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ABSTRACT Expediting drug discovery to fight antibacterial resistance requires holistic
approaches at system levels. In this study, we focused on the human-adapted pathogen
Haemophilus influenzae, and by constructing a high-quality genome-scale metabolic model,
we rationally identified new metabolic drug targets in this organism. Contextualization of
available gene essentiality data within in silico predictions identified most genes involved
in lipid metabolism as promising targets. We focused on the b-ketoacyl-acyl carrier protein
synthase III FabH, responsible for catalyzing the first step in the FASII fatty acid synthesis
pathway and feedback inhibition. Docking studies provided a plausible three-dimensional
model of FabH in complex with the synthetic inhibitor 1-(5-(2-fluoro-5-(hydroxymethyl)phe-
nyl)pyridin-2-yl)piperidine-4-acetic acid (FabHi). Validating our in silico predictions, FabHi
reduced H. influenzae viability in a dose- and strain-dependent manner, and this inhibitory
effect was independent of fabH gene expression levels. fabH allelic variation was observed
among H. influenzae clinical isolates. Many of these polymorphisms, relevant for stabilization
of the dimeric active form of FabH and/or activity, may modulate the inhibitory effect as
part of a complex multifactorial process with the overall metabolic context emerging as a
key factor tuning FabHi activity. Synergies with antibiotics were not observed and bacteria
were not prone to develop resistance. Inhibitor administration during H. influenzae infection
on a zebrafish septicemia infection model cleared bacteria without signs of host toxicity.
Overall, we highlight the potential of H. influenzae metabolism as a source of drug targets,
metabolic models as target-screening tools, and FASII targeting suitability to counteract this
bacterial infection.

IMPORTANCE Antimicrobial resistance drives the need of synergistically combined powerful
computational tools and experimental work to accelerate target identification and drug
development. Here, we present a high-quality metabolic model of H. influenzae and show
its usefulness both as a computational framework for large experimental data set contex-
tualization and as a tool to discover condition-independent drug targets. We focus on
b-ketoacyl-acyl carrier protein synthase III FabH chemical inhibition by using a synthetic
molecule with good synthetic and antimicrobial profiles that specifically binds to the active
site. The mechanistic complexity of FabH inhibition may go beyond allelic variation, and the
strain-dependent effect of the inhibitor tested supports the impact of metabolic context as
a key factor driving bacterial cell behavior. Therefore, this study highlights the systematic
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metabolic evaluation of individual strains through computational frameworks to identify
secondary metabolic hubs modulating drug response, which will facilitate establishing
synergistic and/or more precise and robust antibacterial treatments.

KEYWORDS Haemophilus influenzae, airway infection, genome-scale metabolic model,
gene essentiality screening, fatty acid synthesis, FabH inhibition, antimicrobials,
preclinical evaluation

H aemophilus influenzae is a human-adapted Gram-negative bacterial pathogen.
Asymptomatic colonization begins in the upper airways, but it can spread through the

respiratory tract and lead to invasive infections. The polysaccharide capsule vaccine has
driven the almost complete disappearance of capsulated H. influenzae type b (Hib) in coun-
tries with established child immunization programs (1, 2). Instead, other H. influenzae sero-
types and nontypeable strains (NTHi), untargeted by the Hib vaccine, emerge as important
causes of infections. NTHi causes otitis media, conjunctivitis, sinusitis, and lower respiratory
infections in children; exacerbations of chronic obstructive pulmonary disease (COPD) and
cystic fibrosis (CF) in adults; and invasive disease in neonates, immunocompromised adults,
and the elderly (2–5). Ampicillin (Amp)-resistant H. influenzae is included in the WHO global
priority list of bacteria for which new antibacterials are urgently needed (6), fluoroquinolone
resistance has increased in recent years, spreading worldwide with a variety in epidemiol-
ogy, and the use of the macrolides in severe COPD patients may lead to decreased macro-
lide susceptibility (7–9). The current antibiotic resistance public health crisis prompted us to
evaluate novel therapeutic alternatives against H. influenzae.

Bacterial metabolism and the effect of antimicrobial drugs are linked at several lev-
els in such a way that a metabolism-based approach may counteract antibiotic toler-
ance by the use of exogenous metabolites, inducing antibiotic internalization, inhibi-
ting antibiotic detoxification or extrusion, inducing endogenous oxidative stress, or
priming to proton motive force (10, 11). Inactivation of central metabolic enzymes may
contribute to develop either antibiotic susceptibility or resistance (12–14). One strategy
to develop effective antimicrobial treatments is to identify and develop inhibitors of
essential biological pathways, and bacterial metabolism is a source of drug targets, as
metabolic genes can be unconditionally essential. In this context, genome-scale net-
work reconstructions of bacterial metabolism can serve as computational test-bed plat-
forms to identify metabolic enzymes as potential targets (15–17). Such reconstructions
are structured, species-specific knowledge bases that contain detailed information on
the target organism, such as the exact reaction stoichiometry and reversibility, relation-
ships between genes, proteins, and reactions, and the biochemical and physiological
data available at the time of the reconstruction. These reconstructions can be further
converted into genome-scale models (GEMs) that enable computation of the meta-
bolic capabilities and phenotype of a given organism (18).

H. influenzae was the first organism for which a GEM was constructed, just shortly af-
ter genome sequencing (19). This pioneer GEM laid the foundations of the field and was
used to study minimal substrate requirements for the network to allow biomass produc-
tion (19–22). However, this initial model is far from the increasing metabolic complexity
and accuracy of current GEMs constructed for other bacteria and, in addition to account-
ing for reduced metabolic coverage, it lacks the proper gene-protein associations (GPRs),
cellular compartmentalization, and detailed biomass objective function (BOF). Therefore,
the available GEM of H. influenzae cannot be used for complex systems biology studies
and presents limited applicability (23). Here, we fill this gap by constructing and validat-
ing a high-quality GEM of H. influenzae strain RdKW20 (Fig. 1). This new model, iNL638,
was used to screen therapeutic targets in this bacterium by means of gene essentiality
analysis, identifying fatty acid metabolism as a promising one. We focused on the FabH
b-ketoacyl-acyl carrier protein, i.e. ketyoacyl-ACP synthase at the initiating step of fatty
acid synthesis. The antimicrobial activity of a good FabH inhibitor was thoroughly charac-
terized in vitro and in vivo at the preclinical level using a wide set of NTHi clinical strains.
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RESULTS
Construction, main features, and consistency of iNL638, a high-quality model of

H. influenzae RdKW20. H. influenzae RdKW20 metabolic reconstruction was addressed
by using a well-known 4-step protocol (24) and the last genomic annotation of this strain at
NCBI (Fig. 1). A detailed description of model construction and manual curation is presented
in Materials and Methods. The final model, iNL638, contains 638 genes, 1,385 reactions, and

FIG 1 Roadmap for using H. influenzae metabolic reconstruction as a screening platform.
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1,161 nonunique metabolites distributed into three cellular compartments, external, periplasm,
and cytosol (Table 1). Compared to the previous H. influenzaemodel, iNL638 contains a signifi-
cantly larger number of reactions and metabolites (Table 1). Reactions were classified into 12
major categories, of which transport and cell envelope biosynthesis are the largest groups,
with 395 and 142, respectively (Fig. 2A). iNL638 was evaluated using the Memote tool (25) to
define its completeness, consistency, and interoperability as a model while analyzing potential
flaws or shortcomings. The model’s overall score was 91%, which suggests very good com-
pleteness. A limitation was the lack of annotation to outside references for some genes,
metabolites, and reactions. This will only have an affect when using the model with certain
automated tools or scripts, but its accuracy or usability should not be affected. The model
scored 99% for the critical category of consistency, which represents accuracy in stoichi-
ometry, mass balances, charge balances, connectivity of metabolites, and reaction cycles.
The Memote analysis demonstrated that iNL638 is a highly complete and detailed model
that can be used as a reference for other GEM constructions. The model, scripts used in
this study, and Memote full report are freely accessible through github (https://github.com/
SBGlab/Haemophilus_influenzae_GEM).

iNL638 accurately predicts H. influenzae RdKW20 main metabolic features. Large
completeness and consistence does not always equate to a high-quality model, and
GEMs need to be validated by assessing their ability to compute physiological states (24). To
validate iNL638, we evaluated its capability of predicting well-known metabolic traits of
RdKW20, such as the production of acetate and formate (26, 27). In the absence of available
experimental carbon flux distribution data, we addressed the ability of iNL638 to predict
metabolic end products under changing oxygen tensions. For this, we used CDM in silico
media and monitored the excretion rates of acetate, formate, and hypoxanthine as a func-
tion of oxygen uptake. We identified three different steps (Fig. 2B). In the absence of oxygen,
we computed formate and acetate as main end products driving the lower growth rate.
Under these conditions, formate was produced by the action of the pyruvate formate lyase
(PFL), while acetate was produced from acetyl-CoA by the combined action of phosphate
acetyltransferase (PTA) and acetate kinase (ACK). iNL638 predicted PFL as a major source of
acetyl-CoA, whereas the pyruvate dehydrogenase (PDH) only played a limited role (Fig. 2B).
Suboptimal oxygen uptake rates led a second phase characterized by an oxygen-dependent
increase of the growth rate. During this phase, the flux through PFL decreased linearly; in
fact, no flux was predicted at oxygen uptakes higher than 7 mmol per gram of dry weight
(gDW)�h21. As a consequence, formate secretion rates decreased in parallel. The role of ace-
tyl-coenzyme A (CoA) as a main source was taken by the PDH, which completely replaced
PFL at oxygen uptakes higher than 7 mmol/gDW�h21. Finally, under optimal oxygen avail-
ability, we observed a stable growth rate with acetate as the sole end product. These predic-
tions agree with the switch in pyruvate metabolism from PFL to PDH, observed in H.

TABLE 1Metabolic content of iNL638 compared with its antecessors

Content

Value for:

iNL638 (this study) iCS400 (22) iJE296 (19)
Metabolites 1,161 451 343
Unique 746 367 NAa

Cytoplasmic 706 367 NA
Periplasmic 250 0 NA
Extracellular 205 84 NA

Reactions 1,385 546 488
Metabolic 786 374 NA
Transport 395 87 NA
Exchange 203 84 NA
Orphan 68 10 NA
Blocked 234 71 NA

Genes 638 400 296
aNA, data not available.
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influenzae as oxygen becomes available (27). Higher levels of NADH provided by PDH are
further funneled to cytochrome bd oxidase via NADH:quinone reductase, driving the genera-
tion of energy, a behavior also accurately predicted by the model (Fig. 2B). No flux through
formate dehydrogenase (FDH) was predicted under any condition, while only a slightly
lower hypoxanthine secretion rate, resulting from the degradation of inosine, was predicted.
These predictions are consistent with previous experimental observations (26).

Overall, iNL638 predicts main carbon metabolism and energy generation in H. influenzae
with high accuracy even under variable oxygen availability. It is ready to be used as a powerful
predictive tool.

FIG 2 Analysis of content and performance of iNL638. (A) Metabolic subsystem distribution of reactions of iNL638 model. Gene-associated reactions (blue) and non-gene-
associated (orphan) reactions (yellow) are indicated. (B) Evolution of pyruvate metabolism and metabolic end product as a function of oxygen availability. The metabolic
behavior of H. influenzae was predicted under anaerobic (blue), microaerobic (yellow), and aerobic (red) conditions. CDM using glucose and pyruvate as the carbon source
was used. Fluxes of pyruvate dehydrogenase (PDH), pyruvate formate lyase (PFL), formate dehydrogenase (FDH), and phosphate acetyltransferase (PTA) were monitored as
well as the excretion rates of formate, acetate, and hypoxanthine. (C) KEGG-based gene essential enrichment. Only genes annotated in KEGG were used for this analysis. We
found 89 genes predicted to be essential among studies, mostly involved in the metabolism of fatty acids. (D) Venn diagram showing the intersections between predicted
essential genes commonly found when comparing our iNL638 model-based screening and three previous independent studies.iNL638(c), gene essential enrichment when
using complete CDM; iNLC638, gene essential enrichment when using CDM with a minimized composition, i.e minimal CDM or mCDM.iNL638(c), gene essential enrichment
when using complete CDM; iNLC638, gene essential enrichment when using CDM with a minimized composition, i.e minimal CDM or mCDM.iNL638(c), gene essential
enrichment when using complete CDM; iNLC638, gene essential enrichment when using CDM with a minimized composition, i.e minimal CDM or mCDM.iNL638(c), gene
essential enrichment when using complete CDM; iNLC638, gene essential enrichment when using CDM with a minimized composition, i.e minimal CDM or mCDM.
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Defining condition-independent gene essentiality in H. influenzae. The validated
model was used to find metabolic drug targets based on gene essentiality predictions.
Since gene essentiality assignment is largely dependent on culture conditions (28, 29),
we evaluated this property in well-defined situations. We first addressed RdKW20 minimal
nutrient requirements in CDM and defined a minimal medium only including those
nutrients required for growth. Despite the presence of amino acids in the CDM composition,
iNL638 grew in amino acid absence using nitrate as the nitrogen source, suggesting the lack
of amino acid auxotrophies. Interestingly, utilization of nitrate as nitrogen source has been
reported in H. influenzae (30–32). Similarly, iNL638 predicted as essential only a few addi-
tional CDM nutrients, including uracil, NAD, protoheme, choline, pantothenate, and thia-
mine. Since a robust drug target requires being condition independent, we evaluated the
essentiality of iNL638 in this minimal CDM (mCDM) and in the complete formulation
(cCDM). We found 260 and 169 essential genes using minimal and complete CDM, respec-
tively (see Data Set S2 in the supplemental material). This analysis identified a total of 91
conditional essential genes whose requirement for growth is only visible using the mCDM
formulation. We further evaluated the accuracy of iNL638 predictions against three available
experimental gene essentiality studies (33–35). Overall, we found higher accuracies (0.72 to
0.761) and specificities (0.84 to 0.882) in predictions performed using cCDM (Fig. S1A).
Experimental data sets were constructed using the rich medium supplemented brain heart
infusion (sBHI). Therefore, most discrepancies between in vivo and in silico data are likely
due to the different medium compositions. We found similar accuracy and sensitivities
when comparing the different experimental studies to each other, suggesting that gene
essentiality analysis is also study dependent (Fig. S1B).

The large diversity of gene essentiality data sets analyzed and discrepancies found led
us to perform an enrichment analysis for both the in silico and experimental data sets to
identify subsystems overrepresented in all cases (Fig. 2C). This analysis showed a signifi-
cant enrichment of metabolic genes in the in silico data sets, while nonmetabolic genes
were more abundant in experimental data sets. This is due to the fact that genes other
than those encoding metabolic functions are not included in GEMs. Genes related to fatty
acid metabolism were present in all available studies, suggesting this subsystem is a con-
dition-independent essential metabolic hub. Indeed, from the 89 genes predicted to be
essential under all conditions, 29 were involved in lipid metabolism (Fig. 2D, Table 2, and
Data Set S2). Together, the gene essentiality analysis performed using in silico predictions
with iNL638 in the context of previous experimental studies largely shows lipid metabo-
lism has promising H. influenzae drug targets.

Model-based search of H. influenzae essential genes highlights lipid metabolism
targets. Within lipid metabolism, our analysis predicted essentiality for 11 genes encoding
fatty acid biosynthesis enzymes (FASII pathway), 6 genes encoding enzymes required for
phospholipid biosynthesis, and 12 genes encoding enzymes involved in lipid A biosynthesis
(Table 2 and Fig. S2 and Data Set S2). The H. influenzae FASII pathway generates the acyl-ACP
(acyl carrier protein) and b-hydroxyacyl-ACP products, which are key components of the bac-
terial membrane. Acyl-ACP is used by the 1-acyl-sn-glycerol-3-phosphate (PlsB) and 1-acyl-sn-
glycerol-3-phosphate (PlsC) acyltransferases to generate phosphatidic acid, the precursor of H.
influenzae phospholipids phosphatidyl ethanolamine (PE) and phosphatidyl glycerol (PG) (36);
b-hydroxyacyl-ACP molecules are substrates for the acyltransferases catalyzing the initial steps
in the lipid A biosynthesis (37). Predicted essentiality and the selective targeting of the FASII
pathway, due to significant differences in the structure of eukaryotic and bacterial fatty acid
synthesis systems, make it an attractive target for drug discovery.

A key FASII enzyme is the b-ketoacyl-acyl carrier protein synthase III FabH, which initiates
fatty acid elongation cycles by catalyzing the condensation reaction between a CoA-attached
acyl group and an ACP-attached malonyl group, yielding b-ketoacyl-ACP. This gene was
found to be essential both in computational and experimental analysis (Table 2 and Data Set
S2). Moreover, we unsuccessfully tried to inactivate it in the RdKW20 strain (data not shown),
largely supporting its essentiality under a variety of laboratory conditions. FabH has no signifi-
cant homologous proteins in humans, and small-molecule inhibitors could lead to selective
nontoxic antibacterials (38–40). Natural products and chemically synthesized FabH inhibitors
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TABLE 2 Genes predicted to be essential by iNL638-screening commonly found in references 33 to 35

Pathway Category ED no. Gene Enzyme
Lipid metabolism FASII HI0154 (acpP) Acyl carrier protein

1.1.1.100 HI0155 (fabG) 3-Oxoacyl-[acyl-carrier-protein] reductase FabG
2.3.1.39 HI0156 (fabD) Malonyl CoA-acyl carrier protein transacylase
2.3.1.180 HI0157 (fabH) 3-Oxoacyl-[acyl-carrier-protein] synthase 3
2.1.3.15 HI0406 (accA) Acetyl-coenzyme A carboxylase carboxyl transferase subunit alpha

HI0971 (accB) Biotin carboxyl carrier protein of acetyl-CoA carboxylase
6.3.4.14,
6.4.1.2

HI0972 (accC) Biotin carboxylase

2.1.3.15 HI1260 (accD) Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta
4.2.1.59,
5.3.3.14

HI1325 (fabA) 3-Hydroxydecanoyl-[acyl-carrier-protein] dehydratase

2.3.1.41 HI1533 (fabB) 3-Oxoacyl-[acyl-carrier-protein] synthase 1
1.3.1.9 HI1734 (fabI) Enoyl-[acyl-carrier-protein] reductase [NADH] FabI

Lipid A 2.7.7.38 HI0058 (kdsB) 3-Deoxy-manno-octulosonate cytidylyltransferase
2.7.1.130 HI0059 (lpxK) Tetraacyldisaccharide 49-kinase
7.5.2.6 HI0060 (msbA) ATP-dependent lipid A-core flippase
2.7.1.166 HI0260.1 (kdkA) 3-Deoxy-D-manno-octulosonic acid kinase
2.4.99.12 HI0652 (kdtA) 3-Deoxy-D-manno-octulosonic acid transferase
3.6.1.54 HI0735 (lpxH) UDP-2,3-diacylglucosamine hydrolase
2.3.1.- HI0915 (lpxD) UDP-3-O-acylglucosamine N-acyltransferase
2.4.1.182 HI1060 (lpxB) Lipid-A-disaccharide synthase
2.3.1.129 HI1061 (lpxA) Acyl-[acyl-carrier-protein]-UDP-N-acetylglucosamine O-acyltransferase
3.5.1.108 HI1144 (lpxC) UDP-3-O-acyl-N-acetylglucosamine deacetylase
2.3.1.241 HI1527 (htrB) Lipid A biosynthesis lauroyltransferase
2.5.1.55 HI1557 (kdsA) 2-Dehydro-3-deoxyphosphooctonate aldolase

Phospholipids 2.7.8.5 HI0123 (pgsA) CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase
4.1.1.65 HI0160 (psd) Phosphatidylserine decarboxylase proenzyme
2.7.1.107 HI0335 (dgkA) Diacylglycerol kinase
2.7.8.8 HI0425 (pssA) CDP-diacylglycerol-serine O-phosphatidyltransferase
2.3.1.15 HI0748 (plsB) Glycerol-3-phosphate acyltransferase
2.7.7.41 HI0919 (cdsA) Phosphatidate cytidylyltransferase

Peptidoglycan
biosynthesis

2.7.2.4,
1.1.1.3

HI0089 (thrA) Bifunctional aspartokinase/homoserine dehydrogenase

3.5.1.18 HI0102 (dapE) Succinyl-diaminopimelate desuccinylase
4.3.3.7 HI0255 (dapA) 4-Hydroxy-tetrahydrodipicolinate synthase
1.3.1.98 HI0268 (murB) UDP-N-acetylenolpyruvoylglucosamine reductase
2.4.1.129,
3.4.16.4

HI0440 (ponA) Penicillin-binding protein 1A

2.7.7.23,
2.3.1.157

HI0642 (glmU) Bifunctional protein GlmU

1.2.1.11 HI0646 (asd) Aspartate-semialdehyde dehydrogenase
5.1.1.7 HI0750 (dapF) Diaminopimelate epimerase
2.5.1.31 HI0920 (uppS) Di-trans,poly-cis-undecaprenyl-diphosphate synthase [(2E,6E)-farnesyl-

diphosphate specific]
2.5.1.7 HI1081 (murA) UDP-N-acetylglucosamine 1-carboxyvinyltransferase
6.3.2.13 HI1133 (murE) UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-2,6-diaminopimelate ligase
6.3.2.10 HI1134 (murF) UDP-N-acetylmuramoyl-tripeptide-D-alanyl-D-alanine ligase
2.7.8.13 HI1135 (mraY) Phospho-N-acetylmuramoyl-pentapeptide-transferase
6.3.2.9 HI1136 (murD) UDP-N-acetylmuramoylalanine-D-glutamate ligase
2.4.1.227 HI1138 (murG) UDP-N-acetylglucosamine-N-acetylmuramyl-(pentapeptide)

pyrophosphoryl-undecaprenol N-acetylglucosamine transferase
6.3.2.8 HI1139 (murC) UDP-N-acetylmuramate-L-alanine ligase
6.3.2.4 HI1140 (ddl) D-Alanine-D-alanine ligase
1.17.1.8 HI1308 (dapB) 4-hydroxy-tetrahydrodipicolinate reductase
2.3.1.117 HI1634 (dapD) 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase
5.1.1.3 HI1739.2 (murI) Glutamate racemase

Amino acids
metabolism

Phenylalanine,
tyrosine, and
tryptophan

4.2.3.5 HI0196 (aroC) Chorismate synthase

2.7.1.71 HI0207 (aroK) Shikimate kinase
4.2.3.4 HI0208 (aroB) 3-Dehydroquinate synthase

(Continued on next page)
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have been reported and half-maximal inhibitory concentrations (IC50) determined for some of
them (38, 41). The search for novel FabH inhibitors focused our attention on 1-(5-(2-fluoro-
5-(hydroxymethyl)phenyl)pyridin-2-yl)piperidine-4-acetic acid (compound 31 in reference 38;
here called FabHi) (Fig. 3B, left). This compound exhibited a potent inhibition of H. influenzae
FabH activity (IC50 of 0.82 mM), high solubility, acceptable human plasma protein binding,
easy chemical accessibility (38), feasibility of visualizing its mode of binding by molecular
docking, and, therefore, the possibility of improving favorable contacts through rational
design.

TABLE 2 (Continued)

Pathway Category ED no. Gene Enzyme
2.5.1.54 HI1547 (aroG) Phospho-2-dehydro-3-deoxyheptonate aldolase
2.5.1.19 HI1589 (aroA) 3-Phosphoshikimate 1-carboxyvinyltransferase

Methionine 2.5.1.6 HI1172 (metK) S-Adenosylmethionine synthase
3.2.2.9 HI1216 (mtnN) 59-Methylthioadenosine/S-adenosylhomocysteine nucleosidase

Alanine 5.1.1.1 HI1575 (alr) Alanine racemase

Isopentenyl
biosynthesis

1.17.7.3 HI0368 (ispG) 4-Hydroxy-3-methylbut-2-en-1-yl diphosphate synthase (flavodoxin)

4.6.1.12 HI0671 (ispF) 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase
1.1.1.267 HI0807 (ispC, dxr) 1-Deoxy-D-xylulose 5-phosphate reductoisomerase
2.5.1.90 HI0881 (ispB) Octaprenyl diphosphate synthase
1.17.7.4 HI1007 (ispH) 4-Hydroxy-3-methylbut-2-enyl diphosphate reductase
2.2.1.7 HI1439 (dxs) 1-Deoxy-D-xylulose-5-phosphate synthase
2.7.1.148 HI1608 (ispE) 4-Diphosphocytidyl-2-C-methyl-D-erythritol kinase

Quinone
biosynthesis

2.2.1.9 HI0283 (menD) 2-Succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate
synthase

5.4.4.2 HI0285 (menF) Isochorismate synthase MenF
2.5.1.74 HI0509 (menA) 1,4-Dihydroxy-2-naphthoate octaprenyltransferase
4.1.3.36 HI0968 (menB) 1,4-Dihydroxy-2-naphthoyl-CoA synthase
4.2.1.113 HI0969 (menC) o-Succinylbenzoate synthase

Transport
systems

HI0139 (ompP2) Outer membrane protein P2

HI0625 (trkA) Trk system potassium uptake protein TrkA
HI1035 (corA) Magnesium transport protein CorA
HI1641 (sapD) Peptide transport system ATP-binding protein SapD

Nucleotide
metabolism

2.7.4.3 HI0349 (adk) Adenylate kinase

2.7.4.22 HI1065 (pyrH) Uridylate kinase
2.7.4.8 HI1743 (gmk) Guanylate kinase

Iron-sulfur cluster
metabolism

HI0376 (iscA) Iron-binding protein IscA

HI0377 (iscU) Iron-sulfur cluster assembly scaffold protein IscU
2.8.1.7 HI0378 (nifS) Cysteine desulfurase IscS

Vitamin
metabolism

1.5.1.5,
3.5.4.9

HI0609 (folD) Bifunctional protein FolD

1.5.1.3 HI0899 (folA) Dihydrofolate reductase
2.7.1.26,
2.7.7.2

HI0963 (ribF) Bifunctional riboflavin kinase/FMN adenylyltransferase

Coenzyme A
biosynthesis

2.7.1.33 HI0631 (coaA) Pantothenate kinase

2.7.1.24 HI0890m (coaE) Dephospho-CoA kinase
4.1.1.36,
6.3.2.5

HI0953 (coaBC) Coenzyme A biosynthesis bifunctional protein CoaBC

Protein
modification

2.8.1.8 HI0026 (lipA) Lipoyl synthase

2.3.1.181 HI0027 (lipB) Octanoyltransferase

NADmetabolism 2.7.1.23 HI0072 (nadK) NAD kinase
Sugar metabolism 2.2.1.1 HI1023 (tktA) Transketolase
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In silico envisioning of FabHi binding mode. Despite FabHi having promising activity,
its action mode is completely unknown, so we first addressed its mode of action by molecular
docking. FabH displays two similarly folded N-terminal and C-terminal halves, which differ in
loops and insertion sequences (Fig. S3) (42). FabH core primarily provides a supportive
structural scaffold, while insertion sequences are mainly involved in substrate recognition
and catalysis. To visualize the interaction mode, FabHi was docked into the active site of
FabHRdKW20. The lowest-energy complex, obtained with AutoDock, placed FabHi at the sub-
strate binding cavity with the hydroxymethyl group of the phenyl ring hydrogen bonded to
the Cys112–His243–Asn273 catalytic triad and the carboxylic group of the piperidine ring
forming three additional hydrogen bonds with Arg36 (Fig. 3C and Fig. S4A to D). The 2-fluoro-
5-(hydroxymethyl)phenyl ring also makes many favorable hydrophobic interactions through
the ring carbon atoms (Met206, Thr211, Ala215, Ala245, and Phe303), the hydroxylmethyl
chain (Cys112, Leu189, His243, and Asn273), and the fluoro group (Ala215), as depicted in
Fig. S4C. Hydrophobic contacts with Ala245 further extend to the pyridine ring, whose nitro-
gen atom interacts with Phe212. The piperidine ring makes additional contacts through its car-
bon atoms (Asn246, Arg248, Leu156, and Arg36) and the carboxylic group (Arg36). Van der
Waals interactions might also contribute to stabilize the complex. The intricate network of in-
hibitor-protein interactions predicted for the FabHi:FabHRdKW20 complex fairly agrees with the
contacts described for structurally related inhibitors in complex with Escherichia coli FabH (38),
as does the inhibitor disposition within the binding cavity (Fig. S4D). Single point mutations at

FIG 3 FabHi synthesis, structure, and mode of binding. (A) Synthesis of FabHi. Reagents and conditions were (i) triethylamine (TEA) TEA, anhydrous
acetonitrile, microwave Mw 125°C, 2 h; (ii) Pd(ddpf)Cl2, K2CO3, anhydrous DMF, 75°C, 16 h; (iii) 1 M NaOH, THF-MeOH (1:1), reflux, 4 h. (B) Structure
of FabHi and its sodium, potassium, and hydrochloride salts. (C) Stick representation of FabHi in the best complex model with FabHRdKW20 obtained
with AutoDock4.2. FabH (cartoon) is depicted in light green with side chains of residues involved in inhibitor binding in stick representation (dark
green); polar contacts are represented as dotted lines. Some relevant residues are key in CoA binding (Trp32, Arg36, Phe212, and Asn246) and
likely in ACP binding (Arg36 and Arg248) according to E. coli FabH structures (52). (D) Residues showing polymorphism in FabH allelic variants,
depicted as yellow sticks, locate outside de substrate-binding pocket (FabHi binding-residues in dark green).
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positions predicted to interact with the inhibitor (Ala215Val, Ala215Ser, or Ala245Ser) signifi-
cantly increased the resistance of H. influenzae to a close structural analogue of FabHi (38),
supporting the plausibility of our docking model.

FabHi has an antimicrobial effect on H. influenzae growth. Before antimicrobial
effect testing, we tried to improve FabHi solubility by preparing different salts (Fig. 3B). Assays
were performed with the free acid form, as it produced a higher and more homogeneous loss
of H. influenzae viability.

Our metabolic model and FabHRdKW20:FabHi complex structure relied on the H. influenzae
RdKW20 genome content and FabHRdKW20 crystal structure (42, 43), respectively. However, H.
influenzae strains show high genomic and phenotypic diversity (3, 44). To anticipate the
potential role of FabHi as a broad inhibitor of H. influenzae, we examined the sequence
variability of the fabH locus across a well-characterized genome-sequenced set of strains
collected from COPD sputum samples over time, grouped in clonal types (CTs) (45, 46).
Being present in all strains, best hits to fabH were extracted, followed by translation and
multiple alignments. The NTHi375 reference strain was also included in this analysis (47–50).
Fourteen different fabH allelic variants were found (named alleles 1 to 14, i.e., A1 to A14),
with different frequency and CT distribution but intra-CT conservation (Table 3, Fig. S3 and
data not shown). We selected one strain per FabH allelic variant to assess the antimicro-
bial activity of synthesized FabHi.

We first tested the susceptibility of the 14 selected H. influenzae strains to FabHi upon
growth in CDM, being the medium used to interrogate the iNL638 model (strain growth
shown in Fig. S5A). We observed a significant dose-dependent reduction of bacterial viability
after incubation. Such an effect was heterogeneous among strains, suggesting that FabHi is a
broad-range inhibitor of FabHH.influenzae, irrespective of the allelic variant. Based on the slope of
the survival curve and the extent of bacterial viability loss upon drug incubation (Fig. S5C to
F), we established four strain categories, from higher to lower susceptibility: (i) strains showing
a sharp slope reaching complete viability loss, like those carrying fabH variants A5-P673, A11-
P593, and A13-P590 (blue); (ii) sharp slope without complete viability loss (A4-P652, A6-P642,
A9-P645, and A10-P851 fabH variants; green); (iii) not-as-sharp slope but reaching complete vi-
ability loss (A2-P621, A7-P665, A12-P607, and A14-P626; red); and (iv) not-as-sharp slope, with-
out complete viability loss (A1-NTHi375, A3-RdKW20, and A8-P657; orange).

CDM, useful to connect our computational and experimental approaches, is not used
as a standard medium for H. influenzae growth and antimicrobial susceptibility testing
(51). Thus, we tested susceptibility to FabHi of same strains grown in sBHI (growth shown
in Fig. S5B). We observed, again, a significant and heterogeneous dose-dependent reduc-
tion of bacterial viability (Fig. 4A). Strain behavior was comparable to that in CDM in most

TABLE 3 Distribution of FabH variation across a previously whole-genome sequenced (WGS) collection of NTHi clinical isolates

FabH
variant

No. of
strains

Frequency
(%) NTHi WGS clinical strain(s)

Selected
representative strain

A1 29 30.9 P667, P668, P669, P594, P595, P596, P650, P676, P679, P853, P627, P628, P671, P610, P617,
P634, P635, P636, P637, P661, P597, P639, P662, P663, P598, P631, P611, P606, NTHi375

NTHi375b

A2 17 18.1 P600, P601, P602, P612, P613, P614, P615, P616, P618, P620, P621, P622, P623, P624, P629,
P632, P633

P621

A3 12 12.8 P670, P672, P674, P675, P677, P678, P646, P647, P648, P649, P592, RdKW20 RdKW20a

A4 6 6.4 P609, P599, P651, P652, P653, P654 P652
A5 6 6.4 P619, P640, P638, P625, P673, P630 P673
A6 5 5.3 P641, P642, P588, P604, P605 P642
A7 4 4.3 P664, P665, P666, P591 P665
A8 3 3.2 P657, P658, P660 P657
A9 3 3.2 P643, P644, P645 P645
A10 2 2.1 P603, P851 P851
A11 2 2.1 P656, P593 P593
A12 2 2.1 P607, P608 P607
A13 2 2.1 P589, P590 P590
A14 1 1.1 P626 P626
aRdKW20 is a reference strain used to generate the iNL638 metabolic model.
bNTHi375 is an otitis media clinical isolate previously used in host-pathogen interplay studies (47–50).
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FIG 4 FabHi has an antimicrobial effect on H. influenzae upon planktonic and biofilm growth. (A) Determination of FabHi inhibitory effect on representative
NTHi strains carrying FabH variants A1 to A14 upon planktonic growth in sBHI medium. Susceptibility to FabHi was dose dependent. FabHi concentrations
tested range from 10 to 600 mg/mL. Strains were classified into four groups (blue, green, red, and orange labeling) based on increasing resistance. Results
are shown as log10 CFU/mL (mean 6 SD). For each strain, statistical comparisons of means were performed by one-way ANOVA and Dunnett’s multiple-
comparison test. A reduction on bacterial viability was observed: A1-NTHi375, at [FabHi] 200 mg/mL and higher, P , 0.0005; A2-P621, at [FabHi] 200 mg/mL
and higher, P , 0.0001; A3-RdKW20, at [FabHi] 150 mg/mL and higher, P , 0.005; A4-P652, at [FabHi] 50 mg/mL and higher, P , 0.0001; A5-P673, at
[FabHi] 125 mg/mL and higher, P , 0.0001; A6-P642, at [FabHi] 75 mg/mL and higher, P , 0.005; A7-P665, at [FabHi] 125 mg/mL and higher, P , 0.05; A8-
P657, at [FabHi] 275 mg/mL and higher, P , 0.05; A9-P645, at [FabHi] 150 mg/mL and higher, P , 0.05; A10-P851, at [FabHi] 150 mg/mL and higher,
P , 0.005; A11-P593, at [FabHi] 150 mg/mL and higher, P , 0.0001; A12-P607, at [FabHi] 200 mg/mL and higher, P , 0.0001; A13-P590, at [FabHi] 200 mg/
mL and higher, P , 0.05; A14-P626, at [FabHi] 125 mg/mL and higher, P , 0.0001. (B) Determination of FabHi inhibitory effect on biofilm growth by
representative NTHi strains carrying FabH variants A1 to A14. Strains were grown in the absence (2) or presence (1, 1’) of FabHi. Two FabHi
concentrations were used: (i) 50 mg/mL (1); (ii) a higher subinhibitory [FabHi] (1’) close to the minimum bactericidal concentration determined in panel A

(Continued on next page)
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cases, with some exceptions, and strain P590 carrying the A13 allelic variant was the clear-
est case (Fig. 4A and Fig. S5C). Detailed analysis of these curves suggests a biphasic mode
with a fast initial reduction of bacterial viability, followed by a second phase where viability
loss drops slower, in some cases up to undetectable levels. Changes related to the FabH
variant and the growth medium mainly affect the bacterial response to FabHi concentra-
tions in this second phase (Fig. S5H to K).

Likewise, we assessed the effect of FabHi on bacterial biofilm growth, first defining
biofilm formation for each strain, which was heterogeneous from clear biofilm formers
(A6-P642) to those forming poorly detectable biofilms (A4-P652 and A5-P673). FabHi 50mg/
mL (1), which allowed growth of all tested strains (Fig. 4A), lowered biofilm growth by A1-
NTHi375, A6-P642, A7-P665, A8-P657, A9-P645, and A13-P590 strains (Fig. 4B, column 1),
but this inhibitory effect was not observed on strains belonging to the more susceptible cat-
egory (for example, A2-P621 and A11-P593). A significant inhibitory effect was observed
when using higher FabHi concentrations (Fig. 4B, column1’).

In summary, the viability of H. influenzae clinical strains representative of the observed
FabH variation decreased when exposed to FabHi in a dose-dependent manner and with vari-
able efficacy among strains. The susceptibility of H. influenzae to FabHi irrespective of the cul-
ture conditions argues in favor of FabH as a condition-independent drug target and highlights
our gene essentiality analysis as a robust computational approach to identify drug targets.

Heterogeneity of FabHi antimicrobial effect among strains: assessing possible
causes. We next explored possible reasons accounting for the heterogeneity of FabHi
antimicrobial effect. First, mapping of sequence polymorphisms in the FabHRdKW20 structure
showed that amino acid substitutions were out of the substrate-binding cavity (Fig. 3D).
However, functional FabH is a dimer (42), and several of these polymorphisms located at the
monomer-monomer interface could be relevant for dimer stabilization and even substrate
selectivity, while others might affect the monomer conformation.

The loops comprising Ser84–Ser89 and Lys185–Gln207, with polymorphisms at posi-
tions 85, 186, 197, and 198, are involved in forming the dimer interface and, more impor-
tantly, in ligand binding or active-site formation (Fig. S4E). Thus, dimerization brings Tyr87
and adjacent residues close to the catalytic Cys112 of the dimeric partner (Fig. S4F), creat-
ing a complex network of contacts with residues from the other subunit (Thr81, Cys112,
Val190, Leu191, Ala192, Gln193, Ile204, and Gly306) in which His85 itself participates.
Residues at positions 197 and 198 conform the central part of the other loop turn whose
pairing with the equivalent loop of the complementary subunit stabilizes the dimer inter-
face, making contacts with Arg144, Ser201, Gly202, and Tyr203 from the other monomer
(Fig. S4G). The loop is additionally involved in CoA recognition through Leu189 and Met206
moieties (52). Both actions could be sensitive to the polymorphism found at position 186 as
well due to its proximity to the dimer interface (Fig. S4H). Analogously, Ser105 of FabHRdKW20,
replaced by cysteine in four variants, interacts with residues from the other subunit
(Fig. S4H), and Ala118 (replaced by valine in one allelic variant) is close to the dimer inter-
face. Polymorphisms potentially relevant for the monomer structural integrity comprise resi-
due 76 (included in the hydrophobic core of the N-terminal domain), residue 169 (helping
to maintain the relative dispositions of strands Nb1 and Nb5 of the N-terminal domain
through hydrogen bonding to Asn2 and Asn171; Fig. S4I), and residues 286, 287, and 296
(orienting Cb2, Ca3, Cb3, and Cb4 components of the C-terminal domain and helping to
configure the loop connecting Ca3 to Cb3; Fig. S4I). Finally, Ser228 (replaced by cysteine in
three variants) is at the C terminus of Ca1, a long helix proposed to conform, together with
Ca2, the binding surface for the ACP protein outside the active-site tunnel (52).

Therefore, sequence changes in any of these positions might have a significant impact

FIG 4 Legend (Continued)
for each strain (275 mg/mL for A1-NTHI375, A3-RdKW20, A4-P652, A7-P665, A8-P657, and A14-P626; 200 mg/mL for A2-P621, A9-P645, A10-P851, A12-P607,
and A13-P590; 100 mg/mL for A5-P673, A6-P642, and A11-P593). For each strain, statistical comparisons of means were performed by one-way ANOVA and
Dunnett’s multiple-comparison test (*, P , 0.05; **, P , 0.005; ***, P # 0.0001). (C) The fabH gene expression on representative NTHi strains used for
inhibition studies, grown in sBHI to half of each strain’s maximal OD600. Statistical comparisons of means were performed for each previously established
group by one-way ANOVA and Tukey’s multiple-comparison test (*, P , 0.05; **, P , 0.005; ***, P , 0.0001).
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on the functioning of the FabH enzyme, including the affinities for substrates, feedback in-
hibitor, and FabHi, as well as the catalytic efficiency and, therefore, FabH inhibitory capacity.

Second, we asked if the variable effect of FabHi would relate also to differences in the
fabH gene expression. However, gene expression was heterogeneous, and we did not
observe either a correlation between resistance and fabH gene expression, or a defined
gene expression pattern for strains belonging to the previously established categories (Fig. 4C
and Fig. S5G).

Third, previous evaluation of the FabHi analogue 1-(5-(2,5-dimethyl-3-(hydroxymethyl)phe-
nyl)pyridin-2-yl)piperidine-4-carboxylic acid showed increased susceptibility upon inactivation
of the AcrAB-TolC efflux pump system (38). AcrAB-TolC is present in the set of 14 selected
strains, displaying some polymorphisms, although the AcrB hydrophobic trap (Gly142 or Ile143,
Phe182, Glu594, Met599, Ile601, and Ile613) is fully conserved (53 and data not shown). Finally,
although compensatory effects have been described in Staphylococcus aureus by the means of
fabHmutations conferring resistance to FabF-directed antibiotics (54), this is unlikely for H. influ-
enzae, as the fabF gene is absent from RdKW20 (55) and the rest of the tested strains.

FabHi antimicrobial effect does not exclusively relate to the fabH gene allelic
variant. To further assess if the observed heterogeneity would match only to fabH gene
allelic variation, we tested strains carrying the same variant. Variants A1 (NTHi375 as reference),
A3 (RdKW20 as reference), A5 (P673 as reference), A6 (P642 as reference), and A8 (P657 as
reference) were used as representative examples (Fig. 5). No significant differences were
observed for strains containing variant A8, i.e., strains P657, P658, and P660, all belonging
to the same CT. However, heterogeneity was observed in strain groups containing the A1,
A3, A5, and A6 variants grouping different CTs. A1-containing strains P597, P639, and P606
were more susceptible while P667 and P671 were more resistant to FabHi than NTHi375;
A3-containing strains P648 and P649 were more resistant and P670, P675, and P678 more
susceptible to FabHi than RdKW20; A5-containing strains P619, P640, P638, and P630 were
more resistant to FabHi than P673; A6-containing strains P588 and P641 were more resist-
ant, and P604 and P605 more susceptible to FabHi than P642. In conclusion, the extent of
the FabHi antimicrobial effect was not exclusively related to the FabH variant carried by
each strain. Instead, the metabolic context provided by each strain may contribute to tai-
loring FabHi inhibitory effects.

FabHi does not induce bacterial resistance, antibiotic synergies, or cytotoxicity. To
expand our FabHi antimicrobial characterization, we assessed the ability of strain P642,
employed for in vivo assays (see below), to become resistant to FabHi through serial in-
dependent passage in sBHI broth containing three different inhibitory concentrations
of FabHi (56, 57). After 12 consecutive passages, no growth was detected (Fig. 6A). FabHi
and the antibiotic azithromycin (Azm) or ampicillin (Amp) were combined at different pro-
portions and tested against P642 by the checkerboard method; antagonism or synergy
effects were not detected. Figure 6B shows the MIC6 standard deviations (SD) for each com-
pound separately, the MIC 6 SD of the combinations tested, calculated fractional inhibitory
concentration existence of synergy (RFIC)6 SD, and their interpretation.

FabHi effect on bacterial viability was also titrated in Earle’s balanced salts (EBSS)
medium aiming to mimic cultured epithelial cell infection conditions, showing a significant
dose-dependent decrease (Fig. 6C). Based on this observation, A549 cells were pretreated
with EBSS containing FabHi for 16 h, which was then replaced by EBSS medium without
drug prior to infection. Under these conditions, FabHi did not show cytotoxicity (Fig. S6A).
Cell exposure to increasing doses of FabHi did not modify P642 epithelial adhesion and
invasion rates (Fig. 6D and E). Therefore, FabHi does not seem to modulate NTHi infection
of airway epithelial cells under the tested conditions.

FabHi efficacy preclinical testing reveals a protective effect on zebrafish systemic
infection with NTHi.Our final goal was to evaluate drug efficacy at the preclinical level,
on a FabHi protective assay in adult zebrafish infected with NTHi, by following a
previously established sepsis model (57, 58). We used strains P673 and P642,
belonging to more FabHi-susceptible categories, to assess their capacity to infect
zebrafish by injection of 3 animal groups (n = 10) with 10 mL of bacterial suspensions
containing 7 � 1010 CFU/mL or 0.9% saline solution as a control. NTHi P642 severely

FASII Inhibition To Fight H. influenzae Infection mSystems

March/April 2022 Volume 7 Issue 2 10.1128/msystems.01459-21 13

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.01459-21


reduced zebrafish survival, and an infection dose consisting of 7 � 108 CFU/zebrafish
caused progressive death of the animals after injection; however, strain P673 did not modify
zebrafish survival (data not shown), precluding us from using this strain in this model
system.

Next, a FabHi acute toxicity assay was performed in zebrafish embryos by following
the fish embryo acute toxicity (FET) test. Results showed that FabHi doses lower than
5.7 mg/embryo were nontoxic (Fig. S6B). Based on these data, we tested FabHi’s effect
on P642-infected zebrafish by using a therapeutic regimen of intraperitoneal 4 mg FabHi
per zebrafish, consisting of one administration 1 h postinfection (hpi). Survival for FabHi-
treated and control untreated groups was monitored three times per day up to 4 days
postinfection. The mortality rate in FabHi-treated infected zebrafish was significantly
lower than in infected control animals receiving vehicle solution (P , 0.0001) (Fig. 6F).
This model system rendered significantly FabHi-mediated increased survival upon zebra-
fish NTHi infection by using the P642 isolate.

FIG 5 FabHi effect on H. influenzae does not merely relate to fabH gene allelic variant. Determination of FabHi inhibitory
effect on NTHi strains carrying FabH variants A1 (strains NTHi375, P667, P671, P597, P639, and P606) (A), A3 (strains
RdKW20, P648, P649, P670, P675, and P678) (B), A5 (strains P673, P619, P640, P638, P625, and P630) (C), A6 (strains P642,
P588, P604, P605, and P641) (D), or A8 (strains P657, P658, and P660) (E) upon planktonic growth in sBHi. Strains were
susceptible to FabHi in a dose-dependent manner. FabHi concentrations testing in a range from 10 to 275 mg/mL.
Results are shown as log10 CFU/mL (means 6 SD). For each strain set containing the same FabH variant, statistical
comparisons of means were performed by two-way analysis of variance (ANOVA) and Dunnett’s multiple-comparisons
test, using the previously used representative strain as a reference. A significant reduction on bacterial viability was
observed. (A) A1 variant group, higher susceptibility than A1-NTHi375 reference strain is shown for P606 at [FabHi] .
125 mg/mL, P , 0.005; for P597 at [FabHi] . 150 mg/mL, P , 0.0001; for P639 at [FabHi] . 200 mg/mL, P , 0.0001;
and lower susceptibility than the A1-NTHi375 reference strain is shown for P667 and P671 at [FabHi] . 275 mg/mL,
P , 0.05. (B) A3 variant group, higher susceptibility than the A3-RdKW20 reference strain is shown for P670 at [FabHi] .
150 mg/mL, P , 0.005; for P675 at [FabHi] . 100 mg/mL, P , 0.0001; for P678 at [FabHi] . 50 mg/mL, P , 0.0001; and
lower susceptibility than the A3-RdKW20 reference strain is shown for P648 at [FabHi] . 200 mg/mL, P , 0.0001; for
P649 at [FabHi] . 200 mg/mL, P , 0.0001. (C) A5 variant group, lower susceptibility than A5-P673 reference strain is
shown for P619 at [FabHi] 100 and .200 mg/mL, P , 0.05; for P640 at [FabHi] . 150 mg/mL, P , 0.05; for P638 and
P630 at [FabHi] . 200 mg/mL, P , 0.0001. (D) A6 variant group, higher susceptibility than the A6-P642 reference strain is
shown for P604 at [FabHi] . 75 mg/mL, P , 0.05; for P605 at [FabHi] . 125 mg/mL, P , 0.005; and lower susceptibility
than the A6-P642 reference strain is shown for P588 at [FabHi] 100 and .150 mg/mL, P , 0.05; for P641 at [FabHi]
125 mg/mL, P , 0.05; (E) A8 variant group, no significant differences were found.
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DISCUSSION
iNL638 is a powerful tool for drug target discovery and sets the bases of future

H. influenzae strain-specific metabolic evaluation. Here, we constructed a high-quality
GEM of H. influenzae as a basic computational framework to identify essential genes (among

FIG 6 FabHi in vitro characterization and preclinical evaluation. (A) A6-P642 did not grow after 12 daily serial passages
in the presence of three [FabHi] (137.5, 275, and 550 mg/mL). Data are shown as OD600 (means 6 SD) in every
passage (*, P , 0.0001). As controls, bacteria were grown in sBHI in the absence (asterisk) or presence of DMSO
vehicle solution (V, white circle), with a volume corresponding to that used when testing FabHi at 550 mg/mL.
Statistical comparisons of means were performed by one-way ANOVA and Dunnett’s multiple-comparison test. (B) The
checkboard method for strain P642, when combining FabHi-antibiotic molecules (means 6 SD). (C) The viability of NTHi
strain P642 was tested by simulating host cell infection conditions (2 h at 37°C in EBSS medium in the absence [V]/presence
of FabHi). FabHi reduced (*, P , 0.0001) bacterial viability (means 6 SD) in a dose-dependent manner. Based on these
results, cell infection assays shown in panels D and E were performed by cell pretreatment with FabHi for 16 h and drug
removal before infection. Controls (V) were cells that did not receive FabHi but did receive vehicle solution, i.e., DMSO.
Adhesion (D) and invasion (E) assays did not render significant differences. Statistical comparisons of the means were
performed with one-way ANOVA and Dunnett’s multiple-comparison test. (F) Zebrafish were infected intraperitoneally with
P642, 7 � 108 CFU/zebrafish. When necessary, FabHi at 4 mg/zebrafish was administered intraperitoneally at 1 hpi.
Noninfected groups were administered PBS (white circle) or FabHi (white triangle); infected groups were administered PBS
(black square) or FabHi (black inverted triangle). Survival rate is reported as percentage (means 6 SD) of adult individual
survival up to 4 days. Survival of NTHi-infected zebrafish was significantly higher in FabHi-treated than in untreated animals
(*, P , 0.0001). To draw and analyze the Kaplan-Meier survival curve, a log-rank (Mantel-cox) test was used (*, P , 0.0001).
Statistical comparisons between survival rates after 4 days were performed by one-way ANOVA and Sidak’s multiple-
comparison test.
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other possibilities) suitable for further exploitation as drug targets. The exponential increase
of pathogen genomes and the emergence of high-throughput technologies are providing a
myriad of large data sets. Among the numerous computational methods developed to gen-
erate meaningful outcomes of these data, metabolic modeling is emerging as a promising
approach for the coherent organization of this information while providing mechanistic
insights on biological systems (18). Thus, it is not surprising that this approach is being
increasingly incorporated as a key strategy for antimicrobial target discovery at the level of
preclinical research (16, 17, 59–63). Metabolic modeling has been used for the design of
new drugs by informing target selection (16, 17, 64) and for the engineering of cells by
rewiring metabolism toward the production of a product of interest (65, 66). Despite the
success of GEMs, the lack of a high-quality model for H. influenzae largely hampered the
application of such approaches in this clinically relevant bacterium. iNL638 represents a
powerful and unprecedented computational tool for the search for novel drug targets in H.
influenzae. In addition, the high quality of iNL638, in terms of consistency and interoperabil-
ity, paves the way for the future multistrain modeling of the H. influenzae species using the
strain RdKW20 as a reference. As shown by the strain-dependent effect of the inhibitor
tested, the impact of metabolic context is gaining relevance as a key factor driving cell
behavior (67). Therefore, further H. influenzae multistrain modeling effort could lead to the
identification of secondary metabolic hubs modulating the response of known and novel
drugs, promoting the establishment of synergistic and more robust antibacterial treatments.
Following this notion, Salmonella multistrain modeling identified serovar-specific metabolic
traits, including auxotrophies and catabolic pathways related to adaptations to their coloni-
zation sites (68), and strain-specific metabolic features were unraveled for S. aureus, P. aerugi-
nosa, or A. baumannii (64, 69, 70).

The potential of targeting H. influenzae fatty acid biosynthesis. Among essential
genes predicted by iNL638, 89 also were shown to be essential in three previous Tn-
seq-based screenings (33–35). These data not only argue in favor of the accuracy of
iNL638 when predicting essential genes but give further support to the potential role
of these genes as drug targets. About 33% of predicted essential genes were involved
in lipid metabolism. Although we focused here on FASII inhibition, we acknowledge
that peptidoglycan biosynthesis, accounting for over 22% of the commonly shared
predicted essential genes, also deserves attention, as the diversity of antimicrobials
with distinct mechanisms reported to disrupt the bacterial peptidoglycan is wide (71).
When focusing on FabH targeting, natural (41, 72–74) and synthetic molecules (38–41,
75, 76) have been reported. Here, we went further with compound 31, previously
reported in reference 38, renamed FabHi for simplicity.

Several technical aspects of our FabHi antibacterial effect evaluation may deserve consider-
ation by those interested in assessing novel drugs without preestablished standardized proce-
dures. We initially aimed to adapt regular MIC assays by measuring culture turbidity, in combi-
nation with quantifying redox activity in metabolically active bacterial cells by reduction of
iodonitrotetrazolium chloride (77) (data not shown), and with serial dilution plating for CFU
counting. However, the lack of consistency and correlation between methodologies, which
can lead to misleading interpretations when testing new drugs, drove us to use CFU counts as
rendering the clearer, more reliable and reproducible results. Another technical aspect is the
culture medium of choice. Although results obtained by bacterial growth in CDM or in sBHI
were relatively similar, we consistently found differences for some strains when incubated
with the highest drug doses tested, which may relate to the apparently biphasic mode of
action suggested above (Fig. S5H to K). Lastly, the bacterial growth type of the culture may be
another key aspect. Here, by following the same procedure, we monitored the effect of FabHi
on bacteria in suspension and attached to a plastic surface. Differences were noticeable, as an
inverse correlation was observed on the FabHi effect when assessing planktonic or biofilm-
grown bacteria, as the lowest inhibitor concentration tested did not alter biofilm growth by
those strains considered to be more susceptible, according to planktonic studies, compared to
the more resistant ones. In this context, strain P657 showed slow growth in CDM, although it
clearly grouped in the most resistant category despite low expression of the fabH gene, and
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the effect of FabHi on P657 biofilm growth could not be easily explained, as it was consistently
unrelated to the concentration of inhibitor used.

FabHi effects are heterogeneous among NTHi clinical isolates. Strain heteroge-
neity when incubated with FabHi evidenced the concurrence of several factors in its
killing activity. According to the docking model, FabHi fills a large tunnel, at the base
of which are located the active-site residues. This tunnel is the only access to the active
center and, therefore, constitutes the binding cavity for the first (acyl-CoA) and second
(malonyl-ACP) substrates and the feedback inhibitor (palmitoyl-ACP), all of which will
compete with FabHi binding. Hence, the antimicrobial effect of FabHi depends on the
available concentrations of all potential ligands and their respective affinities, which
may vary among strains and growth conditions. Indeed, as shown above, several poly-
morphisms in FabH variants locate at regions relevant for activity and structural stabil-
ity, and sequence changes at such positions may alter substrates and inhibitor binding
as well as FabH catalytic efficiency. Additionally, strain variability associated with differ-
ent CTs might modify, among others, the efflux pump system, with a subsequent
impact on the amount of FabHi available to interact with FabH. Likewise, variations in
expression level, conformation, or potency of other components of the FASII biosyn-
thetic pathway, including peripheral enzymes involved in production of FabH sub-
strates (78), may modify the catalytic balance of rates along the FASII pathway and,
thus, alter the antimicrobial effect. Indeed, mutations might compensate for deficien-
cies in other enzymes of the FASII system, rescuing specific H. influenzae strains from
FabHi antimicrobial effect or, alternatively, enhancing its outcome.

Nonetheless, variations observed among strains carrying the same FabH variant indicate
that heterogeneity is multifactorial. Those strains are diverse in terms of genomic content,
i.e., they do not cluster by CT (45), and such genomic variability may contain currently un-
identified elements also contributing to the observed phenotypes.

On the other hand, inspection of FabHi:FabHRdKW20 complex structure indicates that
FabHi affinity could be increased by introducing a hydroxyl group ortho to the N-atom
of the piperidine ring, which could lead to an extra hydrogen bond with the side chain
of Asn246 without introducing steric clashes. While of interest for further analysis,
exploring the effect of FabHi modifications exceeds the scope of this study.

Overall, we present here a high-quality metabolic model of H. influenzae and show
how iNL638 can be used (i) as a powerful tool to better understand the metabolism of
this pathogen, (ii) as a computational framework for large experimental data set con-
textualization, and (iii) for the discovery of condition-independent drug targets. We
shed light on the mechanism of inhibition of FabH mediated by FabHi, and, beyond
allelic variation, we suggest the strain-specific metabolic context is a key factor modu-
lating drug performance. Therefore, the systematic metabolic evaluation of individual
strains through computational frameworks will be of critical importance in the near
future to design more precise and accurate treatments.

MATERIALS ANDMETHODS
Bacterial strains, media, growth conditions, and drugs. RdKW20 is a genome-sequenced capsule-

deficient laboratory strain (43). NTHi375 is a genome-sequenced otitis media clinical isolate (47–50).
NTHi COPD clinical strains belong to a previously genome-sequenced collection (45). For growth in sBHI
or CDM, NTHi strains grown on PolyViteX (PVX) agar for 16 h were inoculated (2 to 3 colonies) in 10 mL
sBHI or CDM using 100-mL flasks and incubated for 11 h with shaking (100 rpm). In detail, 235 mL of CDM
contains 191 mL of RPMI 1640 (Life Technologies, ref. 11879-020), 5.8 mL of 1 M Hepes (pH 7.2–7.5, Life
Technologies, ref. 15630-080), 2 mL of 100 mM MEM sodium pyruvate (Life Technologies, ref. 113600-070), 10
mL of uracil (2 mg/mL), 20 mL of inosine (20 mg/mL), 2 mL of NAD (1 mg/mL), 4 mL of hemin (1 mg/mL), and
2.35 mL of 1 M glucose (final concentration, 10 mM). Cultures were then diluted to an optical density at 600
nm (OD600) of 0.07 in a final volume of 25 mL sBHI or CDM using 250-mL flasks, grown with shaking (180 rpm),
and OD600 was recorded every hour for up to 8 h. When necessary, bacterial viability upon host cell infection
conditions was tested. To do so, phosphate-buffered saline (PBS)-normalized bacterial suspensions (OD600 of 1)
were prepared by using NTHi grown on PVX agar; 100-mL aliquots were incubated in 1 mL Earle’s balanced
salts (EBSS; 24010-043; Gibco) in the absence/presence of FabH inhibitor (FabHi) for 2 h at 37°C, serially diluted,
and plated on supplemented Haemophilus Test Medium (sHTM) agar for CFU/mL determination. When
needed, media supplements refer to with 10 mg/mL hemin and 10mg/mL nicotinamide adenine dinucleotide
(NAD).
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FabHi was used by freshly preparing a panel of stock solutions, customized to each type of assay (7
to 35 mg/mL) in dimethyl sulfoxide (DMSO), and diluted to the working concentrations specified in each assay
in CDM, sBHI, or RPMI 1640 (R8758; Sigma-Aldrich). Antibiotics and FabHi working concentrations are specified
for each assay (described below). Ampicillin and azithromycin dihydrate (Azm; Zytromax) were used to assess
FabHi synergic effects (described below). For this purpose, 10-mg/mL stock solutions of each antibiotic were
prepared in distilled H2O (dH2O), filtered, and used at the indicated working concentrations.

Determination of bacterial dry weight. Two to 3 colonies of the RdKW20 strain grown on PVX agar
for 16 h were inoculated in 10 mL CDM using 100-mL flasks and incubated for 11 h with shaking (100 rpm).
Cultures were diluted to OD600 of 0.07 in a final volume of 55, 40, or 25 mL CDM using 250-mL flasks, grown
with shaking (180 rpm) for;3, 4, or 6 h, respectively. Next, 45, 30, and 15 mL was collected at OD600 of 0.3, 0.4
and 0.8, respectively. Bacterial suspensions were centrifuged at (20,000 � g, 15 min, room temperature), and
pellets were instantly frozen in liquid N2, directly transferred to a lyophilizer (LyoQuest, Telstar), lyophilized for
24 h at 0.020 � 105 Pa and 280°C, and weighed. Using this procedure, we established a lineal relation (R2 =
0.99) between OD and DW: DW (g/liter) = (0.8627 � OD600) 1 0.0279 (see Table S1 in the supplemental
material).

Model construction and manual curation. Since the available GEM of H. influenzae lacks the GPR
relationship, it could not be used as the template for draft construction. Instead, we used the high-qual-
ity and well-curated GEM of E. coli K-12 (iJO1366 [79]) for this purpose. GEMSiRV-MrBac server was used
to construct the protein homology matrix and the initial draft (80). Briefly, the list of orthologous genes
between the RdKW20 and K-12 strains was obtained by reciprocal best hits using BLASTP (81). This list
and the corresponding model of E. coli in SBML format were used as input files for the GEMSiRV-MrBac
server to obtain the initial model draft of RdKW20. This initial draft included the reactions present in
iJO1366 assigned to the orthologous genes identified in RdKW20. Subsequently, the draft was subject to
a detailed curation by manually reviewing all the GPR associations. The assignment of each GPR was addition-
ally validated by BLASTP and, when possible, by detailed scrutiny of available literature. Pathways for well-
known metabolic features of strain RdKW20 and absent in the model template, such as strain-specific lipooli-
gosaccharide (LOS) and peptidoglycan biosynthesis, were manually mass and charge balanced and added to
the reconstruction. Furthermore, the reactions involving strain-specific cofactors were updated, such as those
reactions using menaquinones or ubiquinones from the E. coli model, which were replaced by reactions
accounting the cofactor usage of H. influenzae, i.e., demetylmenaquinone and demethylmenaquinol, respec-
tively. Finally, the network gaps across the metabolic pathways were filled out by manual gap filling by adding
new reactions based on the information stored in biological databases, scientific literature, and the functional
annotation of strain RdKW20. For instance, metabolic gaps in fatty acid and molybdopterin biosynthesis path-
ways were manually completed during this step. Additionally, transport reactions were manually curated con-
sidering the connectivity of the cognate metabolites and experimental evidence. For instance, transport reac-
tions for certain amino acids, fatty acids, uracil, pantothenate, biotin, dihydrofolate, protoporphyrin, pyridoxine,
riboflavin, nucleotides, or NAD transporters were added manually based on available biochemical and physio-
logical evidence. On the contrary, transport reactions for several compounds initially included in the automatic
draft were removed due the lack of physiological evidence. The evaluation of iNL638 was done with MEMOTE
v0.13.0 (https://memote.io/) (25).

Biomass objective function (BOF) formulation. For BOF construction, reported macromolecular
composition of H. influenzae RdKW20 was used as a base for the construction of a highly complete bio-
mass reaction (Data Set S1). Protein, DNA, RNA, LOS, and lipid contents were taken from available litera-
ture (82–84). Missing information, such as carbohydrates, inorganic ions, and soluble pool content, was
taken from the E. coli model (79, 85, 86) (Data Set S1). The stoichiometric coefficients for amino acids,
DNA, and RNA were further determined computationally using the H. influenzae available genomic infor-
mation (Data Set S1), while the coefficients for murein and lipids were taken from experimental reports.
In the absence of experimental information, growth-associated ATP maintenance reaction (GAM) was
estimated by determining the energy required for macromolecular synthesis, as previously described
(24), while the non-growth-associated ATP maintenance reaction (NGAM) was taken from the E. coli
model (79).

Constraint-based analysis. The iNL638 model was analyzed with the COBRA Toolbox v2.0 (87)
within the MATLAB environment (The MathWorks Inc.), and Gurobi and the GNU Linear Programming kit
(http://www.gnu.org/software/glpk) were used for solving the linear programing problems. The con-
straint-based model consists of a 1,161 by 1,385 matrix containing all the stoichiometric coefficients in
the model of 1,161 metabolites and 1,385 reactions (S). Flux balance analysis (FBA) was used to predict
growth and flux distributions (88). FBA is based on solving a linear optimization problem by maximizing or
minimizing a given objective function Z, subject to a set of constraints. The constraints S�v = 0 correspond to a
situation of steady-state mass conservation where the change in concentration of the metabolites as a function
of time is zero. The vector v represents the individual flux values for each reaction. These fluxes are further con-
strained by defining lower and upper limits for flux values. For reversible reactions, upper and lower bounds of
21,000 mmol�gDW21�h21 and 1,000 mmol�gDW21�h21 were used. A lower bound of 0 mmol�gDW21�h21 was
used in the case of irreversible reactions. For simulating condition-specific growth conditions, lower bounds of
the corresponding exchange reactions were modified accordingly.

Model constraints. Formulation of in silico CDM was based on the experimental composition of this
medium. The uptake of pyruvate, glucose, NAD, inosine, and uracil was allowed as main nutrients in all cases
(26, 27, 89). Furthermore, complete and minimal CDM formulations (cCDM and mCDM) were used. cCDM
allowed the uptake of all amino acids, vitamins, and inorganic salts present in the RPMI formulation (https://
www.thermofisher.com/es/es/home/technical-resources/media-formulation.116.html), whereas mCDM formu-
lation only allowed uptake of inorganic salts and essential vitamins for growth (i.e., choline, pantothenate, and
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folate). Source code to simulate the iNL638 with cCDM and mCDM media and the MEMOTE full report are
available at https://github.com/SBGlab/Haemophilus_influenzae_GEM.

Essentiality analysis. Reaction essentiality analysis was performed using the singleReactionDeletion
function implemented in the COBRA Toolbox. FBA (88) and minimization of metabolic adjustments (MOMA)
(90) methods were used. A lethal deletion was defined as that yielding ,10% of the original model’s growth
rate values. Simulations for reaction essentiality were performed using both cCDM and mCDM for iNL638
under aerobic conditions.

Synthetic procedure for FabHi. Please see Fig. 3A for analysis results of all compounds, in full ac-
cordance with depicted structures.

(i) General methods. CH3CN was dried by reflux over CaH2. Anhydrous DMF and reagents were
obtained from commercial sources and used without further purification. Analytical thin-layer chroma-
tography (TLC) was performed on silica gel 60 (F254; Merck). Compounds were purified by flash column
chromatography with silica gel 60 (230 to 400 mesh) (Merck). The purity of the compounds was analyzed
using a high-performance liquid chromatography mass spectrometer (HPLC-MS) and was performed on
an HPLC Waters 2695 instrument connected to a Waters Micromass ZQ 2000 spectrometer and a photo-
diode array detector. The column used was a Sunfire C18 (4.6 mm by 50 mm, 3.5 mm), and the flow rate
was 1 mL min21. All retention times are quoted in minutes. Nuclear magnetic resonance (NMR) spectra
were recorded with Varian XL-400 spectrometer operating at 400 MHz for 1H-NMR and at 100 MHz for
13C with Me4Si as an internal standard. Mass spectra were measured on a quadrupole mass spectrometer
equipped with an electrospray source (LC/MC HP1100; Hewlett-Packard). Microanalyses were obtained
on a Heraeus CHN-O-RAPID instrument. The purity of novel compounds was also determined to be
.95% by elemental analysis.

(ii) Ethyl 1-(5-bromopyridin-2-yl)piperidine-4-acetate (1). A solution of ethyl piperidine-4-acetate
(1.5 g, 8.76 mmol), 5-bromo-2-chloropyridine (2 g, 10.39 mmol), and triethyl amine (1.47 mL, 1.2 eq) in
dry acetonitrile was heated under microwave irradiation to 125°C for 2 h. The crude was diluted with
ethyl acetate (EtAcO) (10 mL) and washed with 1N HCl. The combined organics were dried over MgSO4,
filtered, and evaporated to dryness. The final residue was purified by flash column chromatography (hex-
ane-ethyl acetate, 1:3 to 0:1) to give 1 (1.15 g, 40%) as a colorless oily solid. 1H-NMR (400 MHz, DMSO-d6)
d 8.19 (d, J = 2.7 Hz, 1H), 7.76 (dd, J = 9.2, 2.6 Hz, 1H), 6.95 (d, J = 9.2 Hz, 1H), 4.00 (m, 4H), 2.92 (td,
J = 12.9, 2.7 Hz, 2H), 2.35 (dd, J = 8.8, 7.0 Hz, 3H), 1.84 (d, J = 13.3 Hz, 2H), 1.76 (d, J = 12.8 Hz, 1H), 1.522
1.41 (m, 1H), 1.23 (t, J = 7.0 Hz, 3H). HPLC 9.02 min (98%) (H2O/CH3CN from 15/85 to 95/5 in 10-min flow-
rate of 1 mL/min). MS (ES1) m/z 327.0 (M)1, 329.0 (M 1 2)1. Anal. for C14H19BrN2O2 (C, H, N): C, 51.39; H,
5.85; N, 8.56. Found: C, 51.22; H, 5.91; N, 8.63.

(iii) Ethyl 1-(5-(2-fluoro-5-(hydroxymethyl)phenyl)pyridin-2-yl)piperidine-4-acetate (2). A sus-
pension of 1 (1.15 g, 3.68 mmol), 2-fluoro-5-(hydroxymethyl)phenylboronic acid (0.89 g, 5.26 mmol),
[1,19-bis(diphenylphosphino)ferrocene]palladium(II) dichloride (172 mg, 0.21 mmol), K2CO3 (0.89 g,
7.02 mmol) in anhydrous DMF (12 mL) was stirred at 75°C for 16 h. The reaction was cooled to room tempera-
ture, and the residue was filtered through Celite and evaporated to dryness. The final residue was purified by
flash column chromatography (hexane-ethyl acetate, 5:1 to 1:2) to give 2 (1.15 g, 87%) as a white solid. 1H-
NMR (400 MHz, DMSO-d6) d 8.40 (s, 1H), 7.71 (d, J = 8.9 Hz, 1H), 7.39 (dd, J = 1.9, 7.5 Hz, 1H), 7.25 (m, 1H), 7.13
(dd, J = 8.5, 10.5 Hz, 1H), 6.73 (d, J = 9.0 Hz, 1H), 4.75 (s, 2H), 4.28 (dt, J = 13.3, 3.7 Hz, 2H), 4.17 (m, 2H), 3.12 (t,
J = 11.1 Hz, 2H), 2.54 (m, 1H), 2.00 (m, 2H), 1.83 (m, 3H), 1.27 (t, J = 7.2 Hz, 3H). HPLC 5.03 min (99%) (H2O/
CH3CN from 15/85 to 95/5 in 10-min flowrate of 1 mL/min). MS (ES1) m/z 373.2 (M 1 1)1. Anal. for
C21H25FN2O3 (C, H, N): C, 67.72; H, 6.77; N, 7.52. Found: C, 67.51; H, 6.80; N, 7.65.

(iv) FabHi. A solution of 2 (1.15 g, 3.21 mmol) in THF-methanol (MeOH) (1:1, 36 mL) and 1 M NaOH
(1.5 mL) was refluxed for 4 h. The mixture was evaporated to dryness, and the residue was dissolved in a
mixture of EtAcO-H2O (1:1, 10 mL). The aqueous phase was acidified to pH 5, and the organic phase was
separated. The aqueous phase extracted with EtAcO, and the organic phase combined was dried over MgSO4,
filtered, and evaporated to dryness to obtain 3 (0.85 g, 80%). 1H-NMR (400 MHz, DMSO-D6) d 8.24 (t, J = 2.1 Hz,
1H), 7.65 (dt, J = 8.9, 2.0 Hz, 1H), 7.38 (dd, J = 8.0, 2.2 Hz, 1H), 7.22 (m, 2H), 6.87 (d, J = 8.9 Hz, 1H), 4.47 (s, 2H),
4.30 (dt, J = 13.1, 3.3 Hz, 2H), 2.80 (td, J = 12.7, 2.6 Hz, 2H), 2.14 (d, J = 7.0 Hz, 2H), 1.90 (m, 1H), 1.70 (m, 2H),
1.12 (m, 2H). 13C-NMR (100 MHz, DMSO-D6) d 174.1, 158.6 (d, JC-F = 243.3 Hz), 158.5, 147.7 (d, J = 4.2 Hz), 139.7
(d, JC-F = 3.3 Hz), 138. 1 (d, JC-F = 3.2 Hz), 128.3 (d, JC-F = 3.6 Hz), 127.2 (d, JC-F = 8.2 Hz), 125.6 (d, JC-F = 13.8 Hz),
119.8, 116.2 (d, JC-F = 22.9 Hz), 107.1, 62.7, 60.3, 45.2, 41.2, 33.3, 31.5. HPLC 1.35 min (96%) (H2O/CH3CN from
15/85 to 95/5 in 10-min flowrate of 1 mL/min). MS (ES1)m/z 345.4 (M1 1)1. Anal. for C19H21FN2O3 (C, H, N): C,
66.27; H, 6.15; N, 8.13. Found: C, 66.31; H, 6.05; N, 8.19.

FabHi docking studies. Docking studies were performed with the AutoDock 4.2 (91) and AutoDock
Vina (92) programs using the atomic coordinates of NTHi RdKW20 protein (FabHRdKW20; Protein Data
Bank entry 3IL3) as receptor and FabHi as ligand. In detail, the protein was considered rigid and the
ligand flexible. FabHi structure was carefully built using the PyMOL visualizer (PyMOL Molecular
Graphics System, version 1.5.0.4; Schrödinger, LLC) from the atomic coordinates of ligand cocrystallized
with E. coli FabH in PDB entry 5BNR (compound 23 in reference 38), which lacks only the methylene unit
of the FabHi carboxylic moiety, followed by molecule optimization and energy minimization using the
PRODRG2 server (93). Ligand and protein files were edited and prepared with the AutoDockTools 1.5.6
program (91) after substituting dicysteine derivative at position 112 in FabHRdKW20 structure by cysteine
using PyMOL. Polar hydrogens and Kollman charges were added to FabHRdKW20 structure. Gasteiger
charges were computed for the ligand, whose active torsion angles were allowed to rotate during dock-
ing. For docking simulations, 200 Lamarckian genetic algorithm simulation runs were performed with 25
million energy evaluations per run. The best docking solutions were selected by clustering within the
default 2.0-Å root mean square deviation value and ranking the largest cluster solutions by the free
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energy AutoDock scoring function. The binding mode with lowest docking energy and best optimized
configuration of catalytic triads was processed by adding hydrogens and minimizing in vacuo by 2,500
cycles of conjugate gradient followed by 500 cycles of steepest descent using the Sander program (94,
95). The minimized solution was selected as the most probable model of the FabHRdKW20-FabHi complex.

Determination of FabHi antimicrobial effects. (i) Dose-dependent FabHi antibacterial effect
under bacterial planktonic or biofilm growth. A 25-mg/mL FabHi stock solution in DMSO was used to
prepare 40-, 200-, 300-, 400-, 500-, 600-, 800-, 1,000-, 1,100-, 1,200-, 1,600-, 2,000-, and 2,400-mg/mL
working solutions in CDM or in sBHI. Fifty-microliter aliquots of sBHI or CDM were transferred to individ-
ual wells. Next, 50 mL of each FabHi working solution was added and mixed and 50 mL was discarded. A
suspension of PVX agar with freshly grown bacteria was generated in sBHI or CDM, adjusted to 0.5
MacFarland (OD600 of 0.063) and diluted 1:100. Next, 50-mL bacterial aliquots were transferred to each
well. A vehicle solution control consisting of a volume of DMSO equivalent to that of the highest FabHi
concentration tested was performed in parallel (indicated as 0 [FabHi] mg/mL). Blank controls (sBHI or
CDM added) were used. Plates were incubated for 24 h at 37°C, 5% CO2, without shaking. Culture sam-
ples were serially diluted and plated on sHTM agar. Data are shown as log CFU/mL; experiments were
performed in duplicate at least three times (n$ 6). Alternatively, FabHi antimicrobial effect was assessed
on H. influenzae biofilm grown in sBHI. For this purpose, assays were set as indicated above, and bacte-
rial growth was determined by measuring OD600 on a SpectraMax 340 microplate reader. The liquid por-
tion in each well (containing planktonic bacteria) was then discarded, and plates were washed 3 times
through gentle submersion in distilled water and allowed to air dry. Next, 150 mL/well 0.5% crystal violet
dissolved in dH2O was added, and plates were incubated for 20 min with gentle shaking at room tem-
perature, followed by plate washing as previously described. Finally, 150 mL/well 95% ethanol (Merck)
was added, plates were incubated for 20 min with gentle shaking at room temperature, and the OD570

was determined as a measure of biofilm growth. The OD570/OD600 ratio for each strain and independent
assay was calculated to normalize biofilm biomass to overall growth; experiments were performed in
triplicate at least three times (n $ 9).

(ii) Antimicrobial synergic effects. A 7-mg/mL FabHi stock solution was used to prepare 300-mg/
mL working solutions in sBHI; 10-mg/mL Amp or Azm stock solutions were used to prepare 4-mg/mL
and 2-mg/mL working solutions in sBHI, respectively. After generating each FabHi-Amp or FabHi-Azm
concentration matrix, each well of a 96-well microtiter plate contained 80 mL final volume. A suspension
of PVX agar and freshly grown bacteria was generated in sBHI, adjusted to OD600 of 0.16, and diluted
1:100, and 20-mL aliquots were transferred to the plate wells. Plates were incubated for 24 h at 37°C, 5%
CO2, without agitation. The fractional inhibitory concentration (FIC) index of each FabHi-Amp or FabHi-
Azm combination was calculated to determine the existence of synergy (RFIC # 0.5), additive (0.5 .
RFIC # 1), indifferent (1 . RFIC , 4), or antagonic (RFIC $ 4) effects. Three independent assays were
performed (n = 3).

(iii) Serial passage experiments with FabHi. A 14-mg/mL FabHi stock solution was used to prepare
550-, 1,100-, and 2,200-mg/mL working solutions in sBHI. A vehicle solution control (indicated as V) con-
sisting of a volume of DMSO equivalent to that of the highest FabHi concentration tested was per-
formed in parallel. Blank controls (sBHI) were used; 50 mL sBHI was transferred to individual wells and
mixed with 50 mL of each FabHi working or vehicle control solution, and 50 mL was discarded. A suspen-
sion of PVX agar and freshly grown bacteria was generated in sBHI, adjusted to 0.5 MacFarland, and
diluted 1:100. Next, 50-mL bacterial aliquots were added to individual wells. Plates were incubated for 24
h at 37°C, 5% CO2, without shaking. Cultures were then passaged (50 mL in 50 mL fresh sBHI with FabHi
or vehicle solution) every day for 12 days. At each time point throughout the cycling, each well’s absorb-
ance (OD600 at 24 h minus OD600 at 0 h) was measured. Nine replicates per condition were made (n = 9).

Bacteria gene expression analyses. Two to three colonies of bacterial strains grown on PVX agar
were inoculated in 10 mL CDM or sBHI, grown for 11 h, diluted into 25 mL fresh CDM or sBHI to OD600 of
0.07, and grown to half of each strain’s maximal OD600 for ;5 h. Bacterial total RNA was isolated using
TRIzol reagent (Invitrogen) and total RNA quality evaluated using RNA 6000 Nano LabChips (Agilent
2100 Bioanalyzer, Santa Clara, CA). Reverse transcription (RT) was performed using 1 mg RNA by
PrimerScript RT reagent kit (TaKaRa). To amplify fabH, 1:10 diluted cDNA was used as the template
(including gyrA endogenous control). In all cases, 20-mL reaction mixtures containing 1� SYBR Premix Ex
Taq II (Tli RNaseH Plus) (TaKaRa) and the adequate primer mix were used. Fluorescence was analyzed
with an AriaMx real-time PCR system (Agilent Technologies). The comparative threshold cycle (CT)
method was used to obtain relative quantities of mRNA that were normalized using gyrA as an endoge-
nous control. The fabH gene was amplified with primers fabH-F and fabH-R in all cases except for the
P851 and P642 strains, where fabH-P851-P642-F and fabH-P851-P642-R primers were used (Table S2).
Samples were grown in triplicate and processed with technical triplicates (n = 3).

Infection of cultured cells. A549 cells were maintained as described previously (48) and seeded on
24-well tissue culture plates to 1.5 � 105 cells/well for 32 h. To assess FabHi cytotoxicity, a 35-mg/mL
FabHi stock solution was diluted in serum-starved RPMI 1640 (Sigma-Aldrich) to 125, 275, and 500 mg/
mL (1 mL/well), cells were incubated for 16 h at 37°C, 5% CO2, and cytotoxicity was determined by meas-
uring the release of lactate dehydrogenase (CytoTox 96; Promega) and microscopy. To assess the effect
of FabHi during epithelial infection by NTHi, cells were maintained and seeded as indicated above and
treated with FabHi in serum-starved RPMI 1640 for 16 h before infection. For infection, PBS-normalized
bacterial suspensions (OD600 of 1) were prepared by using NTHi grown on PVX agar. Adhesion and inva-
sion assays were performed as previously described (47, 48). Controls (indicated as V in the figures) were
performed by using a DMSO volume corresponding to that of the highest FabHi concentration tested.
After infection, wells were washed and cells lysed as previously described (48). Lysates were serially
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diluted in PBS and plated on sHTM agar for bacterial counts. Results are expressed as number of CFU/
well. Experiments were performed in triplicate on at least three independent occasions (n = 9).

NTHi adult zebrafish infection. Animal experiments conducted at the Ikan Biotech (https://www
.ikanbiotech.com) animal housing facility were performed as previously described (58), according to the
approval of the Universidad de Navarra (UNAV) Ethics Committee for Animal Experimentation (protocol
107-19). To determine the maximum tolerated dose of FabHi in adult zebrafish, a toxicity assay was first
performed in zebrafish embryos by following the guideline OECD TG236 (96) (Fig. S6B). Afterwards, 6-
month-old zebrafish 0.30 6 0.08 g in weight were randomly divided into 2 infected and 2 uninfected
groups (n = 10/group). Infected groups were intraperitoneally injected with 10 mL of an exponentially
grown (OD600 of 0.3) H. influenzae suspension containing 7 � 1010 CFU/mL (7 � 108 CFU/zebrafish) pre-
pared in PBS. At 1 hpi, one infected and one uninfected group were intraperitoneally administered
FabHi at a dose of 4 mg/zebrafish in 10 mL PBS by using a 35 mg/mL FabHi stock solution; the other two
groups were administered PBS or vehicle solution. The survival rate for each group was monitored three
times per day for 4 days after infection. Experiments were performed on three independent occasions.

Statistical analyses. In all cases, a P value of ,0.05 was considered statistically significant. Statistical
analyses were performed using Prism software, version 7, for Mac (GraphPad Software, San Diego, CA,
USA), and are detailed in each figure legend.
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