probably not the main transactivating mediator of

Nr4a1-eGFP expression in developing striosomal neurons but

ERK-mediated pathways are differentially active in striosomes.

Inducible Expression of Nr4a1-eGFP
Sensitization to psychostimulants has been suggested to occur

through striosomal activation [8,73] and a single exposure to

amphetamine is sufficient to induce immediate-early genes in

striosomes [74,75]. A high dose of methylphenidate (5 mg/kg) was

administered to mice by i.p. injection at PN 30 to determine

whether eGFP could be induced in a similar fashion to these

endogenous immediate-early genes in vivo. Sections from

littermate heterozygous mice are presented side by side at 4 levels

through the striatum (Fig. 9). MPH increased eGFP levels in the

striosomes and the striatal matrix compartment of the DLS (right

column) that is consistent with increased locomotor activity.

Striatal induction is similar to endogenous Nr4a1 induction [39] as

well as Zif/268, Fos and Arc after psychostimulant exposure

[74,75,76].

The apparent activity-dependent regulation and the pattern of

expression developmentally suggests a strong association between

glutamatergic afferents, dopaminergic afferents, TrkB, ERK and

Nr4a1-eGFP expression. However, the lack of colocalization of

pCREB and eGFP implicates another level of Nr4a1 regulation in

the developing striatum. To determine potential factors regulating

the Nr4a1 promoter, MSNs were cultured and treated in vitro

with BDNF, forskolin, the Drd1 agonist SKF-83822 or 30 mM

KCl for 3–20 hrs. Fluorescence was measured in a microplate

fluorometer and examined microscopically (Fig. 10). Cultures

contained contaminating glia and large, pyramidal-like cells but

MSNs were readily identifiable by morphology and the presence

of spines. Stimuli produced different patterns of native fluores-

cence in the cultures. Expression was infrequent under control

conditions (Fig. 10A) with scattered clusters of brightly fluorescent

cells visible. BDNF increased fluorescence, filling the cell bodies

and making processes of MSNs and contaminating large

pyramidal-like cells visible when imaged at the same exposure

time as control cells (Fig. 10B). Forskolin increased fluorescence in

neuronal-like cells but also induced low level eGFP in contami-

nating glial cells. Significant differences in eGFP levels were not

observed in SKF-83822-treated cells at 20 hrs (Fig. 10D). High

extracellular potassium increased eGFP in neurons, with eGFP

filling the processes (Fig. 10E). A time course for eGFP expression

in response to stimulation measured in lysates is presented in

Fig. 10F. Only forskolin stimulation was sufficient to increase

eGFP levels after 3 hrs, reaching a maximum increase of 72%.

eGFP levels were increased by 8 hrs with forskolin, SKF-83822

and KCl stimulation but 20 hrs was required to detect a 16%

increase with BDNF-stimulated eGFP induction. Levels increased

or reached a plateau over time with forskolin and KCl treatment

(40%) while SKF-83822 induction (32%) was transient.

Induction and translation of eGFP sufficient to be detected

fluorometrically in vitro required 3–20 hrs depending on the

stimulus, however the half life of Nr4a1 is 2–4 hrs [31,36,63]. The

discrepancy between eGFP expression and native Nr4a1 expres-

sion in the mature brain was also noted above with immunoflu-

orescence (Fig. 5). To address these differences we performed time

course experiments for Nr4a1 and eGFP mRNA and protein

expression (Fig. 11). Cultures were stimulated with 30 mM KCl

for 0.5 to 8 hrs and semi-quantitative RT-PCR used to detect

mRNA (Fig. 11A). Nr4a1 mRNA peaked at 1 hour while eGFP

mRNA remained elevated through the 8 hour time point. eGFP

protein levels detected by Western blot paralleled eGFP mRNA

(Fig. 11B) but there was no correlation between Nr4a1 protein

levels and Nr4a1 mRNA in lysates. This could result from

differential responses in different MSN subtypes or other post-

transcriptional factors; therefore, we examined the expression of

Nr4a1 by immunofluorescence. MSN cultures are heterogeneous

with respect to direct vs. indirect phenotype but also in the basal

level of Nr4a1-eGFP expression with clusters of brightly

fluorescent cells (Fig. 11 C). Nr4a1 was detected at 2 hrs in the

nuclei of the brighter cell population (red channel, Fig. 11 C1, C2)

but was absent from the nuclei of these cells at 8 hrs (Fig. 11 C3,

C4, nuclei indicated by the arrows in C4). Interestingly, at 8 hrs

both Nr4a1 and eGFP immunoreactivity could be observed in a

perinuclear pool in cells with little other cellular eGFP expression

(Fig. 11 C3, arrows). This pattern is consistent with ER
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Figure 6. Developmental expression of Nr4a1 in striatonigral projections compared to Drd1, TH and mu-OR in horizontal sections.
eGFP expression (A1, B1, C1) overlaps with Drd1 immunoreactivity (A2, A3, A5 merged with the DAPI channel) and TH immunoreactivity (B2, B3, B5
merged with the DAPI channel) Mu-OR immunoreactivity (C2) colocalized with Nr4a1-eGFP is shown in C3 and in C5 merged with the DAPI channel.
DAPI staining is less intense in the striosomes (A4, B4, C4), indicating that the striosome-like distribution is not due to increased cell density. The scale
bar in H (200 mm) applies to all images. Panels A and B were taken with a Zeiss Axiovert microscope. Panels in C were taken with a Zeiss Lumar
stereomicroscope.
doi:10.1371/journal.pone.0016619.g006
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localization and suggests a different rate of transactivation or

translation in this population of cells. It should also be noted that

as with immunostaining in the mature brain (Fig. 5), cultures had

diffuse staining consistent with mitochondrial localization of Nr4a1

[34,36].

To further characterize the MSN subtypes with high eGFP

expression, cultures treated with 30 mM KCl were stained for

Drd1 and met-enkephalin immunoreactivity to determine the cell

type with robust activation of the Nr4a1 promoter (Fig. 12). We

tested multiple sources of other markers but unfortunately only the

Drd1 and met-enkephalin antibodies proved reliable. Intense

expression of eGFP (Fig. 12A) was frequently seen in clusters of

Drd1+ cells (Fig. 12B). Approximately half of the Drd1+ cells did

not express high levels of eGFP (merged image, Fig. 12C). Cells

expressing eGFP but no Drd1 were infrequent (,5%) and often

small and bipolar in morphology (arrow, Fig. 12A). eGFP

(Fig. 12D) colocalized with punctate/vesicular met-enkephalin

immunoreactivity in ,15% of neurons (Fig. 12E, merge in F).

Discussion

Expression of eGFP from the Nr4a1 promoter is observed

throughout the body and nervous system (Figs. S1 and S2).

Expression is not ubiquitous in the brain but within distinct

neuronal populations in each brain region, particularly in the

striatum, NAc and striatal-like regions of the amygdaloid complex.

We characterized expression in the mature animal and explored

the utility of this strain for experiments examining striosome-

matrix interactions, ontogeny and differential plasticity. Double

label immunofluorescence with classical striosome and matrix

markers confirmed higher expression in the adult striosomes and

concordant expression in developing striosomes. Expression in

vivo was temporally and spatially associated with the developing

corticostriatal and dopaminergic pathways. Nr4a1-eGFP expres-

sion overlaps spatially with dopaminergic innervation, Drd1

expression, TrkB expression and ERK phosphorylation in the

neonatal striatum. In vivo exposure to methylphenidate (Fig. 9)

and in vitro stimulation increases eGFP expression (Figs. 10, 11,

12) indicating activity-dependent regulation. Thus the Nr4a1

strain is not only an architectural marker of striosomal neurons but

also as an inducible reporter of MSN activity.

The Nr4a1 mouse has distinct expression in striosomal neurons

under basal conditions and Nr4a1 is enriched in direct pathway

neurons (Figs. 1, 6 and 12). Lobo and colleagues [37] identified

Nr4a1 as a differentially expressed (1.5 fold) mRNA species in

array studies of FACS sorted Drd1- and Drd2-eGFP neurons.

These data agree with the difference in eGFP levels between direct

and indirect pathway neurons but low eGFP expression in indirect

pathway neurons in the Nr4a1-eGFP mouse suggest more

heterogeneity than simply direct and indirect. This is further

complicated by the observation that Nr41 is expressed in Drd2/

enkephalin expressing neurons (Fig. 12 and [33,37,39]). Backman

and Morales [39] estimated that 25% of met-enkephalin+ neurons

expressed Nr4a1 after amphetamine exposure, which is slightly

higher than the 15% co-expression we observed. The neurons in

the matrix in Fig. 5 that do not express eGFP but have

endogenous Nr4a1 immunoreactivity and the matrix cells

expressing eGFP after MPH exposure may be these Nr4a1-

expressing indirect pathway neurons but these disparities also

point to a complex mode of regulation that differs between the

striosome and matrix, as has been suggested to exist for

phosphorylation of CREB [77].

Differential (high and low) eGFP expression in the striosome

and matrix of primarily Drd1-expressing cells under basal

conditions and in the developing mouse reveals both a phenotypic

and an anatomical division of direct pathway neurons, with

striosomal direct pathway neurons having the greatest fluores-

cence. It has been suggested that the MSN population is composed

of at least 5 putative subpopulations. These include direct pathway

striosome neurons, indirect pathway striosome neurons, direct

pathway matrix neurons and indirect pathway matrix neurons [1].

Cells co-expressing Drd1 and Drd2 or enkephalin and substance P

[2,16,78] may represent the fifth type. Nr4a1-eGFP expression is

most consistent with expression in direct pathway striosomal

neurons but a small proportion of met-enkephalin expressing cells

also express eGFP in vitro. Nr4a1-eGFP expression and

anatomical localization will be an additional tool to determine if

functional differences exist between neuronal subtypes in each

compartment.

The development of Nr4a1 expressing neurons parallels the

development of Drd1 and essentially replicates previous studies on

striatal development using other techniques. Developing strio-

somes contain TrkB, pERK, Drd1 and are heavily innervated by

dopaminergic fibers. Surprisingly, CREB phosphorylation did not

correlate with eGFP expression in the developing striatum and

cAMP is known to induce endogenous Nr4a1 [28]. CREB shows

divergent regulation in the striosome vs. matrix. Sustained Drd1

activation increased striosomal CREB phosphorylation while

sustained calcium channel activation increased phosphorylation

in the matrix in organotypic cultures indicating divergent

regulation [77,79,80]. The transient nature of pCREB phosphor-

ylation and differential regulation do not exclude CREB as a

regulator of Nr4a1-eGFP expression, as transcription factors work

Figure 7. TrkB and Nr4a1 are co-expressed in developing
striosomes. TrkB expression (A1, B1) and Nr4a1-eGFP (A2, B2) merged
(A3, B3) in the developing striosomes at PN3/4. Dorsolateral (A) and
ventrolateral striatum (B) are shown. Arrow (B1) indicates the lateral
striatal streak. Scale bar in J (100 mm) applies to all images.
doi:10.1371/journal.pone.0016619.g007
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in a temporally concerted fashion to induce gene transcription.

The lack of association between pCREB and eGFP expression

postnatally (Fig. 9) and induction of Nr4a1-eGFP by calcium and

forskolin in vitro (Figs. 10 and 11) implies that Nr4a1-eGFP

expression may be actively repressed in matrix cells in vivo.

Induction by forskolin in vitro suggests that the factors mediating

repression can be over-ridden by a strong stimulus or may not be

present in vitro (i.e. afferents).

Nr4a1 promoter-driven eGFP expression does not recapitulate

endogenous Nr4a1 protein expression in the mature mouse brain

under basal conditions (Fig. 5 C,D) or after induction in vitro

(Fig. 11) in MSN cultures when measured by Western blot in total

lysates. This is in contrast to colocalization in the developing brain

(Fig. 5 A,B). The lack of colocalization of eGFP and Nr4a1 in the

mature brain is likely due to numerous factors. First, the half life of

the two mRNA species is different (Fig. 11). The endogenous

mRNA is subject to 39 regulation that is not present in the BAC

construct and the mRNA for eGFP is further stabilized by a viral

polyadenylation signal [64]. Second, the half lives of eGFP and

Nr4a1 protein also differ (26 hrs [81] vs. 2–4 hrs [36,63]). Finally,

there appears to be a stable pool of Nr4a1 that does not associate

with the nucleus (Figs. 5 and 11 and unpublished observations) and

appears as a background at low power. However, when cultures

were immunostained and examined microscopically we noted that

the time course of nuclear localization in the brightly fluorescent

cells was rapid, leaving the nucleus by 8 hrs. In contrast,

perinuclear immunoreactivity for both Nr4a1 and eGFP was

observed after 8 hrs in the dimly fluorescent cells, presumably

corresponding to the matrix neurons. These data suggest that the

strength or speed of induction may differ between striosomal cells

Figure 8. Phosphorylation of CREB and ERK in the neonatal Nr4a1-eGFP striatum. Phospho-CREB immunoreactivity is lower in the
striosomes than in the surrounding matrix at PN3/4 (A1–A3) and PN7 (B1–B3). ERK phosphorylation shows the opposite pattern of immunoreactivity
at both PN3/4 (C1–C3) but the distribution of pERK changes during development with nuclear and process localization at PN7 (C1 compared to D1).
Nr4a1 and active ERK and CREB were also detected in the vasculature. Scale bar in A3 (50 mm) applies to all images.
doi:10.1371/journal.pone.0016619.g008
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and matrix cells. Consistent with this, Tian and colleagues [33]

reported Nr4a1 induction in Drd2-expressing cells after 24 hrs of

exposure to high KCl, while Heiman and colleagues [38] did not

identify Nr4a1 as a differentially regulated protein in direct vs.

indirect pathway neurons by translational profiling of sorted Drd1

and Drd2 cells. Combined, these data indicate that the difference

between eGFP levels and native Nr4a1 levels reflect a dissociation

in mRNA and protein regulation that differs between MSN

populations.

Phosphorylated MEF2 represses Nr4a1 transcription and the

calcium-activated phosphatase calcineurin is responsible for

dephosphorylation of MEF2 [32,82]. Striatopallidal neurons show

induction of endogenous Nr4a1 in response to calcium channel

activation in corticostriatal cocultures [33] and this is consistent

with low expression in the matrix under basal conditions that is

derepressed by synaptic activity through calcineurin [31,32,33,82].

Calcineurin is high in developing striosomes [83] therefore

decreased striosomal pCREB [84] and increased Nr4a1-eGFP

may result through the same pathway, activity-dependent

activation of calcineurin. These data do not exclude a role for

cAMP and low levels of pCREB were present in the striosomes but

implicate an activity-dependent MEF-like pathway as a gatekeep-

er. Divergent expression of endogenous Nr4a1 and the eGFP

reporter demonstrates complex regulation at the levels of

translation, localization and degradation that should be considered

when following eGFP reporter expression.

Induction of Nr4a1 is associated with MSN synaptic remodeling

[33] and high levels may therefore mark neurons undergoing

plasticity in vivo after drug exposure or after various learning

paradigms. Combined with fluorescence activated cell sorting,

Nr4a1-eGFP mice can be used to characterize the development

and function of a subset of direct pathway neurons that are

enriched and activated preferentially in striosomes. Nr4a1-eGFP

expression can be used to monitor the convergence of afferent

pathways in vitro and in genetic mouse models such as cortex-

specific deletion of BDNF or deletion of TH. Activation of

prefrontal circuits that preferentially project to the striosomes

during behavioral paradigms that switch from goal directed to

habitual behaviors or during reversal learning could lead to

differential eGFP expression in striosome vs. matrix neurons.

Optical monitoring of striosomal neurons in vivo is also feasible

with this strain. In addition, variable expression between animals

in the striatal-like regions of the amygdala indicates that the

Nr4a1-eGFP strain might be useful for identification of circuits

involved in anxiety-like behavior. Three-dimensional serial

reconstruction technologies have been developed to document

complete pathways and connections. Adding the dimension of

fluorescence intensity to the reconstruction algorithms would be a

phenomenal advance in elucidating complex pathways regulating

mouse behavior.

Methods

Mice
All animal procedures were carried out in accordance with the

NIH Guide for the Care and Use of Laboratory Animals and were

approved by the NIAAA animal care and use committee under

protocol LIN-DL-21. All efforts were made to minimize suffering

of animals. Transgenic Nr4a1 (Tg(Nr4a1-EGFP139Gsat)), Drd1

(Tg(Drd1-EGFP-X60Gsat)) and Drd2 (Tg(Drd2-EGFP-

S118Gsat)) were obtained from GENSAT and bred to Swiss-

Webster mice (NIH). Experiments were performed on heterozy-

gotes. Mice were genotyped at birth by fluorescence of the thymus,

tails and ears using a hand held UV source.

Staining Procedures
Fixation. Adult mice were deeply anesthetized with

isofluorane and transcardially perfused with 4% formaldehyde in

phosphate-buffered saline (PBS). Neonatal mice were euthanized

by rapid decapitation and brains were fixed in 4% formaldehyde

for 24 hrs at 4C. Perfusion-fixed brains were post-fixed overnight

in 4% formaldehyde. Neonatal brains were sectioned at 50 mm

and adult brains were sectioned at 40 or 50 mm as indicated using

a vibratome.

Immunofluorescence. Sections were blocked with 5%

bovine serum albumin in Phosphate-Buffered Saline, 0.02%

Triton X-100 (PBS-T) for 4 hrs and then incubated in primary

antibodies overnight at 4C. Antibodies used were as follows:

chicken anti-GFP (Abcam, 1:2000), rabbit anti-calbindin

(Millipore, 1:200), rabbit anti-calretinin (Millipore, 1:1000),

rabbit anti-mu-opioid receptor (Immunostar, 1:5000), rat anti-

Drd1 (Sigma, 1:250), rabbit anti-Nur77 (Santa Cruz, 1:50) or

chicken anti-TH (Abcam, 1:2000). Rabbit anti-GFP (Millipore,

Figure 9. eGFP expression in mice administered 5 mg/kg of
methylphenidate. Sections of similar striatal regions are shown for
comparison. Images were pseudo-colored using image J (16-bit
spectrum). Fluorescence intensity indicates increased levels in the more
intense (striosomal, red) regions but also an increase in expression
within the matrix (green to yellow shades). Scale bar is 100 mm.
doi:10.1371/journal.pone.0016619.g009
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1:200) was used for double labeling with TH. Following 3 washes

in PBS-T, sections were incubated overnight in secondary

antibodies. Alexa 488 goat anti-chicken (1:2000) and Alexa 568

goat anti-rabbit (1:1000) or Alexa 555 goat anti-rat (Drd1, 1:1000)

were used in experiments except when in combination with

chicken anti-TH where Alexa 568 goat anti-chicken (1:1000) and

Alexa 488 goat anti-rabbit (1:200) were used (Invitrogen). All

antibodies were well characterized and titrated to determine the

optimal concentration. Control sections were treated as described

with omission of the primary antiserum. Immunofluorescence on

cell cultures was performed as described above on cells plated in 8-

well chamber slides, except the incubation times were shortened to

1 hr.

Counterstaining. Sections were then counterstained with

DAPI (Invitrogen) in PBS (0.25 ng/mL), washed 3 times in PBS-

T. Alexa-568 IB4 isolectin binding (1 mg/mL in PBS-T,

Invitrogen) was used for detection of the blood vessels (Fig. S2).

Fifty micron sections were incubated overnight and washed three

times as described above. Sections were mounted with

Fluoromount G (Electron Microscopy Sciences) and sealed with

nail polish.

Cell Culture. Primary cultures of MSNs were prepared from

mice at 0–2 days of age. Striata were dissected on ice, minced and

dissociated with papain prepared in MEM (Worthington, 20 U/

mL) for 30 min at 30C. Cells were centrifuged at 600 g and

resuspended in MEM supplemented with glucose to 25 mM, 2%

B-27 supplement, 1 mM sodium pyruvate, 1 mM Glutamax,

100 U/mL penicillin, 100 mg/mL streptomycin, 5% fetal bovine

serum and 0.5 ml/mL Mito Serum Extender. All cell culture

media and supplements were from Invitrogen except for the fetal

bovine serum (Hyclone) and Mito Serum Extender (BD

Biosciences). Cells were grown on poly D-lysine coated culture

plates (Costar) or 8-well chamber slides (Electron Microscopy

Sciences). After 2 days in vitro, medium was changed to medium

prepared as above but without serum. Cells were maintained at

37C, 5% CO2 in a humidified incubator. Half of the medium was

replaced every 3-4 days until assay at 7–10 DIV.

In Vitro EGFP Measurements. eGFP expression was

analyzed as previously described [85]. Cells were treated with

either 5 ng/mL BDNF, 1 mM forskolin (Tocris), 1 mM SKF-

83822. or 25 mM KCl (30 mM final) diluted into cell culture

medium without serum or Mito Serum Extender. Control wells for

forskolin and SKF-83822 contained a final concentration of 0.01%

DMSO, although this did not change eGFP expression and

control values were collapsed into a single group for analysis. After

3–20 hrs of incubation wells were lysed with 75 mL 0.1% Triton

X-100 in PBS (with calcium and magnesium) and homogenized

using an ELISA plate shaker. Fifty mL of homogenate was

transferred to a black half-well plate and fluorescence was

measured using a TECAN microplate fluorometer with the

FITC filter set with the background (lysis buffer alone)

subtracted. Data were normalized to the average of the control

Figure 10. Native fluorescence and fluorometric detection of stimulated eGFP expression in primary cultures of medium spiny
neurons stimulated in vitro. Pseudocolored images of control (A), 5 ng/mL BDNF (B), 1 mM forskolin (C), 1 mM SKF-83822 (D) or 30 mM KCl (E)
reveal eGFP induction after 20 hrs. eGFP expression was also measured fluorometrically in lysates at 3, 8 and 20 hrs after exposure (F). Native
fluorescence is representative of 4 replicate fields taken at the same exposure time (set for linear detection in control cultures). Fluorometry data in F
are the mean +/2 SE of 16 replicates for each time point and treatment. Data were analyzed by ANOVA (* p,0.05). Scale bar in E (20 mm) applies to
all panels.
doi:10.1371/journal.pone.0016619.g010
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wells on each plate for each time point since B-27 and 30 mM

glucose (control) increased eGFP expression.

Electrophoresis and Western Blot. Nr4a1 was induced by

media change even into formulations containing no additional

growth factors so acute induction experiments were performed by

treating with concentrated stocks at 5X in MEM with 5 mM

glucose, which did not result in significant Nr4a1 induction over

the 30 min to 8 hr time course. Cells were stimulated with 30 mM

KCl or 5 mM forskolin (final) and lysed with 1% Triton X-100

containing protease and phosphatase inhibitors (Sigma

Mammalian Protease Inhibitor Cocktail and Phosphatase

Inhibitor Cocktails 1 and 2). Lysates were sonicated, diluted

with 2X Laemmli buffer containing 3% (v/v final) 2-

mercaptoethanol [86] and heated to 95C for 5 min. Proteins

were resolved on 11% SDS-polyacrylamide gels and transferred at

50 mA for 16 hrs onto PVDF membranes according to the

method of Towbin [87]. Blots were washed with Tris-Buffered

Saline containing 0.05% Tween-20 (TTBS) and blocked with 5%

fat-free powdered milk in TTBS. Rabbit anti-Nr4a1 (Santa Cruz,

1:5000), mouse anti-GFP (Neuromab, 1:2000) or rabbit anti-B

actin (Cell Signaling, 1:1000) were diluted in TTBS and incubated

overnight at 4C. Blots were washed and incubated for 1 hr with

HRP-conjugated anti-rabbit (Pierce, 1:20,000) or HRP-conjugated

anti-mouse (Bio-Rad, 1:1000). Following a final series of washes,

immunoreactivity was visualized using chemiluminescence (Pierce

Super Signal Pico West) and imaged using a Kodak Image Station.

The same blots were sequentially reprobed with each antibody.

Semi-quantitative RT-PCR. Cells were cultured in 48 well

culture dishes and treated for 0–8 hrs with 30 mM KCl as

described above for protein expression. Cells were lysed in the

culture dish wells by addition of 300 mL of buffer RTL, a

component of the RNeasy kit from Qiagen. Total RNA was

isolated using this kit and 10 mL of the resulting total RNA was

reverse transcribed using the QuantiTect Reverse Transcription

kit (Qiagen). The 20 mL final reaction product was diluted to

120 mL and 2 mL of cDNA was transferred to one of 3 reaction

tubes for amplification of Nr4a1, eGFP or actin in 50 mL reactions

using 2X GoTaq Hot Start Polymerase Green Master Mix

(Promega). Primer pairs (300 nM final reaction concentration)

were (59 to 39): mouse Nr4a1 (for GTCCGCACCTGTGAG-

GGCTGC, rev GGTAGGGGAGGCATCTGGAGGC): eGFP

(for CCTACGGCGTGCAGTGCTTCAGC, rev CGGCGAG-

CTGCACGCTGCCGTCCTC) and for mouse B-actin (for

CTGAGGAGCACCCTGTGCTGC, rev CCAGGATGGAGC-

CACCGATCC). Seven mL aliquots of product were taken after

22, 27, and 37 cycles and 5 mL of the aliquot was analyzed by

1.8% agarose gel electrophoresis. Bands were visualized using

Syber-Safe (Invitrogen) and fluorescence captured using a

Carestream Gel Logic 112 Imager.

Methylphenidate Exposure. Heterozygous mice were

divided by litter and gender so that litter mates and cage mates

of the same gender were used for comparison at each time point.

Mice were injected at PN30 with 5 mg/kg methylphenidate in

normal saline or vehicle and sacrificed 12 hrs later. Brains were

block fixed in cold 4% formaldehyde for 24 hrs and processed

within 1 week. Every 3rd section through the striatum was imaged

and landmarks were used to insure imaging of similar striatal

regions. eGFP antibody staining (above) was used in these

experiments because of poor eGFP stability in stored tissue and

the time required to section and image the brains.

Microscopy and Quantification of Immunofluorescence.

Sections were imaged with a Zeiss Axiovert epifluorescence

microscope or a Zeiss Lumar stereo-microscope equipped with

standard DAPI, eGFP and Cy3 filter sets (Chroma). Images were

Figure 11. Time course for the in vitro induction of native Nr4a1 mRNA and protein compared to Nr4a1 promoter-driven eGFP
expression in MSNs. Semi-quantitative PCR detection of Nr4a1, eGFP and actin mRNA after exposure to 30 mM KCl for 30 min to 8 hrs is shown in
A. Western blot detection of eGFP, Nr4a1 and actin induced by 30 mM KCl or forskolin (1 hr to 8 hr) is shown in panel B. Immunofluorescent
detection Nr4a1 (red) and eGFP in DAPI stained MSN cultures is shown in C1–C4 after 2 hrs of treatment with 30 mM KCl (C1, C2) or 8 hrs (C3, C4).
Arrows in C1 indicate nuclear expression in brightly fluorescent cells after 2 hrs of exposure to 30 mM KCl. DAPI and Nr4a1 are shown together in C2
for this time point. Cells treated for 8 hrs with 30 mM KCl are shown in C3,C4. Arrows (C3) indicate cells with perinuclear eGFP and Nr4a1
immunoreactivity. The DAPI and Nr4a1 channels are shown merged in C4. Arrows (C4) indicate the absence of Nr4a1 immunoreactivity in the nuclei
of brightly eGFP-expressing cells at 8 hrs. Scale bar in C1 (10 mm) applies to all images.
doi:10.1371/journal.pone.0016619.g011
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captured with an Axiocam MR using the Axiovision software. For

some figures binary images were converted to pseudo-colored

images using Image J (Scion Corp.) for presentation as indicated in

the figure legends using the 16-bit spectrum lookup tables. Images

were collected using the same exposure times and background

subtractions (when used) were linear and the same for all sections

within each experiment when quantitative comparisons were made.

Supporting Information

Figure S1 Nr4a1-eGFP expression within the central
nervous system in the adult mouse. Diffuse expression was

observed throughout the brain in fibers and somata. Panels are

labeled with the approximate location relative to Bregma

according to the Allen Brain Atlas coordinates for an adult

C57/Bl6J mouse and are therefore approximate. The predomi-

nant structure in each panel is indicated. Abbreviations: Olf,

oflactory; PrL, prelimbic cortex, Pir, piriform cortex; M1/M2,

motor cortex 1/2; Hab, habenula; MeA, medial amygdala; Hyp,

hypothalamus; Au Cx, auditory cortex; LGN, lateral geniculate

nucleus; HP, hippocampus; vHP, ventral hippocampus; PAG,

periaquiductal grey; Coll, colliculi; CB, cerebellum. Panels are of

the left hemisphere except for medial regions (B3, C1, E1).

(TIF)

Figure S2 Gross survey of peripheral expression of
Nr4a1-eGFP. eGFP fluorescence was detected in the intestine

(A), muscle and spinal ganglia (B), heart (C), spleen (D), testes (E,

higher magnification, E9) and lung (F). eGFP in the liver (G) was

primarily associated with the vasculature (G9 stained with IB4

isolectin). Expression in the kidney (H) was also associated with the

vasculature (higher power shown in I, Alexa-568 IB4 isolectin

binding is shown in I9). Images were taken with a Zeiss Lumar

stereomicroscope (A, B, E, F, H) or a Zeiss Axiovert epifluores-

cence microscope (D, E9, G, G9, I, I9). Scale bars are present in

each panel.

(TIF)
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analysis of genes expressed in the frontal cortex of rats chronically treated with

morphine and after naloxone precipitated withdrawal. Mol Brain Res 112:

113–125.

44. Maheux J, Ethier I, Rouillard C, Levesque D (2005) Induction Patterns of

Transcription Factors of the Nur Family (Nurr1, Nur77, and Nor-1) by Typical

and Atypical Antipsychotics in the Mouse Brain: Implication for Their

Mechanism of Action. J Pharmacol Exp Ther 313: 460–473.

45. Matamales M, Bertran-Gonzalez J, Salomon L, Degos B, Deniau JM, et al.

(2009) Striatal medium-sized spiny neurons: identification by nuclear staining

and study of neuronal subpopulations in BAC transgenic mice. PLoS One 4:

e4770.
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