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Histone deacetylases 2 (HDAC2), Class I histone deacetylase (HDAC) family, emerged as an important therapeutic target for the
treatment of various cancers. A total of 48 inhibitors of two different chemotypes were used to generate pharmacophore model using
3D QSAR pharmacophore generation (HypoGen algorithm) module in Discovery Studio. The best HypoGen model consists of four
pharmacophore features namely, one hydrogen bond acceptor (HBA), and one hydrogen donor (HBD), one hydrophobic (HYP)
and one aromatic centres, (RA). This model was validated against 20 test set compounds and this model was utilized as a 3D query
for virtual screening to validate against NCI and Maybridge database and the hits further screened by Lipinski’s rule of 5, and a total
of 382 hit compounds from NCI and 243 hit compounds from Maybridge were found and were subjected to molecular docking
in the active site of HDAC2 (PDB: 3MAX). Finally eight hit compounds, NSC108392, NSC127064, NSC110782, and NSC748337
from NCI database and MFCD01935795, MFCD00830779, MFCD00661790, and MFCD00124221 from Maybridge database, were

considered as novel potential HDAC2 inhibitors.

1. Introduction

Histone deacetylases (HDACs) are the enzymes that deacety-
lase the epsilon-N-acetyl-lysine group on histone tails of
the protein and result in tightening of nucleosome structure
and gene silencing [1]. There are two types of histone
forms which are histone acetylases and histone deacetylases
[2]. Histone deacetylases (HDACs) are found in animals,
plants, fungi, archaebacteria, and eubacteria [3]. Histone
deacetylases are generally classified into four different classes,
namely, HDACs 1-3 and 8, belonging to Class I and related
to homologous to Rpd3, HDAC 4-7, 9-10 are Class II related
to Hdal, Sirt 1-7 are Class III and are similar to Sir2 and
HDACII belongs to Class IV. Classes I and II are operated
by zinc dependent mechanism and Class III by NAD [4-8].
Histone deacetylases (HDACs) control the gene expression
and cellular signaling and histone deacetylases 2 (HDAC2) is
overexpressed in solid tumors including colon cancer, lung
cancer, cervical carcinoma, breast cancer, and kidney/cervix
cancer and also in Alzheimers disease [9, 10]. Several

HDAC inhibitors are in clinical trial, namely, hydroxamic
acid derivatives, benzamide derivatives, cyclic peptides, and
short-chain fatty acids [11]. The first histone deacetylase
(HDAC) inhibitor SAHA (suberoylanilide hydroxamic acid
or vorinostat) approved by FDA for treating cutaneous T-
cell lymphoma and other hydroxamic acids are in clinical
trial. The benzamide derivatives, which are in clinical tri-
als, are Entinostat (MS-275 or pyridin-3-yl methyl 4-((2-
aminophenyl) carbamoyl) benzyl carbamate) currently in
phase II clinical trial for Hodgkin lymphoma, phase I trial
of advanced leukemia and myelodysplastic syndrome (MDS),
and Mocetinostat (MGCDO0103 or N-(2-Aminophenyl)-4-
[[(4-pyridin-3-ylpyrimidin-2-yl)amino]methyl] benzamide)
in phase II clinical trial for Hodgkin lymphoma, phase I trial
of advanced leukemia, myelodysplastic syndrome (MDS),
diffuse large B-cell lymphoma, and follicular lymphoma [12—-
15]. Ligand based pharmacophore modeling is a major tool
in drug discovery and is applied in virtual screening, de
novo design, and lead optimization [16]. Different histone
deacetylase (HDAC) inhibitors had been synthesized and
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experimental activity was found. Different pharmacophore
and virtual screening studies had been reported on histone
deacetylase (HDAC) with known hydroxamic acid deriva-
tives and QSAR studies reported on histone deacetylases 2
(HDAC2) with N(2-aminophenyl)-benzamides [17-19]. In
the present study benzamide derivatives are used to generate
the pharmacophore model and virtual screening studies have
been done for histone deacetylases 2 (HDAC2) proteins to
gain knowledge regarding pharmacophore model and virtual
screening. This study aims to construct the chemical feature
based on pharmacophore models for histone deacetylases 2
(HDAC2).

2. Materials and Methods

2.1. Data Preparation. A training set of 48 histone deacety-
lases 2 (HDAC2) inhibitors of two different chemotypes
were selected form previously published data and the ICy,
values were identified using the same biological assay. The
chemotype A is N(2-aminophenyl)-benzamide [20-31] and
chemotype B is N-hydroxy benzamide derivatives (see sup-
plementary Figure 1 in the Supplementary Material available
online at http://dx.doi.org/10.1155/2014/812148) [32-34]. 3D
QSAR module in Discovery Studio (DS) was used for devel-
oping the pharmacophore. The 2D structure of compounds
was drawn in ISIS draw and they were converted into 3D form
and conformational models were generated by FAST method,
the conformers minimized by the CHARMm force field and
the energy threshold value of 20 kcal/mol. A maximum of
255 conformers were developed for each compound and
these conformer models were used for hypotheses generation,
fitting the compound into the hypotheses and estimating the
activity of the compound. The training set of 48 molecules
was chosen with IC;, values with a range from 0.014 uM to
21 uM. The dataset activity (ICs,) was classified based on the
span over four orders of magnitude, that is, active (IC;, <
0.1 uM, ++++), moderately active (0.1 < IC5, < 1 uM, +++),
less active (1 < ICs, < 10uM, ++), and inactive (IC5, >
10 uM, +).

2.2. Pharmacophore Model Generation. HypoGen algorithm
was applied to build the pharmacophore model and in the
present study four features, which are hydrogen bond donors
(HBD), hydrogen bond acceptors (HBA), ring aromatic
(RA), and hydrophobic (HY), were selected to generate
the pharmacophore hypotheses [35]. HypoGen generates
pharmacophore model based on chemical features of active
compounds in training set. The uncertainty value 2 was
selected from default 3, which means the biological activity
is two times higher or lower than the true value. All other
parameters were kept as default. The developed pharma-
cophore model was selected based on the highest correlation
coeflicient, lowest total cost, and root mean square deviation
(RMSD).

2.3. Pharmacophore Validation. The pharmacophore model
is validated by three steps: cost analysis, Fischer’s randomiza-
tion test, and the test set prediction. The quality of the model
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is described in terms of fixed cost, total cost, and null cost.
The fixed cost represents the simplest model and it fits the
data perfectly. The null cost represents no features with high
cost value and it estimates the activity to be average activity
of the training set compounds. The best model was selected
based on the difference between the two cost values (null cost
— total cost); if the difference between the costs is greater
than 60 means, the model has excellent true correlation. If
the difference is 40-60, the model has prediction correlation
of 70-90%, and if the difference is below 40, it may be
difficult to predict the model. Fischer’s randomization is the
second approach to validate the pharmacophore model. The
95% confidence level was selected to validate the study and
19 random spread sheets were constructed. This method
generates the hypotheses by randomizing the activity of
the training set compounds. The correlation between the
structure and biological activity was validated by this method.
The final sets of validation were selected using twenty HDAC2
inhibitors as given in supplementary Figure 2. The Ligand
pharmacophore mapping module in Discovery Studio was
used to map the ligands and estimate the predicted activity
of the test set compounds.

2.4. Database Search. Virtual screening studies were used
to find novel and potential leads from virtual database for
further development [36]. The virtual screening studies were
used to find novel leads for HDAC2. The Hypol model was
used as a 3D query in database screening, and the National
Cancer Institute (NCI) database containing 265242 molecules
and Maybridge database containing 58723 molecules were
used for screening [37, 38]. Ligand pharmacophore mapping
protocol was used with flexible search option to screen the
database. Hit compounds from the database with estimated
activity less than 0.1 uM were selected for further screening
using Lipinski’s rule of five; compounds have (i) molecular
weight less than 500, (ii) hydrogen donors less than 5, (iii)
hydrogen acceptors less than 10, and (iv) an octanol/water
partition coefficient (LogP) value less than 5.

2.5. Molecular Docking. Docking is the binding orientation
of small molecules to their protein targets in order to predict
the affinity and activity of the small molecules. Hence docking
plays an important role in the rational drug design. Molecular
docking studies were performed by using LigandFit module
in Discovery Studio [39]. There are three stages in LigandFit
protocol: (i) docking, in which attempt is made to dock a
ligand into a user defined binding site, (ii) in situ ligand
minimization, and (iii) scoring, in which various scoring
functions were calculated for each pose of the ligands. Protein
preparation was the main step in docking and all ligands were
docked into the active site of the receptor. Protein preparation
involves deletion of water molecules and addition of hydro-
gen atoms and applying CHARMm force field. The active
sites were searched using flood filling algorithm. The active
site was defined as region of HDAC2 that comes within 12 A
from the geometric centroid of the ligand. Ten poses were
generated for each ligand during the docking process and the
best poses were selected based on the best orientation of the
molecule in the active site and dock score values, which was
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TABLE 1: Statistical results of the generated pharmacophore models.

Hypo Total cost Cost difference® RMS Error cost Correlation Max fit Features

1 223.598 68.459 1.64 204.016 0.759 6.4 HBA HBD HYP RA
2 228.662 62.395 1.7 209.498 0.735 6.9 HBA HBD HYP RA
3 238.771 53.286 1.82 219.538 0.689 6.86 HBA HYP RA RA
4 240.0 52.057 1.84 220.97 0.682 7.16 HBA HYP RA RA
5 241.524 50.533 1.84 221.036 0.682 5.77 HBA HYP HYP RA
6 241.71 50.347 1.86 222.568 0.674 6.98 HBA HYP RA RA
7 242.261 49.796 1.86 222.428 0.675 6.25 HBA HYP RARA
8 242.339 49.718 1.85 221.941 0.677 5.83 HBA HYP RA RA
9 244.381 47.676 1.89 225.13 0.662 6.84 HBA HYP RA RA
10 244.543 47514 1.88 224.225 0.666 5.88 HBA HYP HYP RA

Null cost = 292.057; fixed cost = 158.138; configuration cost = 17.66.
Cost difference = null cost — total cost.

selected after energy minimization with smart minimization.
The dock score was calculated using the following formula:

DockScore (force field)

< ligand
~ \receptor interaction energy

+ ligand internal energy) .
@

Single dock score may fail to obtain active molecules;
hence, consensus scoring method was applied which consists
of LigScorel, LigScore2, Jain, Piecewise Linear Potential
(PLP1 and PLP2), and Potential of Mean Force (PMF).
The active molecules were selected based on the consensus
scoring method and H-bond interaction with the recep-
tor. The crystal structure of the HDAC2 protein (PDB
ID: 3MAX) was downloaded from the protein data bank
(http://www.rcsb.org/pdb). The crystal structure of histone
deacetylases 2 (HDAC2) protein has three chains, which are
A, B, and C. The chain A has higher docking score than
chains B and C, so chain A is selected for docking. The
hit compounds from the database screening with positive
Lipinski’s drug likeness were subjected to molecular docking
studies into the active site of the 3MAX receptor.

3. Results and Discussion

3.1. Pharmacophore Generation. Pharmacophore model, vir-
tual screening, and molecular docking studies were per-
formed to find novel HDAC2 inhibitors. Dataset of 48
molecules with structural diversity and four orders of activity
magnitude (0.014 to 21 uM) were selected to develop phar-
macophore model using HypoGen algorithm in Discovery
Studio. Four features hydrogen bond donor (HBD), hydrogen
bond acceptors (HBA), ring aromatics (RA), and hydropho-
bic (HY) were selected. Top 10 hypotheses were generated
with the following features: HBA, HBD, RA, and HY. The
statistical parameters such as cost values, correlation, and
RMSD were summarized in Table 1. The best hypothesis was
selected out of 10 hypotheses by the highest cost difference.
Hypol has the highest cost difference between null cost and
total cost of 68.45, correlation coefficient of 0.75, the lowest

RMS deviation of 1.64, and configuration cost value of 17.66.
This indicates the model and the data correlated by more than
90%. High correlation coefficient and low RMSD indicate the
ability to predict the activity of the training set compounds
is high. The Hypol has a correlation coefficient value (R* =
0.75), and the model strongly predicts the activity of training
set compounds. The correlation between the experimental
activity and predicted activity of training set compounds
was shown in Table 2. For most of the compounds the
model predicts the activity correctly. Figure 1(a) shows the 3D
spatial arrangement of all features with distance constraints of
Hypol. The features of Hypol were mapped onto the active
compound 15 as shown in Figure 1(b). HBD is mapped by
amino group, HBA is mapped by phosphonate group, aro-
matic ring is mapped by aromatic group, and HY is mapped
by hydrophobic group. The results indicate that HDAC2
inhibition requires the following features: HBD, HBA, RA,
and HYP. Inactive compound 29 was mapped partially onto
the features of Hypol as shown in Figure 1(c). The fit value for
the most active and the least active compounds was generated
to be 5.39 and 3.21, respectively.

3.2. Pharmacophore Validation. The pharmacophore model
can be validated by three methods: cost analysis, test set
prediction, and Fischer’s randomization test.

3.2.1. Cost Analysis. The HypoGen algorithm in DS produces
three cost values during the pharmacophore generation,
which are fixed cost, total cost, and null cost. The model is
validated by the difference between the null cost and total
cost; if the model has cost difference above 60, it has the
predictability chance of greater than 90%. The Hypol having
the cost difference of 68.45 shows significant model (shown
in Table 1).

3.2.2. Test Set Prediction. A good pharmacophore model can
predict not only the activity of the training set compounds
but also external test set compounds. 20 compounds with
different activity range were used as a test set to check the
predictability power of the pharmacophore model. Ligand
pharmacophore mapping protocol with flexible search option
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TaBLE 2: The experimental activity and estimated activity of the training set compounds are summarized here.

Compound number Exp. IG5, Estimated IC;, Error A.CtiVitY A,CtiVitY Fit scores
uM uM magnitude (exp.) magnitude (est.)

Compound 1 2 0.373 1.627 ++ +++ 3.981
Compound 2 0.313 0.178 0.135 4+ 4+ 4.301
Compound 3 0.105 0.127 —-0.022 +++ +++ 4.449
Compound 4 0.071 0.116 —-0.045 -+ 4+ 4.488
Compound 5 0.34 0.133 0.207 +++ +++ 4.427
Compound 6 0.115 0.117 —-0.002 4+ 4+ 4.484
Compound 7 0.19 0.124 0.066 o+ +++ 4.457
Compound 8 0.78 0.252 0.528 4+ 4+ 4.151
Compound 9 0.049 0.202 -0.153 P i 4247
Compound 10 33 2.801 0.499 ++ ++ 3.106
Compound 11 0.36 0.277 0.083 4+ 4+ 411
Compound 12 0.13 0.122 0.008 +++ +++ 4.465
Compound 13 0.18 0.177 0.003 4+ 4+ 4.304
Compound 14 0.14 0.088 0.052 ot et 4.609
Compound 15 0.014 0.014 0 e+ e+ 5.392
Compound 16 0.9 2.338 -1.438 +++ ++ 3.185
Compound 17 0.2 0.247 -0.047 4+ 4+ 4.16
Compound 18 0.07 0.125 —-0.055 +t++ +++ 4.456
Compound 19 0.06 0.058 0.002 -+ -+ 4.787
Compound 20 0.08 0.082 —-0.002 +++ ++++ 4.637
Compound 21 0.09 0.126 -0.036 -+ 4+ 4.451
Compound 22 0.1 0.198 —-0.098 +++ +++ 4.257
Compound 23 0.5 0.817 —-0.317 4+ 4+ 3.641
Compound 24 0.8 1.744 -0.944 4+ ++ 3312
Compound 25 0.039 0.251 -0.212 4+ 4+ 4.153
Compound 26 0.27 2.13 -1.86 +++ ++ 3.225
Compound 27 0.043 0.254 -0.211 -+ 4+ 4.149
Compound 28 3.1 2.181 0.919 ++ ++ 3.215
Compound 29 21 18.8 22 + + 3.213
Compound 30 13 1.52 11.48 + ++ 3.372
Compound 31 13 1.891 -0.591 ++ ++ 3.277
Compound 32 0.6 0.574 0.026 +++ +++ 3.795
Compound 33 10 0.24 9.76 ++ ++ 4.172
Compound 34 0.032 0.218 -0.186 ++++ +++ 4.215
Compound 35 3.8 2.305 1.495 ++ ++ 3.191
Compound 36 0.019 0.017 0.002 ++++ ++++ 5.322
Compound 37 0.87 0.232 0.638 4+ 4+ 4.188
Compound 38 1.48 1.229 0.251 ++ ++ 3.464
Compound 39 3.47 2.075 1.395 ++ ++ 3.237
Compound 40 0.46 2.075 -1.615 4+ ++ 3.237
Compound 41 0.26 2115 -1.855 +++ ++ 3.228
Compound 42 0.56 0.796 -0.236 +4+ 4+ 3.652
Compound 43 5.54 1.82 3.72 ++ ++ 3.293
Compound 44 0.52 0.342 0.178 +++ 4+ 4.019
Compound 45 1.44 2.101 -0.661 ++ ++ 3.231
Compound 46 0.33 0.773 -0.443 4+ 4+ 3.665
Compound 47 1.81 0.696 1.114 ++ +++ 3.711

Compound 48 3.9 2.081 1.819 ++ ++ 3.235
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FIGURE 1: The best pharmacophore model (Hypol) of HDAC2 inhibitors generated by the HypoGen module: (a) the best pharmacophore
model Hypol represented with distance constraints (A), (b) Hypol mapping with one of the active compounds 15, and (c) Hypol mapping
with one of the least active compounds 29. Pharmacophoric features are colored as follows: hydrogen bond acceptor (green), hydrogen bond

donor (magenta), hydrophobic (cyan), and ring aromatic (orange).

was used to map the test set compounds. In test set analysis,
for most of the compounds the model predicted activity to the
tune of less than 10%. Out of 20 compounds 17 compounds
were predicted with an error factor less than 5% and 3
compounds were predicted with an error factor less than
10%. The experimental and predicted activities of the test set
compounds were shown in Table 3.

3.2.3. Fischer Randomization Test. Fischer randomization
test was the third approach to validate the Hypol using
DS. In this method the experimental activity of the training
set compounds was randomly scrambled and generates the
random pharmacophore model using the same parameters
as used in developing the Hypol hypothesis. Confidence
level of 95% was set and it created 19 spread sheets, all
19 random spread sheets have high cost values than total
cost, and correlation value is less than the Hypol (supple-
mentary Table 1). It clearly shows none of the randomly
generated pharmacophores has good statistical values than
Hypol. The difference in costs between the HypoGen and
Fischer randomizations was shown in Figure 2. All the three
validations methods demonstrated that Hypol hypothesis has
good predictability and can be chosen as the best model.

3.3. Database Screening. The best pharmacophore model
Hypol was used as a 3D query to search the NCI (265242)
and Maybridge (58723) databases using flexible search option
in DS. A total of 6130 compounds from NCI and 1379 from
Maybridge were mapped using the features of Hypol. A
total of 1198 and 440 compounds from NCI and Maybridge
showed HypoGen estimated value of less than 1 M and were
considered for further studies and these compounds were
screened for Lipinski’s rule of 5. A total of 625 (382 NCI, 243
Maybridge) compounds obeyed the rule and were subjected
to molecular docking studies. The flowchart in Figure 3 was a
schematic representation of virtual screening process.

3.4. Molecular Docking. The HDAC2 protein has three
chains which are A, B, and C. The active compound MS-275
(Entinostat) was docked into active sites of all three chains
using LigandFit module in Discovery Studio, and out of
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F1GURE 2: Fischer randomization test for 95% confidence level: phar-
macophore hypotheses versus total cost.
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NCI database — Maybridge
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NCI database — Maybridge
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Molecular docking using ligand fit (DS)

FIGURE 3: Schematic representation of virtual screening process
implemented in the identification of HDAC2 inhibitors.

three chains chain A has given the best docking score
and higher H-bond interactions than chains B and C. The
docking score of all three chains with Entinostat was shown
in supplementary Table 2. Chain A was selected as an active
chain and the final hit compounds from virtual screening
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TABLE 3: The experimental and estimated activity of test compounds.

Exp. IC;, Estimated IC;,

Activity Activity

Compound number M M Error magnitude (exp.) magnitude (est.) Fit scores
Compound 1 3.47 0.174 3.296 ++ - 6.298
Compound 2 10 4253 5.747 + it 6.05
Compound 3 0.52 0.009 0.511 +++ e+ 5.559
Compound 4 1.81 0.01 1.8 ++ A 5.529
Compound 5 0.1 0.01 0.09 ++++ ++++ 5.518
Compound 6 0.08 0.012 0.068 F+++ S+ 5.458
Compound 7 0.2 0.015 0.185 +++ e+ 5364
Compound 8 0.9 0.017 0.883 +++ S+ 5.309
Compound 9 1.44 0.019 1.421 ++ . 5272
Compound 10 0.46 0.019 0.441 — bt 5.268
Compound 11 1 0.027 0.973 +++ ++++ 5.116
Compound 12 10 4.033 5.967 + ++ 5.097
Compound 13 0.09 0.033 0.057 F+++ S+ 5.034
Compound 14 5.54 0.36 518 ++ t 4.99
Compound 15 0.26 0.046 0.214 44 e 4.887
Compound 16 0.33 0.048 0.282 - A 4.865
Compound 17 1.48 0.06 1.42 + A 4771
Compound 18 3 0.202 2.798 ++ it 4246
Compound 19 0.5 0.239 0.261 +++ T4t 4.174
Compound 20 0.05 0.47 -0.42 A . 3.881

studies were docked into active site of SMAX-A. The docking
score along with binding orientations and hydrogen bonds
was considered for choosing the best pose of the docked
compounds. The docking scores were compared with MS-
275 (Entinostat). The docking score of the Entinostat was
42.6 kcal/mol and hit compounds from the virtual screening
studies show better binding than the active compound
Entinostat. The Entinostat has the four hydrogen bonding
interactions with Arg39, Cys156, Gly305, and His183 given in
Figure 4(a). The hit compounds that scored docking score
higher than active compound and form interaction with
the crucial amino acids were considered as effective leads
for designing novel HDAC?2 inhibitors. 74 compounds from
both databases showed good interactions in the active site of
the HDAC2 and scored more than 45, about 20 compounds
that showed better docking score than active compounds
were chosen as leads and their docking score and H-bond
interactions were listed in supplementary Tables 3 and 4.
Finally four compounds from NCI, namely, NSC108392,
NSC127064, NSC110782, and NSC748337, were identified
with good docking score and estimated activity value of
0.26 uM, 0.47 uM, 0.37 uM, and 0.41 uM, respectively. The hit
NSC108392 (4-(((6-amino-3-methylpyrido[2,3-b]pyrazin-8-
yl)amino)methyl)benzenesulfonamide) has the docking score
0f121.9 kcal/mol and forms three hydrogen bond interactions
with Arg39 (3), Hisl45, and Aspl81 (2) amino acids shown
in Figure 4(b). The binding mode of this compound at the
active site showed that mapping on HBD feature of Hypol
formed interactions with Arg39 and HBA feature of Hypol

forms the interactions with Hisl45 and Aspl81. NSC127064
((28,35,4S,5R)-2-(1-(benzyloxy)-6-imino-1H-purin-9(6H)-
yl)-5-(hydroxymethyl) tetrahydrofuran-3,4-diol) has the
docking score of 116.4 kcal/mol and forms seven hydrogen
bond interactions with Arg39, Cysl56, Gly305, Hisl45
(2), Aspl8l1 (2), Trpl40, and Glyl42 amino acids shown in
Figure 4(c). The binding mode and pharmacophore overlay
of the compound showed that OH mapped on HBD, NH2
mapped on HBA, and purine moiety mapped on RA form
interaction in the active site. NSC110782 (4-(2-((6-amino-
3-methylpyrido[2,3-b]pyrazin-8-yl) amino) ethyl) benzene
sulfonamide) has the docking score of 106.2 kcal/mol and
forms four hydrogen bond interactions with Hisl45, Aspl8l
(3), Glyl54, and Alal4l shown in Figure 4(d). The binding
mode and pharmacophore overlay of this compound showed
that HBD mapped on NH2 and HBA mapped on pyrazine
moiety have interactions with the amino acid residues.
NSC748337 (3-(benzo[d]oxazol-2-yl)-5-(1-(piperidin-4-yl)-
1H-pyrazol-4-yl) pyridin-2-amine) has the docking score
of 105.6 kcal/mol and forms four hydrogen bond interac-
tions with Aspl8l (2), Hisl45, Alal4l, and Hisl83 shown
in Figure 4(e). The nitrogen on piperidine mapped to
HBD has interactions with Alal4l, amino group on
pyridine moiety mapped to HBA of Hypol has interac-
tions with Hisl83, and Aspl8l and nitrogen of pyridine
moiety have interactions with His145. Four compounds from
Maybridge database, MFCD01935795, MFCD00830779,
MFCD00661790, and MFCDO00124221, were identified
as novel HDAC2 inhibitors with estimated activity
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FIGURE 4: Binding orientations of hit compounds: (a) Entinostat, (b) NSC108392, (c) NSCI127064, (d) NSC110782, (e) NSC748337, (f)
MFCD01935795, (g) MFCD00830779, (h) MFCD00661790, and (i) MFCDO00124221 in the active site of 3MAX-A with hydrogen bond interac-

tions.
value of 012uM, 032uM, 0.61uM, and 0.68uM,
respectively. MFCDO01935795  (4-(3-ethylthioureido)-N-

(5-methylisoxazol-3-yl) benzenesulfonamide) as the docking
score of 98.8 kcal/mol having three H-bond interactions with
Cysl156, Phel55, and Hisl46 residues is shown in Figure 4(f).
The protein-ligand interaction shows HBD of Hypol forms
hydrogen bond interaction with Hisl46, and nitrogen on
iso-oxazole mapped with HBA forms hydrogen bond with
Phel55 and oxygen of sulphonamide forms bond with Cys156.

MFCD00830779  ((E)-N'-hydroxy-4-((2-methylthiazol-4-
yl)methoxy)benzimidamide) having the docking score of
96.89 kcal/mol forms five hydrogen bonds with Arg39,
His183, Aspl8l (2), Asp269, and Hisl46 amino acids. The
binding mode of the compound shown in Figure 4(g) shows
Hypol of HBA mapped nitrogen of thiazole forms hydrogen
bonding with Arg39, HBD mapped on oxygen of N-hydroxy
has hydrogen bond interaction with Hisl83, benzamide
of nitrogen has interaction with Hisl46, and nitrogen of
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FIGURE 5: The pharmacophore overlay of hit compounds: (a) NSC108392, (b) NSC127064, (c) NSC110782, (d) NSC748337, (¢) MECDO01935795,

(f) MFCD00830779, () MFCD00661790, and (h) MFCD00124221.

formamide has interaction with Asp181. MFCD00661790 (N-
(2-(3-(2,4-difluorophenyl)thioureido)ethyl)-2-(4-hydroxy-
phenyl)acetamide) has the docking score of 81. Kcal/mol
forming four hydrogen bond interactions with Cys156, His153,
His146, and Alal4l amino acids, Hypol HBD mapped on
oxygen shows hydrogen bond interaction with Alal4l, HBA
mapped on nitrogen forms bonds with His183, nitrogen of
thiourea forms bonds with Hisl46, and acetamide of oxygen
has hydrogen bond with Cysl56; the binding interactions
are shown in Figure 4(h). The fourth hit MFCD00124221
(N-(4-(3-(2,3-dichlorophenyl)thioureido)phenyl)-2-hydrox-
ybenzamide) has docking score of 65.86 kcal/mol with three
hydrogen bonds with Cys156, Gly305, and His183. The com-
plex shown in Figure 4(i) shows benzamide of oxygen with
Cysl56, nitrogen with Gly305, and nitrogen of thiourea with
His183 and shows hydrogen bond interaction.

The pharmacophore overlay of the hit compounds was
shown in Figure 5. The identified lead compounds along
with their estimated IC;, were shown in Figure 6. The
studies show Arg39, Cysl56, Hisl45, and Hisl46 were the
important amino acids in the active site involved in hydrogen
bond interaction. Based on pharmacophore modeling, virtual

screening, and molecular docking studies, the compounds
listed in supplementary Table 3 are selected as novel leads
for effective HDAC2 inhibition. All identified hits were with
diverse scaffolds and provide opportunities for designing
novel HDAC2 inhibitors. The lead compounds were selected
based on the docking score and structural diversity. The cor-
relation between the estimated activity and docking score of
top 10 lead compounds from NCI and Maybridge is 0.61 and
0.54, respectively, which suggests that the selected inhibitors
in the present study could be specific HDAC2 inhibitors.
Comparative study on previous developed models with
present study shows common pharmacophore features were
present in all studies. Pharmacophore model on histone dea-
cetylase (HDAC) with known hydroxamic acids and cyclic
peptides shows four pharmacophore features: one hydrogen
acceptor and one hydrophobic and two aromatic rings [17]
and in the study with known hydroxamic acids, benzamides,
and biphenyl derivatives on HDAC [40] three pharma-
cophore features were shown: hydrogen acceptors, hydrogen
donors, and hydrophobic aromatic ring. Pharmacophore
model on histone deacetylase (HDAC8) with known hydrox-
amic acids has shown four pharmacophore features: one
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FIGURE 6: Identified lead compounds through NCI and Maybridge database search: (a) NSC108392, (b) NSC127064, (c) NSC110782, (d)
NSC748337, (¢) MFCD01935795, (f) MFCD00830779, (g) MFCD00661790, and (h) MECD00124221.

hydrogen acceptor, two hydrogen donors, and one hydro-
phobic group [18]. The present developed pharmacophore
model on HDAC2 with known benzamide derivatives shows
four pharmacophore features: one hydrogen acceptor, one
hydrogen donor, and one hydrophobic and one aromatic
rings, which correlates with the previous studies.

The selected eight lead compounds and Entinostat were
docked into the active sites of histone deacetylase (HDAC)
(PDB: 1271) and histone deacetylase (HDACS) (PDB: 1T64),

and in both the receptors chain A was selected for docking.
The docking result shows that compounds with HDAC
and HDACS8 comparably showed lesser docking score and
interactions than HDAC2. The docking scores and H-bond
interactions were shown in supplementary Tables 5 and 6.
The combinations of pharmacophore, virtual screening,
and molecular docking successfully give more potential
inhibitors that can have great impact for future experimental
studies in diseases associated with HDAC?2 inhibition.
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4, Conclusion

In this study, ligand pharmacophore model developed by
HypoGen algorithm in DS, 10 hypotheses were generated
using 48 training set compounds with structural diversity.
The best pharmacophore Hypol was characterized by high
cost difference and correlation coefficient comprised of
HBD, HBA, RA, and HY features. The Hypol was validated
by external test set and Fisher’s randomization test suggests
the model has good predictability. The Hypol was used
as a 3D query to screen NCI and Maybridge databases.
625 compounds with estimated activity less than 1M and
favourable Lipinski’s rule were selected for docking studies.
In molecular docking studies the important interactions with
inhibitors and active site residues were determined. Based on
docking score and interactions twenty hits were found and
finally eight hits NSC108392 (4-(((6-amino-3-methylpyri-
do[2,3-b]pyrazin-8-yl)amino)methyl)benzenesulfonamide),
NSC127064 ((2S,3S,4S,5R)-2-(1-(benzyloxy)-6-imino-1H-
purin-9(6H)-yl)-5- (hydroxymethyl)tetrahydrofuran-3,4-
diol), NSC110782 (4-(2-((6-amino-3-methylpyrido[2,3-b]pyr-
azin-8-yl)amino)ethyl)benzenesulfonamide), NSC748337 (3-
(benzo[d]oxazol-2-yl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-
yDpyridin-2-amine), MFCDO01935795 (4-(3-ethylthiourei-
do)-N-(5-methylisoxazol-3-yl) benzenesulfonamide),
MFCD00830779 ((E)-N'-hydroxy-4-((2-methylthiazol-4-yl)
methoxy)benzimidamide), MFCD00661790 (N-(2-(3-(2,4-
difluorophenyl)thioureido)ethyl)-2-(4-hydroxyphenyl)acet-
amide), and MFCD00124221 (N-(4-(3-(2,3-dichlorophenyl)
thioureido)phenyl)-2-hydroxybenzamide) were selected
based on structural diversity and stability. These novel com-
pounds can be used for experimental studies for the inhi-
bition of HDAC2.
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