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Because of recent advances in computing technology and the availability of large
datasets, deep learning has risen to the forefront of artificial intelligence, with perfor-
mances that often equal, or sometimes even exceed, those of human subjects on a
variety of tasks, especially those related to image classification and pattern recogni-
tion. As one of the medical fields that is highly dependent on ancillary imaging tests,
ophthalmology has been in a prime position to witness the application of deep learn-
ing algorithms that can help analyze the vast amount of data coming from those tests.
In particular, glaucoma stands as one of the conditions where application of deep learn-
ing algorithms could potentially lead to better use of the vast amount of information
coming from structural and functional tests evaluating the optic nerve andmacula. The
purpose of this article is to critically review recent applications of deep learning models
in glaucoma, discussing their advantages but also focusing on the challenges inherent
to the development of such models for screening, diagnosis and detection of progres-
sion. After a brief general overview of deep learning and how it compares to traditional
machine learning classifiers, we discuss issues related to the training and validation of
deep learning models and how they specifically apply to glaucoma. We then discuss
specific scenarios where deep learning has been proposed for use in glaucoma, such as
screeningwith fundus photography, and diagnosis and detection of glaucoma progres-
sion with optical coherence tomography and standard automated perimetry.

Translational Relevance: Deep learning algorithms have the potential to significantly
improve diagnostic capabilities in glaucoma, but their application in clinical practice
requires careful validation, with consideration of the target population, the reference
standards used to build the models, and potential sources of bias.

Introduction

Despite the availability of effective treatments,
glaucoma remains the leading cause of irreversible
blindness worldwide.1 Current projections estimate
that 111.8 million people will have glaucoma by the
year 2040, with people in Asia and Africa dispro-
portionately affected.1 Early detection and interven-
tion can help prevent vision loss from glaucoma,
but a majority of patients do not know they have
the disease2,3 because it is generally asymptomatic in
early stages.4–6 Thus early detection of glaucoma is
important and may be improved by introducing novel
approaches for screening, diagnosis, and detection of
change over time.

Recent progress in artificial intelligence (AI) and
the collation of large medical datasets have spurred
great interest in the development of deep learning
algorithms that would more quickly and accurately
identify glaucomatous damage on diagnostic tests
compared to subjective evaluation and other tradi-
tional methods.7–10 The purpose of this article is to
critically review recent applications of deep learning
models in glaucoma, discussing their advantages but
also focusing on the challenges inherent to the devel-
opment of such models for screening, diagnosis and
detection of progression. After a brief general overview
of deep learning and how it compares to traditional
machine learning classifiers, we discuss issues related
to the training and validation of deep learning models
and how they specifically apply to glaucoma. We then

Copyright 2020 The Authors
tvst.arvojournals.org | ISSN: 2164-2591 1

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

mailto:felipe.medeiros@duke.edu
https://doi.org/10.1167/tvst.9.2.42
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deep Learning for Detection of Glaucoma TVST | Special Issue | Vol. 9 | No. 2 | Article 42 | 2

Figure 1. A diagram showing the organization of the classification
of machine learning algorithms.

discuss specific scenarios where deep learning has
been used in glaucoma, such as screening with fundus
photography and diagnosis and detection of glaucoma
progression with optical coherence tomography (OCT)
and standard automated perimetry (SAP).

Artificial Intelligence, Machine Learning and
Deep Learning

Artificial intelligence (AI) is a branch of computer
science dealing with the simulation of intelligent behav-
ior in computers, but in practice, and particularly in
the popular press, “AI” has been used to describe
any cutting-edge machine capability. Machine learn-
ing is a subset of AI that is concerned with setting
up computer algorithms to recognize patterns in data,
without human programmers having to dictate all
aspects of this recognition.

In its most traditional form, machine learning
algorithms still require human-designed code to trans-
form raw data into input features, as these algorithms
are not particularly good at learning features directly
from raw data. Examples of these more tradi-
tional algorithms include logistic regression, k-Nearest
Neighbor, decision trees, random forests, support
vector machines (SVMs), among others (Fig. 1). The
process of creating these initial features, however,
can be a highly specialized task, requiring substantial
subject-matter expertise, and there is no guarantee that
the human-extracted features are optimal for use by the
classifier. As an example, previous studies have used
SVMs to improve detection of glaucoma damage from
imaging data.11–13 The SVMs used features such as

global and sectoral parameters of retinal nerve fiber
layer (RNFL) thickness, and measurements such as
rim and cup area, cleverly combining them to reach a
final glaucoma classification. However, although satis-
factory performance has been reported for SVMs and
other traditional algorithms in this scenario, there is no
guarantee that the parameters used as initial features
make the best use of the vast information produced
by imaging. In fact, although many of these tradi-
tional machine learning techniques have been applied
to enhance the diagnostic performance of imaging and
perimetry in glaucoma,13–22 they have not been widely
incorporated into clinical practice. It should be noted,
however, that depending on the type of data and appli-
cation, traditional machine learning techniques may
still provide the best solution to a particular problem.

In contrast to the traditional techniques described
above, deep learning belongs to a class of machine
learning algorithms that use “representation learning”
(Fig. 1). These algorithms learn features (or represen-
tations) from data automatically, as long as enough
data are given to them. A primary benefit of deep
learning is that it eases the requirement for subject
matter expertise. Instead of manually trying to curate
relevant features from the data, one can feed the raw
data directly to a deep leaning model, which will then
automatically learn the most relevant features from the
data. These features may be more subtle and compre-
hensive than those that would have been manually
curated. As a trade-off, however, these automatically
learned features may not be as straightforward to
understand or explain, leading to the perception that
deep learning models are a “black-box.”

Deep learning models are a type of artificial
neural network composed of several layers of artifi-
cial “neurons.” These neurons are simple algorithms
inspired by biological brain cells, in the sense that
they receive input from other neurons, perform compu-
tations, and produce an output (Fig. 2). An artifi-
cial neural network is a collection of interconnected
artificial neurons. Data are fed to the network and
processed in some way with the goal of producing a
desired outcome. Neural networks have been known
for decades. Goldbaum et al.22 used them to inter-
pret perimetry results in glaucoma almost 30 years ago.
However, only recently the advances in computational
power have allowed the buildup of networks of several
layers, that is, deep learning networks, which are able to
processmuchmore complex data, resulting in far better
performance compared to the shallow artificial neural
networks.

A type of deep learning network called convolutional
neural network (CNN) has been the main one respon-
sible for the explosion of deep learning applications in
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Figure 2. Schematic representation of “neurons” on an artificial neural network. The input data corresponds to the data one it trying to
classify. The number of neurons in the input layer will depend on the input data (e.g., number of pixels in an image). These input neurons are
then connected to neurons in hidden layers. Theremaybemanyhidden layers, which canbequite complex dependingon the type ofmodel.
For convolutional neural networks, the hidden layers are of the convolutional type, specializing in spatial patterns. Finally, all calculations
will converge to a final model prediction in the output layer.

computer vision, with performance sometimes surpass-
ing that of humans for a variety of tasks. Nowadays,
these networks are ubiquitous in their applications
ranging from face recognition in smartphones to self-
driving cars. CNNs have one or more convolutional
layers, which consist of sets of filters, and are ideally
suited to process spatial patterns and perform tasks
such as image classification and object detection. These
filters can be used to automatically extract features
from images, obviating the need for manual labor in
curating relevant features, a major limitation of tradi-
tional machine learning algorithms, as described above.
As one of the medical fields that is highly depen-
dent on ancillary imaging tests, ophthalmology has
been a prime area to witness the application of CNN
algorithms to help analyze data coming from these
tests.

Training, Validation, and Testing of Deep
Learning Models

Before a deep learning network can be used for
a specific task, it needs to be trained, so that the
specific computations needed at each artificial neuron
(i.e., weights) and their interconnections can be deter-
mined to produce the desired result. In general terms,
this training process involves feeding the network with
data, observing the results, making modifications to
the model, and repeating the process iteratively, until
a desired level of accuracy is achieved.

There are essentially threeways to train a deep learn-
ing algorithm: supervised learning, unsupervised learn-
ing, and semisupervised learning. Supervised learning
entails training of the algorithm with a completely
labeled dataset. For example, if an algorithm is being

purposed to identify glaucoma on fundus photographs,
it can be initially trained by feeding the network with
labeled photos of glaucoma and normal eyes. The
network then “learns” the best features and the combi-
nation of them that will lead to the best discrimination
of a glaucomatous from a normal photo. This learning
process is done by comparing the algorithm’s predic-
tions to the actual labels and readjusting the weights of
the artificial neurons, in a process known as backprop-
agation.23 Numerous studies have been published using
supervised learning algorithms to improve glaucoma
detection.7–9,24–31 Unsupervised learning, on the other
hand, involves training the algorithm with unlabeled
data. The goal is to have the model discover some
hidden underlying structure or pattern in the data,
without being told a priori what the task should be. For
example, one can train a model to identify patterns of
visual field damage in glaucoma with a large unlabeled
set of visual fields from patients with the disease, in
the hope that the model will “learn” the different
patterns in those fields. This approach has previously
been used to classify fields in glaucoma, as well as to
detect progressive change over time.17–19,32–36 Finally,
semisupervised learning uses a combination of the two
approaches, where one has a relatively small set of
labeled data and generally a much larger amount of
unlabeled data. The labeled dataset is used to obtain a
reasonable initial model, which is then used to perform
predictions on the unlabeled dataset. Such new predic-
tions can then be used to retrain the model and the
process is repeated until a final satisfactory model
is obtained. This situation can occur, for example,
when the process of data labeling is time-consuming
or expensive. Application of semisupervised models
in glaucoma has been rare,37 but this is a promising
approach that deserves more investigation.
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The process of training requires the investigator to
have an amount of data that will be used to train
the model and a separate dataset that will be used to
check the model’s predictions (i.e, validation). If the
predictions are unsatisfactory, then certain parame-
ters of the model can be changed—for example, the
number of hidden layers of neurons—and the training
is repeated. It is important to note that this process of
training and validating the model is highly iterative and
time-consuming and still requires substantial human
input. Therefore the notion of AI as being a fully self-
programming intelligent algorithm is still not the day-
to-day reality in deep learning. Importantly, the valida-
tion dataset needs to be independent from the train-
ing dataset, so that the predictions of the model are
unbiased. Cross-validationmay also be used for param-
eter search during training, notably in the presence
of relatively small samples. Even more importantly,
because the results of predictions on the validation
dataset are used to fine-tune the model, there is a need
for yet another set of data, independent of the training
and validation sets, to be used for final testing of the
model. This test set should be used only at the very end
of the process, when the final model has been obtained
and one needs to obtain the final estimates of accuracy.
There is considerable confusion in the literature in the
naming of these datasets, with the test set sometimes
called the validation set. However, the important point
is to acknowledge that the final estimate of accuracy
of the model needs to be obtained on a test sample
that has never been used in any part of the develop-
ment of the model. Also, it is important to prevent
“leakage” among the datasets. For example, if multiple
datapoints or images are acquired on the same patient,
then images from that patient should not exist in both
the training and test dataset. Otherwise the predictions
would be biased and would severely overestimate the
algorithm’s performance. In addition to ensuring that
there is no data leakage between the test and training
datasets, it is also important to ensure that the test set
contains a representative sample of the target popula-
tion to which the test is planned to be applied. Very
often one sees that the test sample has characteristics
(e.g., prevalence and severity of glaucoma) that are
quite different than those of the target population.

One challenge to the development of a deep learn-
ing algorithm is the general requirement of very large
datasets for training, which can be on the order of
thousands or even millions of images. This occurs
because of the very large number of parameters in
these models. Some state-of-the-art CNNs have dozens
of layers, resulting in millions of parameters that
need to be trained. Ophthalmic image datasets of
this size are not typically available, especially labeled

datasets. However, transfer learning techniques have
been applied to overcome this limitation.38 In transfer
learning, a CNN (e.g., ResNet, Inception)39,40 previ-
ously trained on a very large general image dataset
can be used as a general feature extractor and undergo
additional training so it can be refined to perform a
more specific task (e.g., distinguishing glaucoma from
nonglaucoma) using a much smaller dataset. Transfer
learning techniques are now ubiquitously applied to
train CNNs that detect glaucoma on imaging datasets
of more limited size.

Deep Learning Models in Glaucoma

There have been several publications using deep
learning models for screening, diagnosis, and detection
of progression in glaucoma (Table 1). To fully appreci-
ate their impact, it is important not only to concentrate
on the benefits afforded by advanced methods such
as deep learning networks, but also to have a critical
understanding of the context in which the diagnostic
test is going to be applied.

Glaucoma Screening with Fundus Photography
An important misconception concerns what consti-

tutes early glaucoma diagnosis from a screening stand-
point. This is often meant to imply diagnosis at a
very early stage, before any significant visual field
loss is detectable by perimetry or sometimes even
before the appearance of clear signs of optic nerve
damage. However, focusing on this early stage of
disease for screening is not only unnecessary, but also
leads to problems related to the uncertainty in diagno-
sis. From a public health standpoint, an early diagnosis
means diagnosing a patient at a stage earlier than the
patient would have presented symptomatically. Given
that symptomatic presentation of glaucoma gener-
ally occurs only at a late stage, almost any stage of
glaucoma is early disease from the point of view
of screening. Given the relatively low prevalence of
glaucoma and the difficulties related to discriminat-
ing early glaucoma from normal variation, attempt-
ing to focus on screening programs for detecting
very early disease will likely lead to failure. However,
moving the focus to well-established cases of glaucoma
that would still be asymptomatic will lead to much
improved diagnostic accuracy and effectiveness. With
this concept in mind, we can review recent studies
proposing the use of deep learning methods to screen
for glaucoma using a variety of diagnostic tests, from
fundus photographs to OCT.

Fundus photography represents a relatively low-cost
option for screening of certain eye diseases and has
been successfully incorporated into teleophthalmology
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programs to detect diabetic retinopathy.41 There are a
number of inexpensive, portable nonmydriatic fundus
cameras that can be used to acquire imaging in a
low-resource setting, making this method particu-
larly attractive for community-based or opportunistic
screening.42 Once a deep learning model is successfully
trained to recognize the presence of disease on fundus
photographs, it can then be easily deployed to provide
gradings on previously unseen photos in real time.
Ting and colleagues27 proposed that a deep learning
algorithm could be developed to screen for glaucoma in
existing teleretinal imaging. Using a large database of
494,661 teleretinal photographs acquired in diabetics,
125,189 of which had been labeled by human graders
in the training set, they developed an algorithm capable
of detecting images that were considered “referable”
for glaucoma, based on subjective grading of the
photographs by ophthalmologists or professional
graders. In the test dataset, their algorithm detected
“referable” glaucoma on photographs with an area
under the receiver operating characteristic (ROC)
curve of 0.942, sensitivity of 96.4%, and specificity of
87.2%. It is important to note that, although Ting and
colleagues27 proposed that their approach could be
used to screen for glaucoma, such application would
not be appropriate at the level of specificity reported.
A specificity of 87.2% would translate into approx-
imately 13% of false-positive results. When applied
in the context of screening, this would result in an
enormous number of healthy individuals being unnec-
essarily referred for evaluation, if all those with positive
tests were to be referred. As a matter of fact, simple
calculations of disease probability based on diagnostic
likelihood ratios43–46 show that their proposed model
would generally be of little utility if applied in the
context of screening. Their estimates of sensitivity and
specificity would result in a positive likelihood ratio of
7.5. So, for example, if one were to suppose a preva-
lence of 5% for glaucoma, a positive test result would
bring the post-test probability of disease (i.e., the new
probability after the test result is known) to 40%.
Therefore, even if an individual were to test positive,
his/her chance of disease would still be relatively low.
A negative test result would only serve to decrease
an already very low pre-test probability of disease of
5%. Therefore both positive, as well as negative test
results would not do much to change the probability
of glaucoma if applied in a screening setting.

In another study, Li et al.9 were able to derive
somewhat better results. Using a similar approach, they
labeled 48,116 color fundus images as “referable” (yes
vs. no) for glaucoma based on human graders, then
trained a deep learning algorithm using 31,745 of the
images and applied the algorithm to a random subset

of 8000 images that had been separated for final testing.
The ROC curve area, sensitivity, and specificity were
0.986, 95.6%, and 92%, respectively. However, it is not
clear from the methodology whether the same subject
could have had an image in both the training and
validation datasets. It was also not clear in their study
whether a completely separate test set was used for final
evaluation of themodel. As discussed before, this could
lead to biased estimates of accuracy.

In contrast to diabetic retinopathy, the approach
of training deep learning models to replicate human
gradings of fundus photographs for glaucoma raises
numerous potential problems. Previous studies have
shown that human gradings have limited reproducibil-
ity47–49 and poor interrater reliability.48–50 Ophthal-
mologists tend to undercall glaucoma in small optic
discs but overcall it in physiologically enlarged cups.9
Thus, if human graders are used as the reference
standard, then the algorithms can only perform as
well as the human gradings and will essentially learn
to replicate these common mistakes. For example, in
the study by Li et al.,9 the deep learning algorithm
tended to underdiagnose glaucoma in high myopes,
thus increasing the false-negative rate, but overcalled
glaucoma in physiologically enlarged cups, thus inflat-
ing the false-positive rate. If such models are to be used
in the context of screening for the disease, the graders
should be trained to detect cases of well-established
nerve damage, not dubious, potentially “referable” or
suspect cases. As described before, by targeting well-
defined cases, diagnostic accuracy could be improved,
leading to more effective screening tests.

An alternative approach for training deep learn-
ing models for evaluation of fundus photographs in
glaucoma has been proposed by Medeiros et al.24
and called machine-to-machine (M2M). In the M2M
model, a deep learning algorithm was trained on color
fundus photographs that were labeled with an objec-
tive quantitative reference standard, the correspond-
ing global retinal nerve fiber layer thickness measure-
ment from spectral-domain optical coherence tomog-
raphy (SDOCT). Because of its high reproducibil-
ity and accuracy,51,52 SDOCT has become the de
facto standard for objective quantification of struc-
tural damage in glaucoma.52 However, unlike color
fundus photographs, SDOCT technology is expensive
and not easily portable, which limits the feasibility of
widespread adoption in screening efforts. By training
theM2Mdeep learning algorithm to predict theRNFL
thickness value when assessing a color fundus photo-
graph, the degree of glaucomatous damage could be
quantified rather than just “qualified.” There was a
strong correlation between the predicted RNFL value
from the deep learning algorithm’s interpretation of
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Figure 3. Examples of optic disc photographs and corresponding actual SDOCT measurements of average RNFL. Above each photo are
also shown the DL prediction of average RNFL thickness from the optic disc photograph by the M2M algorithm. Note that the predictions
from the DL algorithm can be quite close to actual SDOCT RNFL thickness measurements for a variety of photos. Adapted from Medeiros
et al.24.

the fundus image and the actual RNFL thickness
value from the corresponding SDOCT (r = 0.832,
P < 0.001), with a mean absolute error of approxi-
mately 7 μm (Fig. 3). The M2M model had a similar
performance to that of SDOCT RNFL thickness
to discriminate glaucomatous from normal eyes, as
defined based on visual field loss, with ROC curve
areas of 0.940 versus 0.944, respectively (P = 0.724).
The authors used class activation maps or heatmaps
to highlight the areas of the photographs that were
most important to the deep learning model’s predic-
tions, and, as shown in Figure 4A, these maps showed
that the model was correctly targeting the area of the
optic disc and adjacent RNFL.

Thompson et al.26 published a follow-up study
using a similar approach in which the SDOCT Bruch’s
membrane opening-minimum rim width (BMO-
MRW) parameter served as a reference standard for
labeling optic disc photographs. BMO-MRW may
be particularly useful in images where the optic disc
is difficult to grade, such as cases of high myopia.53
The DL predictions were again highly correlated with
the actual BMO-MRW values (Pearson’s r = 0.88,
P < 0.001), and the ROC curve areas for discrimi-
nating between glaucomatous and healthy eyes were
0.945 for the DL predictions and 0.933 for the actual
measurements (P = 0.587). Similarly, class activation
maps confirmed that the neuroretinal rim was critical
to the algorithm’s classification (Fig. 4B). In a subse-

quent study, Jammal et al.54 demonstrated that the
M2M DL algorithm performed at least as well as and
often better than human graders for detecting eyes
with reproducible glaucomatous visual field loss.

Compared to training using subjective human label-
ing as the reference standard, the M2M approach
may offer a distinct advantage, because the output is
quantitative rather than qualitative, of allowing cut-
offs to be established in order to optimize its appli-
cation in a screening setting. Also, the ability to have
quantification of the amount of neural loss raises the
possibility that fundus photographs could be used to
detect change over time in low-resource settings where
SDOCT is unavailable, although this still needs confir-
mation.

It should be acknowledged that notable challenges
remain before any of these algorithms are ready
for application in real-world settings. For example,
color fundus images can exhibit a wide range of
photographic quality, especially when acquired in less
controlled settings. It is possible that some deep learn-
ing algorithms may underperform if applied to images
captured on different cameras from those used in the
training dataset. The impact of co-morbid patholo-
gies on the diagnostic performance of these algorithms
is also uncertain, since they have so far been mostly
trained and tested on datasets that eliminated images
with other ocular pathologies (e.g., retinal diseases,
high myopia). In that sense, the Pegasus (Visulytix Ltd,



Deep Learning for Detection of Glaucoma TVST | Special Issue | Vol. 9 | No. 2 | Article 42 | 11

Figure 4. Class activation maps (CAM) for several examples of deep learning models. (A) Gradient-weighted CAM from the M2M model
to predict RNFL thickness from fundus photographs. It can be seen that the heatmap correctly highlights the area of the optic nerve and
adjacent RNFL as most relevant for the predictions. (adapted fromMedeiros et al.24). (B) Gradient-weighted CAMmap from theM2Mmodel
used to predict rim width in an eye with glaucoma. Note that the heatmap strongly highlights the cup and rim regions. (adapted from
Thompson et al.26). (C) CAM showing the regions in a spectral-domain optical coherence tomography volume identified as themost impor-
tant for the classification of the scan into healthy versus glaucoma. For glaucoma eyes the map generally highlighted regions that agree
with established clinical markers for glaucoma diagnosis, such as the optic disc cup and neuroretinal rim. It should be noted, however, that
the highlighted areas are often very broad, sometimes extending even to the vitreous (adapted fromMaetschke et al.66).

London,UK) is a cloud-basedAI system for evaluation
of fundus photography that uses a collection of CNNs,
each specializing on a different task as part of the image
assessment, such as identification of key landmarks
(optic disc, macula), clinical features, and pathology
classification. The system is designed to generalize to
any fundus photograph that contains the optic disc,
by first using a CNN to find and extract the optic
nerve and then feeding a standardized image to another
CNN that performs the classification. In a study by
Rogers and colleagues,55 the Pegasus AI system was
compared to 243 European Ophthalmologists and
208 British optometrists in grading photographs for
the presence of glaucomatous damage, achieving an
overall accuracy of 83.4% and an area under the receive
operating characteristic curve of 0.871, which was
comparable to that of average ophthalmologists and
optometrists.

Glaucoma Diagnosis with Optical Coherence
Tomography

SDOCT has become the most widespread diagnos-
tic tool for detecting glaucomatous structural
damage.51,52 Measurements of the optic nerve head,
macula, and RNFL are routinely used in clinical
practice for disease diagnosis and detection of progres-
sion.51,56–58 However, conventional assessment of
structural damage with SDOCT requires that the
structures of interest be segmented, so that appropri-

ate measurements, such as RNFL thickness, can be
extracted. This segmentation process is done automat-
ically by the machine’s software, but it is still largely
imperfect. Studies have documented segmentation
errors and artifacts on 19.9% to 46.3% of SDOCT
scans of the RNFL.59–63 Manual review and correc-
tion of segmentation errors, although possible, are
time-consuming and difficult to perform in a busy clini-
cal practice. Another difficulty in the interpretation
of SDOCT scans arises from the multiple parameters
and regions that are analyzed. It can be difficult for the
clinician to integrate all the information derived from
global and sectoral RNFL thickness measurements, as
well as topographic optic nerve head parameters and
macular assessment. The large number of parameters
increases the chance of committing what is known as
a type I error, in which an abnormality is found just by
chance. This has led to the concept of “red disease,”
in which a diagnosis of glaucoma is erroneously made
based solely on the finding of a “red” result on one or
a few of the parameters given in the SDOCT printout,
without other corroborating clinical features.64

Given these limitations in the interpretation of
OCT, deep learning models may provide alterna-
tive ways to quantify structural damage without
reliance on previously defined features derived from
the automated segmentation software. As noted before,
deep learning algorithms can learn features from data
automatically, as long as enough data are given to
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them. Therefore these models can make use of raw
SDOCT images without requiring the input of pre-
defined features. Along those lines, Mariottoni et al.65
recently demonstrated that a segmentation-free deep
learning algorithm could be trained to predict RNFL
thickness when assessing a raw OCT B-scan. The
segmentation-free predictions were highly correlated
with the conventional RNFL thickness (r = 0.983, P <

0.001), withmean absolute error of approximately 2 μm
in good-quality images. Most importantly, in images
where the conventional segmentation failed, the deep
learning model still extracted reliable RNFL thickness
information. In a more general approach, Thomp-
son et al.25 showed that a deep learning algorithm
could be trained using the raw SDOCT B-scan to
directly discriminate glaucomatous from healthy eyes.
The proposed algorithm achieved a better diagnostic
performance than the conventional RNFL thickness
parameters from the instrument’s printout, with area
under the ROC curve of 0.96 vs. 0.87 for the global
peripapillary RNFL thickness (P < 0.001). Another
study by Maetschke et al.66 similarly developed a deep
learning algorithm that could distinguish between
glaucomatous and healthy eyes using raw, unsegmented
OCT volumes of the optic nerve head. The algorithm
also performed better than conventional SDOCT
parameters, with an area under the ROC curve of 0.94
versus 0.89 for a logistic regression model combining
SDOCT parameters. As illustrated in Figure 4C, the
class activation maps (heatmaps) appeared to highlight
regions in the OCT volume that have been clinically
well established as important to glaucoma diagnosis,
particularly the neuroretinal rim, optic disc cupping,
and the lamina cribrosa and its surrounding area.
Heatmaps can help us better understand a CNN by
highlighting the most relevant pixels in the image used
for the predictions. Highlighted regions can thus be
subjected to more detailed analysis. It should be noted,
however, that class activation maps usually do not have
enough resolution to be able to precisely pinpoint small
areas that were relevant for the classification. This lack
of precision occurs because of the way deep learning
models with convolutional layers are built, leading to a
down-sampling of the final layers from which the maps
are created. Also, the efficiency of a heatmap largely
depends on themodel used and the amount and quality
of available training data. As such, one can see from
the heatmaps shown in Figure 4C that they highlight
very broad areas, which sometimes seem to include
even the vitreous as relevant to the discrimination of
glaucoma from normal. Although the deep learning
algorithm may indeed be capturing information that is
not yet clear to human eyes, the resolution limitations
of these heatmaps need to be kept in mind.

In addition to RNFL65 and optic nerve head
scans,66,67 deep learning models have also been used
to investigate macular scans.7,68 Asaoka et al.7 showed
that a deep learning model built from an 8 × 8
macular grid showed superior performance for detect-
ing glaucoma damage compared to macular RNFL
thickness or ganglion cell complex measurements. Of
interest, the deep learning model also performed better
than traditional techniques of SVM and random forest
applied to the macular measurements. In another
study,Muhammad and colleagues68 attempted to build
a “hybrid” deep learning system to detect glaucoma
from wide-field swept-source OCT. In their approach,
a pretrained CNN was initially used to extract features
from probability map images, which were then used as
input to a random forest model for classification. Their
model performed better than conventional summary
OCT parameters. However, the study included a
very small sample of only 57 glaucoma patients and
45 healthy subjects. Even though the authors claim to
have used cross-validation to assess the performance of
themodel on a different sample than that used for train-
ing, such a small sample is unlikely to allow for enough
variation and generalizability.

In addition to analysis of posterior segment OCT,
deep learningmodels have also been applied to anterior
segment OCT images for diagnosing narrow angles or
angle closure.69,70 Fu et al.70 found an area under the
ROC curve of 0.96 for a deep learning system trained
to detect angle closure from Visante OCT images, with
sensitivity of 90% and specificity of 92%, compared
to clinician gradings of the same images as reference
standard. In another work, Xu et al.69 tested three
different multiclass CNNs in Chinese-American eyes,
and the best-performing classifier (ResNet18 architec-
ture) detected gonioscopic angle closure with an area
under the ROC curve of 0.928 in the test dataset.
Given the difficulties in the subjective interpretation of
anterior segment OCT images, such models offer great
promise in automating the evaluation of those images
for detecting the presence of narrow angles.

Glaucoma Diagnosis with Standard Automated
Perimetry

Visual field data have also been harnessed to train
various deep learning algorithms to detect glaucoma-
tous damage, often showing a similar, if not better,
level of performance relative to expert graders.15,21,22
Li et al71 showed that a deep learning algorithm
trained with the probability map of the pattern devia-
tion image was better able to distinguish normal
from glaucomatous visual fields (accuracy 87.6%) than
either human graders (62.6%), the Glaucoma Staging
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System 2 (52.3%), or the Advanced Glaucoma Inter-
vention Study criteria (45.9%). Work by Asaoka and
colleagues10 suggested that deep learning algorithms
may be preferable to other traditionalmachine learning
classifiers for diagnosis of glaucoma in visual fields that
still appear to be normal based on standard param-
eters. However, their study did not show convincing
data on how much earlier the deep learning model
could detect damage before conventional parameters.
CNNs have also been shown to discriminate between
controls and early glaucoma on visual fields with a
higher accuracy than use of standard perimetry mean
deviation (MD) or neural networks without convolu-
tional features.72

Several machine learning approaches have been
used to attempt to classify visual field data follow-
ing unsupervised approaches, with methods such
as independent component analysis and its varia-
tions.17–19,34,35 In a more recent study, Elze et al73
proposed a technique of “archetypal analysis” to
classify patterns of visual field loss in glaucoma. The
authors showed that the patterns detected by their
technique, such as arcuate, partial arcuate, etc., corre-
sponded well to classification by human graders in the
Ocular Hypertension Treatment Study. In a follow-up
study, Wang et al.32 proposed to use archetypal analy-
sis to classify central visual field patterns in glaucoma.
It should be noted, however, that archetypal analysis
is a statistical technique closely resembling traditional
factor analysis and bearing no relationship to deep
learning artificial neural networks. This fact, however,
does not negate its potential benefit and future studies
should evaluate whether this technique may provide
clinically relevant information to be used in practice.

An important consideration of applyingDLmodels
to SAP interpretation is that these models are usually
trained only with reliable tests and may not be able
to identify unreliable exams which are often seen in
clinical practice. Thus, before such approaches can be
applied in real-world settings, DL models may also
need to be trained to learn which tests are of poor or
good quality and reliability.

Glaucoma Diagnosis with Structure and Function
Previous studies have shown that machine learn-

ing classifier models trained with both structural and
functional tests may have improved discriminatory
power compared to those trained with either struc-
ture or function alone.7,14,16,74,75 In a similar way, it is
likely that deep learning models trained with a combi-
nation of structural and functional tests may also show
improved performance. It should be noted, however,
that there are challenges related to the development
of such models. Most notable is the lack of a perfect

reference standard, or “gold standard,” for glaucoma
diagnosis. Given the fact that the reference standard
may use a combination of structural and functional
tests, it becomes difficult to set up a proper unbiased
study to evaluate the diagnostic accuracy of a new
diagnostic method proposing to also use a combina-
tion of structure and function. In these circumstances,
it is important to understand the clinical purpose and
the settings to which the new method is intended for
application. For example, suppose that one wishes to
develop a deep learning model that can replicate in a
clinical setting the performance of glaucoma experts
in diagnosing the disease. It is then reasonable to set
up a study where the experts will produce the refer-
ence standard by grading a combination of SDOCT
images and visual field printouts, perhaps accompa-
nied by other clinical information, and a deep learn-
ing model will be trained to attempt to replicate such
standard as much as possible, based on all available
information as well. Such a model could have tremen-
dous impact in clinical practice by bringing general
practitioners to a level comparable to those of experts
in diagnosing the disease in a clinical setting.

In a recent study, Mariottoni and colleagues76
proposed a set of relatively simple structural and
functional parameters that could be combined in an
objective way to be used as a robust reference standard
for the development of AI models for glaucoma
diagnosis. The criteria proposed that a diagnosis
of glaucomatous optic neuropathy should involve
corresponding structural and functional damage, based
on RNFL assessment by SDOCT and visual field
assessment by standard automated perimetry. The
set of criteria are summarized in Table 2 and
uses well-established global and localized parame-
ters with the requirement for topographic corre-
spondence between structural and functional damage,
which greatly enhances specificity. The authors then
developed a deep learning model that used fundus
photographs to discriminate glaucoma from normal
eyes, which had been classified based on the objec-
tive reference standard. The model achieved an overall
area under the ROC curve of 0.92. Of note, an
objective reference standard combining SDOCT and
SAP data may obviate the need for laborious and
time-consuming expert gradings, and may increase the
comparability of diagnostic studies across devices and
populations.

Glaucoma Progression
Diagnosis of glaucoma progression remains

a considerable challenge in clinical practice. The
tests used to assess change over time, such as
SDOCT and SAP, suffer from considerable test-retest
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Table 2. Summary of Proposed Objective Criteria for Definition of GON

SDOCT SAP

GON
Global
loss

Global RNFL thickness outside normal limits GHT outside normal limits or PSD, P < 5%

Localized
loss

RNFL thickness outside normal limits in at least
one superior sector (temporal superior
and/or nasal superior)

Inferior MD, P < 5%

RNFL thickness outside normal limits in at least
one inferior sector (temporal inferior and/or
nasal inferior)

Superior MD, P < 5%

Normal RNFL thickness within normal limits for all
sectors and global

PSD probability not significant (P > 5%) and
GHT within normal limits

To be considered glaucomatous optic neuropathy, it was necessary to meet the criteria for global or localized loss. To be
considered normal, it was required that both SDOCT and SAP results were normal. SDOCT-SAP pairs that do notmeet the crite-
ria for GON or normal are considered suspects. GHT, glaucoma hemifield test; PSD, pattern standard deviation; GON, glauco-
matous optic neuropathy; SDOCT, spectral-domain optical coherence tomography; SAP, standard automated perimetry.

variability, making it difficult to discriminate true
change from variability. In addition, there is no consen-
sus on specific criteria to diagnose visual field or struc-
tural progression in glaucoma. Such a lack of consen-
sus has hampered progress in the field and has made it
difficult to compare the results of different approaches.

Despite these challenges, several groups have
applied traditional machine learning methods to
attempt to improve the ability to diagnose glaucoma-
tous progression on clinical tests.17–20,77–81 In one of
the earliest works of this type, Brigatti et al.78 trained
a shallow artificial neural network using visual field
indices (i.e., mean defect, threshold points, corrected
loss, variance, false-positive ratio, false-negative ratio),
along with patient age, and showed a sensitivity of
73% and specificity of 88% when human gradings
were used as the reference standard. Given the lack
of a perfect reference standard, several authors have
proposed using unsupervised techniques to attempt
to detect visual field progression. Sample et al.17
proposed the use of independent component analysis
to identify patterns of glaucoma damage and their
change over time. Subsequent studies along the same
line used variations of the methodology, including
variational Bayesian independent component mixture
model18 and Gaussian mixture-model with expec-
tation maximization.19,20 Several other approaches
have used Bayesian modeling in some way to improve
prediction and detection of glaucoma progression and
also to combine structural and functional measure-
ments.12,82–88 Of note, although promising, none of
these techniques have been widely incorporated in
clinical practice. The reason may rely on difficulties

of implementation to clinical workflow, which may
eventually be overcome with widespread adoption
of electronical health records and clinical decision
support systems. It is important to note, however,
that not all of these methods have shown consistent
and substantial advantages compared to relatively
simple, well-established, and intuitive methods such as
guided progression analysis (GPA; Carl-Zeiss Meditec,
Inc, Jena, Germany) or trend-based analysis of mean
deviation over time.

As for deep learning applications in detecting
progression, there have been only very few studies.
Berchuck et al.89 proposed a deep learning variational
autoencoder (VAE) model to learn a low-dimensional
representation of SAP visual fields using 29,161 fields
from 3832 patients. The model was then applied to
predict rates of change and future visual field observa-
tions. The authors found that at four years of follow-
up, the model identified 35% of the eyes as progress-
ing versus only 15% for MD. In another study, Park
et al.90 used a recurrent neural network and showed
that it achieved better prediction of future visual field
observations compared to ordinary least squares linear
regression. Wen et al.91 also attempted to set up a deep
learning model to predict future visual field observa-
tions based on the first visual field test only. Their
model confirmed the patterns of progression that we
know from clinical practice (e.g., a nasal step becomes
an arcuate) based on a single Humphrey Visual Field.
However, because only the baseline field was used in the
prediction, the model was not able to provide informa-
tion regarding when or how quickly progression would
occur.
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Conclusions

Deep learning is an exciting technique that holds
enormous promise in glaucoma. Deep learning models
have consistently been shown to detect and quantify
glaucomatous damage using simple color fundus
photographs, opening the potential for low-cost screen-
ing tests for the disease. In addition, deep learning
has been shown to improve assessment of damage
on raw SDOCT images and visual field data, which
could improve the use of these tests in clinical practice.
However, it should be noted that no matter how excit-
ing AI technologies can be, validation of new diagnos-
tic tests should be based on rigorous methodology
with particular attention paid to how the reference
standards are defined and the settings where the tests
are going to be applied in practice. This is especially
true for a disease such as glaucoma, where no litmus
test exists for diagnosis or detection of change over
time. The reference standards to be used may differ
significantly, depending on how the test is going to
be applied and its purpose. Similarly, the require-
ments for diagnostic accuracy may vary considerably
depending on whether the test is being considered for
community-based or opportunistic screening versus
detection or monitoring of disease in a tertiary care
center. Although significant progress has been made
with AI and deep learning in glaucoma, a lot of work
remains to be done.
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