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Background & Aims: Millions of people worldwide are infected chronically with HBV, which results in significant morbidity
and mortality. Therapeutic vaccination is a strategy that aims to induce functional cure by restoring cellular immunity to HBV.
Previously we have shown the candidate HBV immunotherapeutic vaccine ChAdOx1-HBV, encoding all major HBV antigens
and a genetic adjuvant (shark invariant chain), is highly immunogenic in mice.
Methods: Here we report the results of HBV001, a first-in-human, phase I, non-randomised, dose-escalation trial of ChAdOx1-
HBV assessed in healthy volunteers and patients with chronic HBV (CHB).
Results: Vaccination with a single dose of ChAdOx1-HBV was safe and well tolerated in both healthy and CHB cohorts.
Vaccination induced high magnitude HBV-specific T cell responses against all major HBV antigens (core, polymerase, and
surface) in healthy volunteers. Responses were detected but lower in patients with CHB. T cells generated by vaccination were
cross-reactive between HBV C and D genotypes.
Conclusions: ChAdOx1-HBV is safe and immunogenic in healthy volunteers and patients with CHB. In further studies,
ChAdOx1-HBV will be used in combination with other therapeutic strategies with an aim to overcome the attenuated
immunogenicity in patients with CHB.
Impact and implications: Therapeutic vaccine ChAdOx1-HBV, a novel treatment for chronic hepatitis B infection (CHB), has
been shown to be immunogenic in preclinical studies. In HBV001, a first-in-human phase I study, we show vaccination with
ChAdOx1-HBV is safe and generates high magnitude T cell responses in healthy volunteers and lower levels of responses in
patients with CHB. This is an important first step in the development of ChAdOx1-HBV as part of a wider therapeutic strategy
to induce hepatitis B functional cure, and is of great interest to patients CHB and clinicians treating the condition.
Clinical Trials Registration: This study is registered at ClinicalTrials.gov (NCT04297917).
© 2023 Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
HBV is estimated to chronically infect over 250 million people
worldwide.1 Viral hepatitis-related liver cirrhosis and hepato-
cellular carcinoma (HCC) contribute to one million global deaths
annually.1 Treatment of persons with HBV and HBV elimination
as a public health threat by 2030, are targets of the United Na-
tions Agenda for Sustainable Development and the World Health
Organization.2,3 Current treatments suppress viral replication,
but do not eliminate HBV nor eradicate the risk of developing
HCC, and lifelong therapy is therefore often required.4 The
Keywords: Hepatitis B; Vaccine; Chimpanzee adenovirus; Shark invariant chain.
Received 10 March 2023; received in revised form 23 June 2023; accepted 22 July 2023;
available online 18 August 2023
† These authors contributed equally to this work and share first authorship.

* Corresponding author. Address: Peter Medawar Building for Pathogen Research,
Nuffield Department of Medicine, University of Oxford, South Parks Road, Oxford
OX1 3SY, UK. Tel.: +44 1865 281547.
E-mail address: ellie.barnes@ndm.ox.ac.uk (E. Barnes).
development of new treatments that can be given in finite
courses is a priority.

HBV-specific T cells, in particular cytotoxic CD8+ T cells, are
key players in controlling acute HBV infection.5 However, in
chronic disease these cells become functionally impaired and
‘exhausted’, which limits the ability of the immune system to
clear the virus.6 One strategy to induce immune control in
chronic HBV (CHB) infection is to restore the HBV-specific im-
mune response, analogous to persons that control acute infec-
tion.7 Functional HBV cure, defined as long term HBsAg loss, is a
major aim of the field as it confers a low risk of developing liver
cirrhosis or HCC.8,9 Therapeutic vaccination describes the de-
livery of an immune activating substance designed to induce
new, or boost existing HBV-specific immune responses, as a
potential method of restoring HBV-specific immunity.10

Previous attempts at therapeutic vaccination for CHB have not
been successful at inducing functional cure.10 A major reason for
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this is that vaccine candidates have not generated robust CD8+
HBV-specific T cell responses. It is not clear whether this is
because the vaccines themselves are not sufficiently immuno-
genic, or the immunosuppressive environment of CHB and the
‘exhaustion’ of HBV-specific cellular immune responses impedes
immunogenicity.7,10

We have designed immunotherapeutic vaccine candidates
ChAdOx1-HBV and MVA-HBV for use in heterologous prime/
boost strategies and in combination with other therapies such as
checkpoint inhibitors, with the aim of inducing functional cure
in patients with CHB. Previously we have shown ChAdOx1-HBV
and MVA-HBV induce high magnitude HBV-specific T cell re-
sponses in mice.11 There are several reasons why these vaccines
might be more efficacious than previous HBV therapeutic vac-
cine candidates. Firstly, chimpanzee adenoviral (ChAd) and
modified vaccinia Ankara (MVA) viral vectors used in heterolo-
gous vaccination strategies, generate some of the highest
magnitude vaccine induced CD8+ T cell responses in humans.12

Secondly, unlike other therapeutic HBV vaccine candidates, the
ChAdOx1-HBV immunogen contains near full sequence HBV.
Although HBV-specific T cell responses to multiple HBV antigens
are necessary to successfully eliminate acute HBV infection,5

protective HBV epitopes are not well defined, and may differ
between populations.13 An immunogen containing all the major
HBV antigens enables the potential induction of T cell responses
towards several HBV epitopes with different major histocom-
patibility complex (MHC) restrictions. Thirdly, the use of shark
invariant chain (sIi) as a genetic adjuvant, which has been
used previously in a human malaria vaccine study (A. Flaxman
and A. Hill, personal communication) and in our preclinical
studies where it enhanced vaccine-induced HBV-specific T cell
magnitude.11

HBV001 (NCT04297917), is a first-in-human, phase I, non-
randomised, dose-escalation trial of ChAdOx1-HBV in healthy
volunteers and patients with CHB.14 The primary outcome was to
assess the safety and tolerability of a single dose of ChAdOx1-
HBV in both cohorts. Secondary outcomes included the assess-
ment of HBV-specific T cell immunogenicity and quantitative
HBsAg after vaccination.
Patients and methods
HBV001 study design
HBV001 is a phase I clinical trial registered as NCT04297917.14

Ethical approval was granted by the Berkshire Research Ethics
Committee (REC: 19/SC/0419) and all participants gave informed
written consent. All study procedures were in accordance with
the Declaration of Helsinki and Good Clinical Practice (GCP)
guidelines.15 Participants were sequentially enrolled into four
cohorts without randomisation or blinding (Fig. S1). Healthy
volunteers were enrolled at the Medicines Evaluation Unit,
Manchester, UK and received intramuscular low dose (2.5 × 109

viral particles [vps], cohort 1) or high dose (2.5 × 1010 vps, cohort
2) ChAdOx1-HBV. Patients with CHB on antiviral therapy were
enrolled at the Centre for Clinical Vaccinology and Tropical
Medicine, Churchill Hospital, Oxford, UK and received intra-
muscular low dose (2.5 × 109 vps, cohort 3) or high dose (2.5
× 1010 vps, cohort 4) ChAdOx1-HBV. The primary outcome was to
assess the safety and tolerability of a single dose of ChAdOx1-
HBV. Secondary outcomes included the assessment of T cell
immunogenicity and changes in quantitative HBsAg levels after
vaccination.
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Study procedures
At baseline and at the end of study (EOS), HBV serology including
HBsAg, anti-HBsAb, and anti-HBcAb were recorded in all par-
ticipants. In addition, HBV DNA level, quantitative HBsAg level,
HBeAg, and anti-HBeAb were measured in patients with CHB. On
the day of vaccination and at 14, 28, 56, 84, and 168 days after
vaccination, blood was drawn for haematological and biochem-
ical laboratory tests, HBV serology, and to isolate peripheral
blood mononuclear cells (PBMCs) for immunological assessment.
Solicited adverse events were collected via electronic diary cards
for 72 h after vaccination. Unsolicited adverse events were
collected until Day 168 after vaccination (EOS). Further infor-
mation on inclusion and exclusion criteria and study procedures
are detailed in the supplementary methods and Tables S1 and S2.

Vaccine design
The HBV immunogenwithin ChAdOx1-HBV previously described
in Chinnakannan et al.,11 includes the entire HBV-core, -poly-
merase, -pre-S1/pre-S2 and -surface regions of HBV genotype C
sequence accession number KJ173426 HBV isolate C2,16 with
point mutations in the polymerase region to render it replication
deficient (Fig. S2). Truncated sIi and tissue plasminogen activator
were included as molecular adjuvants.

Immunological assays
PBMCs for use in immunological assays were isolated from
whole blood collected from study participants in sodium heparin
vacutainers (Beckton Dickinson, Franklin Lakes, New Jersey, USA)
using a Lymphoprep density gradient (Stemcell Technologies,
Vancouver, Canada). Cells were counted on a Muse cell analyser
(Luminex, Austin, Texas, USA) and used fresh, or cryopreserved in
freezing media in 1 ml cryovials in liquid nitrogen. Interferon-
gamma (IFNc) enzyme-linked immunospot (ELISpot, Millipore,
Burlington, Massachusetts, USA) assays and intracellular staining
(ICS) assays were performed as previously described17 and as
further detailed in the Supplementary methods. In brief, PBMCs
were incubated with seven pools of HBV peptides (total 396
peptides, 15 amino acids [AAs] long overlapping by 11 AA), cor-
responding to the entire vaccine immunogen (Tables S3–S5) in
ELISpot plates (Millipore, MSIP54510) and IFNc spot-forming
units (SFUs) were counted using an AID ELISpot plate reader. In
ICS assays, PBMCs were incubated with pools of HBV peptides
(Tables S3–S5) diluted in stimulation cocktail (Table S6) before
staining with antibody cocktail for cytokine detection (Table S7).
Statistical tests were non-parametric unless otherwise stated
and are further detailed in the Supplementary methods. Statis-
tical significance was defined as a p value of <0.05.
Results
Vaccination with ChAdOx1-HBV is safe and well tolerated
Of 32 volunteers screened, 21 were recruited into the study
(Fig. S1). Ten healthy volunteers were vaccinated with low dose
(2.5 × 109 vps, cohort 1, n = 5) or high dose ChAdOx1-HBV (2.5
× 1010 vps, cohort 2, n = 5). Healthy volunteers had a median age
of 38 years (IQR 33–45), 70% of volunteers were male and 10%
were of Asian ethnicity (Table S8). Eleven patients with CHB
were vaccinated with low dose (2.5 × 109 vps, cohort 3, n = 6) or
high dose ChAdOx1-HBV (2.5 × 1010 vps, cohort 4, n = 5). Patients
with CHB had a median age of 41 years (IQR 33–47), 55% were
male and 55% were of Asian ethnicity; baseline median serum
alanine transaminase (ALT) was 27 IU/L, the majority with
2vol. 5 j 100885



available baseline data (n = 7/9, 78%) were HBeAg negative and
HBeAb positive, HBV DNA was under 40 IU/ml in all patients and
the mean HBsAg level was 3.23 log10 IU/ml. Patients were
infected with different HBV genotypes, with genotype C (n = 3,
27%) and genotype D (n = 3, 27%) being most common (Table S9).

ChAdOx1-HBV was well tolerated. There were no suspected
unexpected serious adverse reactions or related serious adverse
events. The most frequently reported adverse events (AEs) were
those typically seen in response to intramuscularly administered
viral vectored vaccines including warmth at the injection site,
fatigue, and myalgia. Overall, 51 local and systemic solicited
symptoms were reported within the first 3 days following
vaccination (Day 0 through Day 3, Fig. 1); 20 events were re-
ported by six healthy volunteers (n = 2 in cohort 1 and n = 4 in
cohort 2), and 31 by six CHB patients (n = 3 cohort 3 and n = 3 in
cohort 4). All solicited events were grade 1 (mild, n = 26, 51%) or
grade 2 (moderate, n = 25, 49%) in severity and resolved within 3
days, except for four symptoms, which each resolved within 5–7
days. As expected, grade 2 events were reported more frequently
after administration of the higher dose of ChAdOx1-HBV. Fifteen
unsolicited AEs were reported by 11 participants during the
study (Table S10), of which four (27%) were considered related to
the vaccination (vomiting, vertigo, transient blurred vision, in-
jection site tenderness). All were mild to moderate in severity
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Cohort 1: Healthy volunteers,
low-dose ChAdOx1-HBV (n = 5)
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Fig. 1. Solicited adverse events within 72 hours of vaccination with ChAdOx1-
events recorded by self-reported diary cards 72 h after vaccination by healthy volu
or patients with CHB that received (C) low dose (n = 6) or (D) high dose (n = 5
symptom is displayed by grade of severity; grade 1 (mild, purple), grade 2 (mod
pretation of the references to color in this figure legend, the reader is referred t
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and spontaneously resolved within 7 days with no sequelae. No
AE led to participant withdrawal from the study.

There were 120 abnormal laboratory tests observed out of the
2,150 tests performed during the study follow-up (5.6%). Severity
was defined according to the Division of AIDS table for grading
the severity of adult and paediatric AEs.18 The most common
laboratory abnormalities across all cohorts were anaemia and
neutropaenia (Table S11). The most common abnormalities in
healthy volunteers and patients with CHB are shown in Figs S3
and S4, respectively. The majority of the abnormal laboratory
tests observed after vaccination were abnormal at baseline (n =
87/120, 73%, Table S11). Of the 33 not present at baseline, 20
remained abnormal at Day 168 (EOS) in four healthy volunteers
(neutropaenia and high fibrinogen) and three patients with CHB
(high ALT, high aspartate aminotransferase, anaemia, leucopae-
nia, and lymphopaenia). No abnormal laboratory test was
thought to be related to vaccination, as per discretion of the
study clinician. The majority of laboratory abnormalities were
mild to moderate in severity (grade 1 and 2). There were four
grade 3 abnormal laboratory tests reported in one healthy
volunteer (raised fibrinogen) and two CHB patients (low neu-
trophils and low haemoglobin). In patients with CHB, serum ALT
remained under 1.5× the upper limit of normal throughout the
study and there was no significant difference in ALT between
B
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high-dose ChAdOx1-HBV (n = 5)

Cohort 4: CHB,
high-dose ChAdOx1-HBV (n = 5)
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HBV in healthy volunteers and patients with CHB. Local and systemic adverse
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o the Web version of this article).
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screening and any timepoint tested after vaccination (p = 0.32,
Fig. S5).

ChAdOx1-HBV induces high magnitude HBV-specific T cell
responses in healthy volunteers
HBV-specific T cell responses induced by vaccination with ChA-
dOx1-HBV in healthy volunteers assessed in IFNc ELISpot assays,
peaked at Day 14 or Day 28 after vaccination and were signifi-
cantly higher than baseline responses (Day 0 median 110 [IQR
75–713] IFNc SFUs per million (106) PBMCs vs. Day 14 median
1,173 [IQR 907–1,553] IFNc SFUs/106 PBMCs p = 0.0004, or Day 28
A

C

0 14 28 56 84 168
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

Day after vaccination

SF
U

 p
er

 1
06  P

BM
C

s
SF

U
 p

er
 1

06  P
BM

C
s

ChAdOx1-HBV

0 14 28 56 84 168
Day after vaccination

ChAdOx1-HBV

** ** n.s. n.s. n.s.

04401

04402

04403

04404

04406

04405

04407

04408

04412

04411

Cohort 1

Cohort 2

0

200

400

600

800

1,000

Core

Polymera
Pre-S1/2

* n.s. n.s. n.s. n.s.

* * n.s. ** n.s.

* n.s. * n.s. n.s.
Surfacen.s. * n.s. n.s. n.s.
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median 1,440 [IQR 743–1,798] IFNc SFUs/106 PBMCs p = 0.0002,
Fig. 2A). Responses were detectable at Day 168 (EOS), although
they were not significantly different to baseline.

The breadth of T cell responses induced by vaccination
(number of positive HBV peptide pools), was significantly higher
at Days 14 and 28 after vaccination compared with baseline (Day
0 median 0 [IQR 0–1] positive pools vs. Day 14 median 5 [IQR
4–6] p <0.0001, or Day 28 median 4 [IQR 3–5] p = 0.0038). The
breadth of T cell responses was also higher at Day 168 (EOS) as
compared with baseline, although this did not reach statistical
significance (Fig. 2B).
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Fig. 3. Cytokine production and activation marker expression by T cells after ChAdOx1-HBV vaccination in healthy volunteers. PBMCs from healthy vol-
unteers isolated at peak timepoint after ChAdOx1-HBV vaccination were incubated with pools of HBV peptides, DMSO (negative control) or PMA/ionomycin
(positive control) in intracellular staining assays. (A) Percentage of CD8+ (left) and CD4+ (right) T cells producing IFNc, TNFa, or IL-2 in response to each peptide
pool (HBV-core [white], -polymerase 1 and 2 [pol1 and pol2, grey], -polymerase 3 and 4 [pol3 and pol4, green], -pre-S1/S2, and -surface [purple]). (B) Percentage
of CD8+ T cells (left) expressing CD107a and CD4+ T cells (right) expressing CD154 in response to stimulation with each peptide pool. (C) The proportion of IFNc,
TNFa, IL-2, or CD107a/CD154 positive CD8+ T cells (left) and CD4+ T cells (right) producing/expressing single (blue), double (pink), triple (purple), or quadruple
(navy) cytokines/activation markers in response to stimulation with each peptide pool. Base of pie chart = median. All results shown after DMSO background
subtraction. Median and IQR displayed. IFNc, interferon-gamma; PBMCs, peripheral blood mononuclear cells; pol1, polymerase 1; pol2, polymerase 2; pol3,
polymerase 3; pol4, polymerase 4; PMA, phorbol myristate acetate; pre-S1/S2, pre-surface1 and pre-surface2; TNFa, tumour necrosis factor-alpha.
The magnitude of T cell responses specific to the major HBV
antigens (core, polymerase, pre-S1/2 and surface) were increased
after vaccination (Fig. 2C). The highest magnitude responses
were specific to HBV-polymerase (median 571, range 261–765)
and HBV-surface (median 513, range 282–643, Fig. 2C). The
JHEP Reports 2023
magnitude of total HBV-specific T cell responses did not differ
between healthy volunteers vaccinated with low dose or high
dose ChAdOx1-HBV at any timepoint after vaccination (Fig. 2D).

At baseline two healthy volunteers (00401 and 00404), had
high magnitude pre-existing HBV-surface specific T cell
5vol. 5 j 100885
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responses (658 and 540 IFNc SFUs/106 PBMCs, Fig. 2C). Further
investigation revealed these responses were also present in an
unrelated cohort of healthy individuals that had not been
exposed to ChAdOx1-HBV, were CD4 specific and targeted re-
gions of HBV-surface containing known epitopes induced by
vaccination with recombinant HBsAg vaccine (Supplementary
Results, Fig. S6, Table S12).

HBV serology including HBsAg, HBcAb, and HBsAb were
evaluated in the healthy volunteers at baseline and Day 168
(EOS, Table S13). At baseline all volunteers had undetectable
HBcAb and HBsAg and detectable HBsAb, consistent with pre-
vious vaccination with a recombinant HBsAg vaccine. At Day 168
(EOS), HBcAb remained undetectable and HBsAb remained
detectable in all volunteers.

HBV-specific T cell responses induced by ChAdOx1-HBV in
healthy volunteers are polyfunctional, as assessed by
intracellular staining assays
The functionality of HBV-specific T cell responses were investi-
gated in ICS assays (gating strategy Fig. S7). Frozen PBMCs were
tested at the timepoint of peak total HBV-specific T cell responses
as assessed by ELISpot assay or the closest timepoint if samples
at peak were not available (Table S14).

Cytokine secretion in response to stimulation with HBV
peptide pools HBV-core, -polymerase (designated polymerase
regions 1–4 [pol1–4]) and -surface antigens (Tables S3 and S5)
were observed, with HBV-polymerase specific CD8+ and CD4+ T
cells dominating (Fig. 3A). CD8+ T cells produced predominantly
IL-2 (median 0.033% [IQR 0.005–0.113] to pol3 and pol4, followed
by IFNc and tumour necrosis factor-alpha (TNFa). A similar hi-
erarchy of cytokine secretion was observed for CD4+ T cells. The
degranulation marker CD107a was expressed by a higher per-
centage of CD8+ T cells targeting the HBV polymerase region
(median 0.115% [IQR 0.0–0.343] to pol1 and pol2, Fig. 3B). The
activation marker CD154 was expressed by a higher percentage
of CD4+ T cells targeting the HBV pre-S1/S2 and surface regions
(median 0.280% [IQR 0.155–0.338], Fig. 3B). Although the ma-
jority of HBV-specific CD8+ and CD4+ T cells that were positive
for cytokine/surface markers were monofunctional, a proportion
were polyfunctional expressing double, triple, or quadruple
combinations (Fig. 3C). For example, polyfunctional T cells rep-
resented 40% of cytokine producing CD8+ T cells targeting the
polymerase region pol3 and pol4 (Fig. 3C).

HBV-specific T cell responses are generated after vaccination
with ChAdOx1-HBV in some patients with CHB
HBV-specific T cell responses in patients with CHB were inves-
tigated in IFNc ELISpot assays. At baseline nearly half of the pa-
tients (n = 5, 45%) had low but detectable total HBV-specific T cell
responses (Day 0 median 47 [IQR 28–163] IFNc SFUs/106 PBMCs,
Fig. 4A). The highest median magnitude of total HBV-specific T
cell responses was observed at Day 14 or Day 56 after vaccina-
tion, however neither was significantly different from baseline
(Day 0 median 47 [IQR 28–163] IFNc SFUs/106 PBMCs vs. Day 14
median 112 [IQR 35–247] IFNc SFUs/106 PBMCs p >0.99 or Day 56
median 141 [IQR 24–253] IFNc SFUs/106 PBMCs p >0.99, Fig. 4A).
The breadth of T cell responses induced by vaccination was not
significantly different at Day 14 or 56 (peak response) after
vaccination, nor at Day 168 (EOS, Fig. 4B). Over half the patients
(n = 6, 55%) had a positive ELISpot response at least one time-
point after vaccination (Table S15). At each of Days 14, 28, 56, and
84 after vaccination between two and three patients had positive
JHEP Reports 2023
ELISpot responses, but there were no positive responses at Day
168 (EOS, Table S15). The highest magnitude responses were
observed on Day 56 after vaccination towards HBV-polymerase
(median 43.3, range 0–252) and HBV-core (median 22, range
0–140). There was no significant difference in the magnitude of T
cells that targeted the different HBV antigens, or in the magni-
tude of the T cell response in those who received low-dose vs.
high-dose ChAdOx1-HBV (Fig. S8).

Quantitative HBsAg titres did not significantly differ between
baseline and any timepoint after vaccination. Between baseline
and EOS there was a small non-significant reduction in mean
HBsAg levels (mean baseline HBsAg 3.23 log10 IU/ml ± 0.47 vs.
mean EOS HBsAg 3.18 log10 IU/ml ± 0.54, mean difference -0.071
log10 IU/ml, p >0.99, Fig. 4C). Univariable and multivariable linear
regression did not reveal any significant associations between
the change in HBsAg level and other variables (Fig. S9). HBsAb,
which was undetectable at baseline (Table S9), remained unde-
tectable at Day 168 (EOS).

HBV-specific T cell responses are higher after vaccination with
ChAdOx1-HBV in healthy volunteers compared with patients
with chronic hepatitis B
Responses to vaccination were compared between heathy vol-
unteers and patients with CHB. The total magnitude of HBV-
specific T cell responses was significantly higher in heathy vol-
unteers compared with patients with CHB at every time point
after vaccination (Fig. 5A). At peak response after vaccination, T
cell responses were significantly higher in healthy volunteers
than in patients with CHB for HBV-polymerase (median 612 [IQR
377–752] IFNc SFUs/106 PBMCs vs. 52 [IQR 15–216] IFNc SFUs/
106 PBMCs, p <0.0001), HBV-surface (median 527 [IQR 672–333]
IFNc SFUs/106 PBMCs vs. 45 [IQR 30–107] IFNc SFUs/106 PBMCs, p
<0.0001) but not HBV-core or HBV-PreS1/S2 (Fig. 5B).

Vaccination with ChAdOx1-HBV induces HBV-specific T cells
that cross-react with genotype C and genotype D HBV-
peptides
The cross-reactivity of HBV-specific T cells against genotype D,
generated with the genotype C ChAdOx1-HBV vaccine were
assessed in a subset of volunteers in IFNc ELISpot assays (healthy
volunteers, cohort 2, n = 2) and all patients with CHB (cohorts 3
and 4, n = 11). The two healthy volunteers tested at Day 28 after
vaccination (peak response), showed a similar magnitude of
HBV-specific T cell responses towards genotype C and genotype
D peptide pools (Fig. 6A). In patients with CHB, there was no
significant difference between the magnitude of total HBV-
specific responses towards genotype C and genotype D peptide
pools at baseline or any timepoint after vaccination with ChA-
dOx1-HBV (Fig. 6B).

ChAdOx1-HBV induces T cell responses specific for the
truncated sIi in some healthy volunteers
We have previously shown that sIi significantly enhances HBV-
specific T cell responses in preclinical studies.11 We investi-
gated T cell responses generated by vaccination with ChAdOx1-
HBV towards sIi and human invariant chain (hIi) using IFNc
ELISpot assays. Unexpectedly, half of healthy volunteers (n = 5,
50%) had detectable sIi-specific T cell responses after vaccina-
tion, with magnitudes ranging between 153 and 1072 IFNc SFUs/
106 PBMCs at peak (Fig. 7A). ICS assays showed these were
predominantly CD8+ T cells producing IFNc, TNFa, or IL-2
(Fig. 7B). There were no sIi-specific T cell responses detected in
6vol. 5 j 100885
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Fig. 4. Magnitude, breadth, and durability of HBV-specific T cell responses and HBsAg titres in patients with CHB after vaccination with ChAdOx1-HBV.
PBMCs from patients with CHB isolated after low dose (cohort 3, purple) or high dose (cohort 4, green) ChAdOx1-HBV vaccination were incubated with pools of
HBV peptides in IFNc ELISpot assays (IFNc SFUs/106 PBMCs). (A) Magnitude and durability of total HBV responses after vaccination compared with baseline. (B)
Number of positive peptide pools at Day 0 (baseline) compared with Days 14 and 56 (peak response) and Day 168 (EOS). (C) Longitudinal quantitative serum
HBsAg levels (log10 IU/ml) after vaccination. The Kruskal-Wallis test with Dunn’s multiple comparisons were used to compare two or more groups with a single
control group. Two-way ANOVA with Sidak’s multiple comparisons were used to compare two or more groups at multiple timepoints. Median and IQR shown.
CHB, Chronic hepatitis B virus; ELISpot, enzyme-linked immunospot; EOS, end of study; HBsAg, Hepatitis B surface Antigen; IFNc, interferon-gamma; IU/ml,
international units per millilitre; n.s., not significant; PBMCs, peripheral blood mononuclear cells; SFUs, spot-forming units.
patients with CHB (data not shown). In healthy volunteers there
was no significant difference in hIi-specific T cells between
baseline and any timepoint after vaccination (Fig. 7C). In addi-
tion, at Day 28 after vaccination there was no association be-
tween the magnitude of sIi-specific and hIi-specific T cell
responses (Fig. 7D), nor sIi-specific and total HBV-specific T cell
responses (Fig. 7E).
Discussion
We have developed a novel viral vectored vaccine, ChAdOx1-
HBV, encoding all major HBV antigens alongside a genetic
adjuvant sIi, and assessed this in a first-in-human, phase I, dose-
escalation study, in both healthy volunteers and in patients with
JHEP Reports 2023
CHB. We show ChAdOx1-HBV is safe and well tolerated, with an
AE profile typical for those previously observed with viral
vectored vaccines.19–23 In addition, we saw no evidence of ‘flares’
in liver enzymes24 in vaccinated patients with CHB.

In healthy volunteers, we show ChAdOx1-HBV induces high
magnitude, polyfunctional, and durable HBV-specific T cell re-
sponses towards all major HBV antigens. This is important
because HBV T cell responses with multiple specificities are
required for clearance of acute HBV.5 In addition, ChAdOx1-HBV
generated higher magnitude responses than previously reported
for another HBV therapeutic vaccine candidate (GS-4774) trialled
in healthy volunteers.25 HBV-surface-specific T cell responses
detected in selected healthy volunteers at baseline were also
detected in an unrelated cohort of healthy volunteers with no
7vol. 5 j 100885
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Research article
exposure to ChAdOx1-HBV. These responses were likely present
as a result of previous vaccination with recombinant HBsAg
prophylactic vaccine, supported by their CD4 predominance,
specificity to regions of the HBV-surface antigen containing
known MHC class II restricted epitopes induced by recombinant
HBsAg vaccination,26,27 and all healthy volunteers having HBV
serology consistent with previous HBsAg vaccination.
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We show that in some patients with CHB, T cell responses
specific to HBV are de-novo generated or boosted after vaccina-
tion with ChAdOx1-HBV. Although most previous trials of HBV
therapeutic vaccine candidates have found that HBV-specific T
cell responses are not reliably induced or boosted after vacci-
nation (reviewed in Cargill et al.10), our results are consistent
with a subset of studies which have found that between 22% and
B
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67% of participants have detectable ex-vivo T cell responses after
vaccination.28–30 There is scope to further enhance the magni-
tude and breadth of ChAdOx1-HBV primed HBV-specific T cell
responses in CHB patients using heterologous viral vectors
encoding HBV antigens (e.g. MVA) as we have previously
demonstrated in preclinical studies,11 and has been demon-
strated in human vaccines for HCV and malaria.12,31

The magnitude of total HBV T cell responses was significantly
lower in patients with CHB than in healthy volunteers after
ChAdOx1-HBV and were limited to HBV-core and -polymerase. As
ChAdOx1-HBV was highly immunogenic in healthy volunteers,
the attenuated T cell responses observed in patients with CHB is
likely attributable to ‘exhausted’ cellular immune responses,
characteristic of CHB infection.6,7 The relative inability of ChA-
dOx1-HBV vaccination to enhance HBV-surface specific T cells is
consistent with previous data showing they are most dysfunc-
tional and difficult to restore.30,32–34 Similar findings have been
observed in HCV vaccine trials, which showed the magnitude and
functionality of T cell responses to vaccination in patients with
chronic HCV were significantly attenuated compared with
healthy volunteers.35,36

The ChAdOx1-HBV vaccine includes sIi as genetic adjuvant,37

which has an adjuvant effect irrespective of HLA type.17,37 We
previously showed sIi significantly enhanced HBV specific T cell
responses induced by ChAdOx1-HBV in preclinical studies.11 In
some HBV001 participants, high magnitude T cell responses
against sIi were generated. This appears to be limited to HLA-
A*02 restricted individuals, as responses are induced in
humanised HLA-A*02 HHDmice but no other mouse strains after
vaccination with ChAdOx1-HBV (data not shown) and HLA-A*02
restricted sIi-specific T cells have been previously identified in
response to an sIi containing malaria vaccine (A. Flaxman and A.
Hill, pers. commun.). The magnitude of sIi T cell responses and
total HBV-specific T cell responses were not related, suggesting
presence of sIi specific T cell responses does not impair the
generation of HBV-specific T cell responses. Despite low ho-
mology between sIi and hIi,37 there is a theoretical risk of T cell
autoreactivity. Reassuringly, we found minimal T cell responses
to hIi and no association between the magnitude of sIi and hIi
responses in HBV001, consistent with a trial of HCV-vaccine
JHEP Reports 2023
containing full length hIi adjuvant in humans, which did not
detect autoreactive immune responses.17

Our study has several limitations. Firstly, the sample size was
small, although this is typical for first-in-human studies. Sec-
ondly, although we demonstrated broad cross-reactivity of HBV-
specific T cells generated by ChAdOx1-HBV towards HBV geno-
type C and D peptides, study participants were recruited in the
UK and are unlikely to be fully representative of patients with
CHB from endemic areas where dominant HLA haplotypes differ
and genotype C or D infection predominates.38 Thirdly, HBsAb
titres were not precisely quantified in healthy volunteers, so we
were unable to determine whether vaccination with ChAdOx1-
HBV boosted levels of pre-existing HBsAb. Finally, we assessed
a single vaccine modality, and although we show robust T cell
responses in healthy volunteers, responses in CHB patients were
reduced. This suggests that future therapeutic vaccine studies
with ChAdOx1-HBV will need to combine with additional stra-
tegies to be efficacious.7

Several of these limitations will be addressed in a phase II
clinical trial HBV-002 (NCT0477890439), which is currently
recruiting patients with HBV in genotype C endemic areas to
combinations of ChAdOx1-HBV, MVA-HBV, and nivolumab to
assess safety, immunogenicity, and efficacy. This approach is
supported by animal models and a small human pilot study,
which demonstrated the combination of therapeutic HBV vac-
cine with checkpoint inhibitor nivolumab can induce HBV
functional cure.40,41

This is a first-in-human study to show vaccination with
ChAdOx1-HBV is safe and well tolerated in healthy volunteers
and patients with CHB, generating high-magnitude T-cell re-
sponses against all major HBV antigens in healthy volunteers,
and lower levels of responses in patients with CHB. T cells
generated by vaccination were cross-reactive between HBV
genotypes. This is an important first step in the development of
ChAdOx1-HBV as part of a broader therapeutic strategy aiming
to induce HBV functional cure, in which ChAdOx1-HBV is
combined with therapeutic vaccine MVA-HBV and checkpoint
inhibition. Further studies in larger cohorts of patients where
HBV is endemic are necessary to evaluate the efficacy of this
approach.
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