
entropy

Article

Increase in Axial Compressibility in a Spinning Van der
Waals Gas

Yun Liu 1 , Hao Liu 1,* , Zhen-Guo Fu 2 and Weimin Zhou 3

����������
�������

Citation: Liu, Y.; Liu, H.; Fu, Z.-G.;

Zhou, W. Increase in Axial

Compressibility in a Spinning Van

der Waals Gas. Entropy 2021, 23, 137.

https://doi.org/10.3390/e23020137

Received: 22 December 2020

Accepted: 20 January 2021

Published: 22 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082,
China; yunliu@hnu.edu.cn

2 Dengjiaxian Innovation Research Center, Institute of Applied Physics and Computational Mathematics,
Beijing 100088, China; fu_zhenguo@iapcm.ac.cn

3 Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of
Engineering Physics, Mianyang 621900, China; zhouwm@caep.cn

* Correspondence: haoliu@hnu.edu.cn

Abstract: We investigated the adiabatic compression along the axial direction of a spinning Van der
Waals gas by applying theoretical analysis and molecular dynamics (MD) simulations. Based on the
analytical results, the rotation-induced compressibility increase effect is significant in a Van der Waals
gas, while the attraction term in the Van der Waals equation of states (EOS) contributes significantly
to the compressibility increase in a spinning system. We conducted MD simulations to the axial
compression of a spinning gas, whose state is far from the ideal gas state, and further demonstrated
that the rotation-induced compressibility increase effect in a dense state is robust, implying that such
a phenomenon can be detected in experiments under high-energy-density conditions.

Keywords: axial compressibility; equation of states; Van der Waals gas; molecular dynamics

1. Introduction

High compression of matter is a fundamental subject in the fields of inertial confine-
ment fusion (ICF) [1–4], high-energy-density physics [5,6], and laboratory astrophysics [7],
including accretion disks or compact stars [8]. The investigation of the compressibility of
a spinning gas may particularly be promising significant in the research in related fields,
especially in areas such as the design of Z-pinch experiments [9,10], and the applications of
devices to improve the efficiency of engines while reducing pollutants [11,12].

Geyko and Fisch [13] conducted a theoretical study around the axial adiabatic com-
pression of an ideal spinning gas, demonstrating that part of the external pdV work used
to compress the gas converts into the rotational kinetic energy Er of the system during the
compression, resulting in lower temperature T and axial pressure p and a softer spinning
gas to be compressed.

The ideal gas model is a highly simplified model where interactions between gas
molecules are ignored. This raises the question of whether the unusual compressive feature
derived from the ideal gas can still be suitable for a nonideal gas. In our previous theoretical
work [14], we examined the axial compressibility of a spinning gas using a simple virial
equation of states (EOS) and showed that the effect of rotation-induced compressibility
increase exists in a spinning nonideal gas with a virial EOS. However, the virial form of EOS
can only simply consider the repulsive interactions between gas molecules. In comparison,
the Van der Waals EOS includes the modification to the ideal-gas EOS by the repulsive and
attractive interactions of gas molecules, so it can better reflect the compressive feature of real
gases in a spinning system. Furthermore, as the compression ratio of gas further increases,
all the simple theoretical form of EOS will become invalid. The molecular dynamics
simulation method can provide an accurate description of the compression process under
the conditions far from the ideal gas. Therefore, in order to explore whether the real gas

Entropy 2021, 23, 137. https://doi.org/10.3390/e23020137 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-9975-1880
https://orcid.org/0000-0002-7405-1578
https://orcid.org/0000-0002-2448-5562
https://doi.org/10.3390/e23020137
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23020137
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/23/2/137?type=check_update&version=4


Entropy 2021, 23, 137 2 of 12

can have the similar compressive properties in a spinning system, we concentrate on the
axial adiabatic compression of a spinning Van der Waals gas with the aid of theoretical
analysis and numerical molecule dynamics simulation methods.

To keep the conditions consistent with the previous theoretical work, we consider
Geyko’s assumptions for the gas compression: (i) the length L of the cylinder is much
larger than the radius R of the cylinder so that the end effect (the influence caused by the
end surface of the cylinder) can be ignored; (ii) the cylindrical side surface (r = R) is
smooth and frictionless; (iii) the compression process is quasi-static; and (iv) the gas is in a
thermodynamic equilibrium state throughout the compression process.

A dimensionless equation of the density distribution is derived based on the EOS of
a Van der Waals gas, as well as the mechanical equilibrium condition. Here, the density
distribution form of the Van der Waals gas is represented by three dimensionless param-
eters that correspond to the intensity of the rotation, repulsive effect (volume effect) of
the gas molecules, and attraction between the molecules. We show the influence of each
dimensionless parameter on the compressive features of the gas by comparing the varia-
tions of the thermodynamic quantities of the system during compression, under different
combinations of the initial dimensionless parameters.

Compared with the theoretical method, the molecular dynamics (MD) simulation
method can more accurately describe the behaviors of real gases from the perspective of
microscopic particle dynamics [15]. Thus, we simulate the axial adiabatic compression of
gases with different initial states using the MD method and show that the spinning gas,
far from the ideal gas state, would still exhibit an obvious compressibility increase effect,
verifying the robustness of this effect in nonideal gases.

The rest of the article is divided into three sections. In Section 2, we present the
theoretical analysis based on the EOS of the Van der Waals gas and discuss the numerical
results. The details and results of the MD simulation are provided in Section 3. In Section 4,
we outline the main conclusions and a short summary of the findings. The definitions of
all parameters and their expressions can be found in Table A1 of the Appendix A.

2. Theoretical Analysis

The EOS of a Van der Waals gas is represented by(
p + an2)(1− bn) = nkBT, (1)

where p, n, and T denote the pressure, number density, and temperature of the gas; kB
is the Boltzmann constant; and parameters a and b correspond to the magnitude of the
weak attraction between particles and modification of the molecular volume (thus, b has
the dimension of a volume), respectively. In this study, we assume that the values of a and
b are constant and do not change with the compression.

Considering the distribution of n in a spinning gas:

dp =

{
kBT

[
1

1−bn + bn
(1−bn)2

]
− 2an

}
dn, (2)

this uses the isothermal approximation. The balance between the centrifugal force dF and
dp leads to: {

kBT
[

1
1−bn + bn

(1−bn)2

]
− 2an

}
dn
n = mw2rdr, (3)

where m is the mass of one gas molecule, ω is the angular speed, and r is the radius from
the axis of the cylinder. Integration of Equation (3) yields:

kBT
[
ln n

n0
− ln 1−bn

1−bn0
+ 1

1−bn −
1

1−bn0

]
− 2a(n− n0) = 1

2 mw2r2, (4)
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where n0 is the number density at r = 0. We introduce the dimensionless parameters α, ξ,
and ϕ to Equation (4) to obtain a dimensionless expression:

ln ñ
ñ0
− ln 1−ξñ

1−ξñ0
+ 1

1−ξñ −
1

1−ξñ0
− α(ñ− ñ0) = ϕr̃2, (5)

where
n = N

V = N
pR2L ,

ñ = n
n ,

r̃ = r
R ,

α = 2an
kBT ,

ξ = bn,

ϕ = mw2R2

2kBT .

(6)

Here, we define N as the total number of particles in the cylinder with volume V,
radius R, and height L. Accordingly, n is the mean number density of the system, and {ñ,
r̃, α, ξ, ϕ} is a set of dimensionless parameters denoting, respectively, the number density,
cylindrical radius, ratio of the mutual attraction of potential and thermal energies between
the gas particles, effect of particle volume (repulsion between the particles), and ratio of
the spinning kinetic energy to the thermal energy. We can determine the value of n0 in
Equation (5) using the equation of the normalized condition:∫ 1

0 2ñ(r̃)̃rdr̃ = 1, (7)

this can be applied to Equation (5) to find the distribution of ñ(r̃). Meanwhile, the dimen-
sionless pressure is given by

p̃ = p
nkBT = ñ

1−ξñ −
αñ2

2 , (8)

whereas the average pressure on the two end surfaces of the cylinder (axial pressure) can
be calculated using the equation:

p = nkBT
∫ 1

0 p̃(r̃)2r̃dr̃. (9)

To ensure that the Van der Waals model can work in the calculations of ñ(r̃), limiting
the range of the dimensionless parameters α and ξ is necessary. Firstly, the value of ξ must
not exceed 1; the pressure diverges as ξ approaches 1 and the EOS of a Van der Waals gas
is invalid when ξ > 1. Secondly, α/ξ < 27/4 should be satisfied during the calculations to
ensure the monotonic relationship between the pressure and the number density. When
α/ξ is too large, the system becomes dominated by the attraction term between the particles
and undergoes a phase transition from a gaseous to condensed state, which is beyond the
scope of the model of the Van der Waals EOS.

Now, we consider a continuous, adiabatic, axial compression process of the gas in the
cylinder. All parameters of the system, such as n, T, and ω, will change accordingly when
L is decreased. The relationship between n and L is determined by Equation (6), while T
and ω vary with L according to the conservation equations of angular momentum and
energy. By decomposing the continuous compression process by steps, we can calculate
the value of the compression in the spinning gas using these numerical methods.

Suppose that, in a tiny compression, the height of the cylinder changes from L to L′

and the values of the system parameters n, T, and ω to n′, T′, and ω′, respectively, the
angular momentum of the spinning gas is given by:

M = mL
∫ R

0
2πrdrn(r)ωr2 = 2πmLR4ωn

∫ 1

0
ñ(r̃)r̃3dr̃ = 2mR2ωN

∫ 1
0 ñ(r̃)r̃3dr̃. (10)
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The conservation of angular momentum of the system requires that the angular
momentum before and after the tiny compression M’ to be equal:

2mR2ωN
∫ 1

0
ñ(r̃)r̃3dr̃ = 2mR2ω′N

∫ 1

0
ñ′(r̃)r̃3dr̃. (11)

The internal energy U could be represented as a function U(T, V). Choosing T and V
as the basic state parameters, we can express the full differential of U as:

dU =

(
∂U
∂T

)
V

dT +

(
∂U
∂V

)
T

dV, (12)

where the form (∂U/∂T)V = CV, which represents the isometric heat capacity of the gas
and could be substituted into the above equation. Meanwhile, the relationship between p
and the Helmholtz free energy F is given by

− p =

(
∂F
∂V

)
T
=

(
∂(U − TS)

∂V

)
T
=

(
∂U
∂V

)
T
− T

(
∂S
∂V

)
T

. (13)

Substituting the Maxwell relation
(

∂S
∂T

)
T
=
(

∂p
∂T

)
V

into Equation (13), we have:

(
∂U
∂V

)
T
= T

(
∂p
∂T

)
V
− p. (14)

Furthermore, substituting Equations (1) and (14) into (12) yields the expression of dU
for a Van der Waals gas:

dU = CVdT + aNdn. (15)

Assuming that CV = 3/2NkB for a Van der Waals gas is the same as that of an ideal
gas, we can integrate Equation (15) to re-express the internal energy U as:

U =
3
2

NkBT + aNn (16)

where the first and second terms correspond to the thermal energy Et and potential energy
Ep, respectively. Considering the density distribution in the spinning gas, the total potential
energy is an integral expression:

Ep =
∫ R

0
an2L2πrdr = 2aNn

∫ 1

0
ñ2r̃dr̃. (17)

Energy conserved during the compression is given by pdV = dE. Moreover, we can
approximate the whole pdV work during a tiny axial compression of the spinning gas by
applying the trapezoidal integral:

pdV ≈
(

p + p′
)
(V −V′)
2

, (18)

where p, V and p′, V’ represent the axial pressures and volumes before and after the tiny
compression, respectively. Three energies contribute to the total change in the system
energy dE, whereas the conservation of energy during the compression is represented by:(

p + p′
)
(V −V′)
2

= ∆Et + ∆Ep + ∆Er, (19)
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where ∆Et, ∆Ep, and ∆Er correspond to the change in the thermal, potential, and rotational
energies of the system during the tiny compression, respectively, which can be calculated
individually using the formulas:

∆Et =
3
2

NkB
(
T′ − T

)
, (20)

∆Ep = 2aN
(

n′
∫ 1

0
ñ′2r̃dr̃− n

∫ 1

0
ñ2r̃dr̃

)
, (21)

∆Er =
1
2

M′ω′ − 1
2

Mω. (22)

Accordingly, we can find the value of T′ and ω′ after the tiny compression by solving
the simultaneous equations of angular momentum (Equation (11)) and energy conservation
(Equation (19)) using an iterative algorithm, as well as the distribution of n(r) and axial
pressure. Decomposing the continuous axial compression into a series of tiny compressions,
we can generate a variation of the various physical quantities involved in the process
through numerical calculations.

Here, we use the axial pressure ratio pr/ps, where pr and ps are the axial pressure of
the spinning system and static system during the compression with the same initial T and
n, respectively, to qualitatively measure the increase in axial compressibility caused by the
rotation of the gas. When pr/ps < 1, the axial compressibility of the spinning gas is larger
than that of the static gas at the same compression ratio. Figure 1 illustrates the variation of
pr/ps during an adiabatic axial compression with different initial α0, ξ0, and ϕ0.

Figure 1. Variation of the pressure ratio of pr to ps during an adiabatic compression for a Van der
Waals gas system with different initial ξ0 and α0. η = n/n0 is the compression ratio. The red and
blue dash line correspond to the results with α0/ξ0 = 0.05 (weak attraction). The red and blue dots
correspond to the result with α0/ξ0 = 5 (strong attraction).

For all the curves listed in Figure 1, an axial pressure ratio of less than 1 can be achieved
when the compression ratio η (η = n/n0) is not too large. Moreover, it reaches about 0.6
at a large compression ratio, indicating that the effect of rotation-induced compressibility
increase is very significant in our cases. In the case with ξ0 = 0.01 and α0/ξ0 = 0.05,
the initial axial pressure ratio is greater than 1, implying that the rotation of the system
increases the difficulty in axially compressing the gas in the initial situation. Nevertheless,
this situation is reversed as η increases during a continuous compression. Figure 1 also
suggests that a faster rotation speed (a larger value of ϕ0) leads to smaller pr/ps at the
maximum compression ratio; thus, the rotation-induced compressibility increase becomes
more significant as the system spins faster. The spinning gas becomes more compressible
than static gas along the axis direction mainly because that part of the external pdV work
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is converted into Er during the axial compression, which slows down the temperature rise
of the spinning gas as compared to that of the static gas, as shown in Figure 2.

Figure 2. Variation of the temperature ratio of T to T0 during an adiabatic compression of a Van der
Waals gas system with different initial ξ0 and α0. T0 is the initial temperature. The red and blue dash
line correspond to the results with α0/ξ0 = 0.05 (weak attraction). The red and blue dots correspond
to the result with α0/ξ0 = 5 (strong attraction).

Because the parameter α represents the attraction between the gas molecules, which
is beneficial to the compression of the gas for both the spinning and static systems, it is
evident in Figure 1 that a larger initial value of α0 leads to a smaller pr/ps at the maximum
compression ratio, indicating that the attraction term in Van der Waals EOS can be more
conducive to improving the axial compressibility of the gas in the spinning system. As
illustrated in Figure 2, the curves of the temperatures with a larger α rise more slowly than
those with a smaller α, which is consistent with the behavior of the axial pressure ratio.
The attraction term in Van der Waals EOS is an2; thus, the average attraction strength in
a system with a nonuniform density distribution will be greater than that in a uniform
system given the same average density. Additionally, it can explain the greater contribution
of the attraction term in a spinning gas to the increase in the axial compressibility, because
the rotation of the gas leads to a large degree of nonuniformity of density in radius.

3. Molecular Dynamics Simulations

The compressibility of gases is a common concern in high-energy-density physics,
especially in the compression characteristics of gases (plasmas) under high-density con-
ditions. As mentioned in the previous section, there are restrictions on the parameter
range applicable to the Van der Waals EOS, which make this theoretical model inapplicable
to understand the axial compressibility under high-density conditions. On the contrary,
these parameter restrictions do not apply to MD methods, where more detailed dynamic
processes in the gas compression can be considered. Thus, we employed the MD method
to investigate the axial compression of a spinning Van der Waals gas and to further verify
the robustness of the effect of rotation-induced compressibility increase in a system close to
a real gas. Particularly, we applied the MD method, under the code LAMMPS [16], to simu-
late the axial compression of a spinning helium gas in a cylinder. The interaction potential
between atoms utilized is the well-known Lennard–Jones (LJ) potential (LJ126 form):

V(r) = ε

[(σ

r

)12
−
(σ

r

)6
]

, (23)
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where ε/kB = 10.2 K and σ = 2.28 Å [17].
To avoid the end effect and to satisfy the requirements of assumption (i) given earlier,

we set a periodic boundary condition along the axis of rotation. Moreover, the interaction
between the atoms and the sidewall of the cylinder was a short-range LJ potential to confine
the atoms within the cylinder and to ensure that no friction would be applied on the atoms
and the angular momentum of the system could be conserved.

We simulated the compression of the spinning gases in two different initial states to
show the difference in the gas behavior near and away from an ideal gas state, which we
will refer to as cases I and II. In case I, the initial mean number density was set to n0 = 2.6875
× 1025 m−3, corresponding to a molar volume of 22.4 L under the standard state; initial
temperature to T0 = 300 K; and mass of the helium atom at m = 4 g/mol. Moreover, the
cylinder had infinite length due to the boundary conditions. The height of the simulation
cell was 1000 Å and contained 84,000 atoms. In case II, the initial mean mass density was
set to ρ = 0.125 g/cm3 (corresponding to n0 = 7.525 × 1028 m−3), which is equal to the
density of liquid helium, while the initial temperature was still T0 = 300 K to ensure that
the system was in a dense gas state. However, the cylinder had a radius R = 100 Å and a
height L0 = 200 Å and contained 120,000 atoms. In both cases, the maximum compression
ratio was η = 10.

Here, we introduce the coupling factor Γ = Ep/Et to describe how far the gas deviates
from the ideal gas. The value of Γ0 and Γf, corresponding to the coupling factors of the
system before and after compression, respectively, are shown in Table 1. Note that during
the entire compression process of case I, Γ is very small, implying that the gas could be
approximated as an ideal gas. In case II, however, the value of Γ varies greatly during the
compression process, approaching 1 after compression, indicating that the potential energy
of the interaction between the helium atoms is comparable to the kinetic energy of the
thermal motion; thus, the gas is far from the ideal gas state.

Table 1. Parameters of the molecular dynamics (MD) simulations during the compression. Γ = Ep/Et

is the coupling parameter of the gas, with Γ0 and Γf corresponding to the coupling parameters of
the initial and final state. Similarly, γp, γr and γt are the proportion of the changes in the potential
energy ∆Ep, rotational energy ∆Er and thermal energy ∆Et, respectively, and correspond to the total
pdV work during the whole compression.

ϕ0 Γ0 Γf
γp γr γt

(%) (%) (%)

Case I

0 1.58 × 10−5 3.29 × 10−4 0.04 0 99.96
5 1.31 ×10−5 3.96 × 10−4 0.04 18.33 81.63
10 6.15 × 10−5 7.13 × 10−4 0.07 31.76 68.13
15 1.21 × 10−5 1.11 × 10−4 0.11 35.68 64.20

Case II

0 0.0112 0.750 44.74 0 55.26
5 0.0283 0.823 45.17 4.82 50.01
10 0.0219 0.927 42.66 16.34 40.99
15 0.0996 1.012 39.05 27.12 33.83

The results of theoretical analysis suggest that ϕ = mω2R2/2kBT is an important
dimensionless parameter reflecting the spinning effect. To verify this, we conducted a
series of simulations with different initial values of ϕ0, with ϕ = 0 as a reference case.

Note that the density of the rotating system is not uniform under thermodynamic
equilibrium. When a rotational angular velocity is applied to a static system in a thermo-
dynamic equilibrium state, the atoms in the system will move outward under the action
of a centrifugal force, causing the rise in the system temperature. Assuming that the
temperature of the stationary system is T0, the temperature rises to T1 after the work of
the centrifugal force reaches the thermodynamic equilibrium again. From a more com-
prehensive perspective, if we want to show that the compressibility of the gas is reduced
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after it has entered the rotating state, we can opt to compare the difference between the
static system of T0 and the rotating system of T1 in the compression process as a more
reasonable solution than considering two systems with the same initial temperature. To
maintain the same conditions as the previous work [8], we temporarily ignored the effect
of the gas entering the rotating state process.

As the temperature of the system increased from the static to the rotating state, we
needed to ensure that the system was balanced at the set temperature (300 K) after entering
the rotating state in simulations. Thus, we followed this procedure in the simulations.

First, we applied an equivalent centrifugal external field
→
F r = mω2→r to all atoms in the

stationary system and used a nose-hoover heat bath [18] to allow the system to achieve
equilibrium at 300 K under the centrifugal external field. Next, we removed the centrifugal
external field and added a velocity component

→
v =

→
ω ×→r to the velocity component of

each molecule to achieve the transition from a system under an equivalent centrifugal
external field to a real spinning system, as illustrated in Figure 3. Because the radial density
distribution of the spinning system is the same as that under an equivalent centrifugal
external field, this transition process does not cause a change in temperature.

1 

 

 

Figure 3. Schematic of MD simulations. (a) Initial lattice configuration of the atoms. (b) The
thermodynamic equilibrium state under centrifugal external field. (c) The state-of-rotation equivalent
to the centrifugal external field. (d) The state after a continuous compression.

As shown in Figure 4, the value of Γ in case I was very small; thus, the variation of
pressure in the spinning system during the continuous compression process was similar
to that of the ideal gas. A comparison of the curves would clarify that the value of pr/ps
in the MD simulations was lower than in the ideal gas, implying that the compressibility
increase caused by rotation in the simulations was even larger than that of an ideal gas,
especially for the cases with ϕ0 = 10 and ϕ0 = 15. This phenomenon could be attributed to
the attraction term in the LJ potential.

Figure 5 shows a comparison of the variation of temperature of the MD simulations
during the compression with different initial values of ϕ0 in case I and that of the ideal gas
model. For the static system (ϕ0 = 0), the temperature of MD system rose faster than that of
the ideal gas system, suggesting that a larger proportion of the pdV work used to overcome
the virial pressure pv during the compression has been converted into the thermal energy
Et. By contrast, the temperature rises in the MD simulations for the cases with ϕ0 = 10
and ϕ0 = 15 was less than that of the ideal gas model. As a result, the value of ps in the
static system, used as a reference value in Figure 4, was larger in the MD simulations than
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in the stationary ideal gas, whereas pr/ps in the simulations were lower than in the ideal
gas system.

Figure 4. Variation of the pressure ratio pr to ps during an adiabatic compression with different
initial ϕ0 in the MD simulations. η = n/n0 is the compression ratio. The red, blue, and green dash
line correspond to the results in ideal gas. The red, blue, and green dots correspond to the result
obtained with MD simulations.

Figure 5. Variation of the temperature ratio T to T0 during an adiabatic compression with different
initial ϕ0 in the MD simulations. T0 is the initial temperature. The red, blue, and green dash line
correspond to the results in ideal gas. The red, blue, and green dots correspond to the result obtained
with MD simulations.

As also depicted in Figure 4, the initial pressure increase caused by the rotation was
very obvious in case II. Here, a larger value of ϕ0 corresponded with a larger initial pressure
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ratio pr/ps. Moreover, as the value of η increased, the pr/ps of the systems with a larger
ϕ0 decreased at a faster rate and eventually exceeded those for the systems with a smaller
ϕ0 , which resulted in a smaller pr/ps similar to that for the virial gas model [9].

The variation of temperature in case II is shown in Figure 5. Larger values of the initial
ϕ0 resulted in a slower temperature rise during the compression, similar to other cases
mentioned in this work, except that the proportion of the system temperature increase T/T0
during compression was much higher. As η reached 10, T/T0 was lower than 5 for the
stationary ideal gas, whereas it was larger than 10 in case II with ϕ0 = 0 and ϕ0 = 5, mainly
because a large part of the pdV work overcoming the virial pressure during compression
was converted to Et for the gas systems having Ep comparable to Et, which accelerated
the increase in the temperature during compression. Generally speaking, the potential
energy of the system showed a very strong nonlinear relationship with the thermodynamic
parameters of the system, which entails that the presence of potential energy in nonideal
gases will lead to unpredictable behavior of the system during compression.

The energy conversion relationship during the entire compression process is shown in
Table 1. Note that, as the value of ϕ0 increased, the proportion of the pdV work converted
to the rotational energy γr increased incrementally, whereas the proportion converted to
thermal energy γt decreased incrementally, making the compressibility reduction caused
by rotation more pronounced. Moreover, the proportion of the pdV work converted to
potential energy γp did not change much with the change of ϕ0 for both cases I and II.

4. Summary

We applied the theoretical analysis and MD methods to investigate the axial compres-
sion of a spinning Van der Waals gas in a smooth cylinder. Based on the analytical results
and MD calculations, the Van der Waals gas exhibited a rotation-induced compressibility
increase effect during a continuous axial compression; the primary reason is that the tem-
perature of the spinning gas rising more slowly than that of the stationary gas. We also
found that the attraction term in the Van der Waals EOS had a significant contribution to
the axial compressibility increase in the spinning system. Moreover, our MD simulations
for a spinning gas with a large coupling factor Γ showed that the increase effect of the
rotation-induced compressibility remained significant even when the gas state was far
from the ideal gas state, which further illustrates the robustness of this effect. The robust-
ness of this effect indicates that it is likely to be observed in experiments. Furthermore,
this effect can be applied in many fields where high compression of gas or plasmas is
required, such as Z-pinch experiments. The facility of Z-pinch experiments is a cylinder.
The increase in compressibility is helpful to achieve the experimental goal of compressing
high-temperature plasma to an extremely high density and areal density.

In the theoretical analysis and simulation of this work, the assumptions adopted are
difficult to realize under a real compression of real gas. The effects of non-equilibrium
dynamics during a non-quasi-static compression, wall friction and non-adiabatic process
on the experimental results should be taken into consideration in further investigations.
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Appendix A

Table A1. The list of definitions and expressions of all parameters.

Parameter Definition Expression

p pressure

n the number density

T temperature

kB Boltzmann constant

a coefficient of the weak attraction term in Van
der Waals EOS

b coefficient of the molecular volume
modification in Van der Waals EOS

m mass of a gas molecule

ω the angular speed

r the dimensionless radius

N the total number of particles

n the mean number density N
pR2 L

ñ the dimensionless number density n
n

r̃ the cylindrical radius r
R

α
the dimensionless parameter describing the

ratio of the attractive interaction energy to the
thermal energy of the system

2añ
kBT

ξ
the dimensionless parameter describing the

strength of molecular repulsion potential bn

ϕ
the dimensionless parameter describing the

ratio of the spinning kinetic energy to the
thermal energy

mω2R2

2kBT

V the volume of the cylinder

R the radius of the cylinder

L the height of the cylinder

M the angular momentum

U the internal energy

CV the isometric heat capacity
(

∂U
∂T

)
V

∆Et the change in the thermal energy

∆Ep the change in the potential energy

∆Er the change in the rotational energy

pr the axial pressures of the spinning system

ps the axial pressures of static system

n0 the initial mean number density

η the compression ratio n
n0
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