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Abstract

Metastasis is the primary cause of cancer-related deaths, but the natural history, clonal evolution 

and impact of treatment are poorly understood. We analyzed whole-exome sequencing data from 

457 paired primary tumor and metastatic samples from 136 breast, colorectal and lung cancer 

patients, including untreated (n=99) and treated (n=100) metastases. Treated metastases often 

harbored private ‘driver’ mutations whereas untreated metastases did not, suggesting that 

treatment promotes clonal evolution. Polyclonal seeding was common in untreated lymph node 

metastases (n=17/29, 59%) and distant metastases (n=20/70, 29%), but less frequent in treated 

distant metastases (n=9/94, 10%). The low number of metastasis-private clonal mutations is 

consistent with early metastatic seeding, which we estimated occurred 2–4 years prior to diagnosis 

across these cancers. Further, these data suggest that the natural course of metastasis is selectively 

relaxed relative to early tumorigenesis and that metastasis-private mutations are not drivers of 

cancer spread but instead associated with drug resistance.
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Introduction

Metastasis remains poorly understood despite its critical clinical importance. For instance, 

metastases have been reported to originate from a single cell or clone in the primary tumor 

(monoclonal seeding) 1–4 or multiple clones (polyclonal seeding) 5–7, but the prevalence of 

these patterns across distinct tumor types is unknown as is the impact of therapy and the 

timing of metastatic seeding 8–10. While several recent studies have genomically 

characterized metastatic lesions in the absence of the matched primary tumor 11–13, with 

such data it is not feasible to disentangle the drivers of metastasis from those that are 

treatment associated since metastases are often sampled after treatment. However, 

comparisons of paired primary tumors and metastases have been far more limited due to the 

challenge in obtaining such samples 5,8,14–18. As such, there has yet to be a systematic 

analysis of monoclonal versus polyclonal seeding, the chronology of systemic spread and 

the effect of therapy across cancers.

Here we analyzed whole-exome sequencing (WES) data from 457 paired primary tumor (P) 

and metastases (M) from 136 patients with colorectal, lung or breast cancers using a uniform 

bioinformatics pipeline. We assessed ‘driver’ gene heterogeneity and evaluated the 

prevalence of monoclonal versus polyclonal seeding, revealing considerable variability 

between untreated and treated metastases across cancer types. Treatment was associated 

with high primary tumor versus metastasis (P/M) driver gene heterogeneity and monoclonal 

metastases. Metastatic seeding was estimated to occur two to four years prior to diagnosis of 

the primary tumor across three common cancer types, with breast cancers generally 

disseminating later and therefore closer to the time of detection relative to colorectal and 

lung cancers. Collectively, these observations suggest that systemic spread can begin early 

during tumor growth and that clonal architecture is remodeled by treatment, providing new 

insights into the clonal evolution of metastasis.

Results

Genomic landscapes of paired primary tumors and metastases

We performed a literature review to identify cohorts with genomic sequencing data from 

matched normals, primary tumors (P) and metastases (M) from patients with three common 

cancer types, namely, colorectal16,17,19–22, lung23,24 and breast23,25–29 (Supplementary 

Tables 1–2, Extended Data Fig. 1). All samples were processed within a uniform 

bioinformatics pipeline 16,30 to identify somatic single nucleotide variants (SSNVs), 

insertions/deletions (indels) and somatic copy number alterations (SCNAs) (Methods). 

Tumor purity/ploidy and cancer cell fraction (CCF) of SSNVs and indels (referred as SSNVs 

hereafter) were estimated in order to distinguish clonal (the upper bound of 95% confidence 

interval or CI of CCF ≥ 1) versus subclonal (the upper bound of 95% CI of CCF < 1) SSNVs 

(Methods). Following quality control assessment (Methods), 457 tumor samples from 136 

patients (colorectal cancer, n=39; lung cancer, n=30; breast cancer, n=67) were retained for 

downstream analysis (Supplementary Tables 1–3, Extended Data Fig. 1).

Metastases exhibited higher purity than paired primary tumors while ploidy was comparable 

between P/M pairs in all three cancer types (Supplementary Fig. 1). Overall, the mutational 

Hu et al. Page 2

Nat Genet. Author manuscript; available in PMC 2020 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



burden (SSNVs or SCNAs) was highly concordant between P/M pairs (Extended Data Fig. 

2, Supplementary Figs. 2–3, Supplementary Table 4), although differences between cancer 

types were noted. For instance, in breast cancer, the SCNA burden between P/M pairs was 

more concordant than the SSNV burden (Extended Data Fig. 2), a pattern that is more 

evident in ER+/HER− subgroup (Supplementary Fig. 3). Although primary breast cancers 

can be copy number driven 31,32, these data suggest that metastases can acquire substantial 

SSNVs and this seemed especially true in ER+/HER− breast cancers, which are often 

exposed to endocrine therapy and tend to recur later 33. In all three cancer types, metastases 

exhibited a slight increase in the number of clonal SSNVs and fewer subclonal SSNVs 

(Supplementary Fig. 2), consistent with an evolutionary bottleneck during metastasis. The 

mutational spectrum of M-private SSNVs (clonal or subclonal) between treated and 

untreated metastases was also highly concordant except that treated colorectal metastases 

were characterized by an enrichment of T>G transversions relative to untreated samples 

(Supplementary Fig. 4). Indeed, all treated colorectal metastases (n=7) were biopsied after 5-

fluorouracil (5-FU) chemotherapy in this cohort, which was recently shown to be associated 

with this mutational pattern 34,35.

We next evaluated the enrichment of functional driver gene mutations in paired primary 

tumors and metastases. Three methods, namely PolyPhen-2 36, FATHMM-XF 37 and 

CHASMplus 38, were employed to assess the functionality (“driverness”) of 

nonsynonymous SSNVs in putative driver genes according to TCGA and COSMIC 

(Methods, Supplementary Table 5). In total, 1,086 functional driver SSNVs/indels were 

detected across these three cancer types (Fig. 1a-b, Supplementary Table 6), in which 734 

were clonal (including shared clonal, P-private clonal or M-private clonal) and 352 were 

subclonal (shared subclonal, P subclonal/M clonal, P-private subclonal or M-private 

subclonal). Notably, 84%, 86% and 59% of clonal drivers in each of P and M were shared in 

colorectal, lung and breast cancer, respectively, while the fractions of subclonal drivers was 

20%, 50% and 23%, respectively (Fig. 1c). Of note, colorectal cancer had highest prevalence 

of P-private subclonal drivers likely because multi-region sequencing (MRS) data were more 

prevalent in this tumor type (36%, or 14/39) as compared to lung (0%, 0/30) and breast (9% 

or 6/67) cancers, while MRS increases the power to detect subclonal mutations. Breast 

cancer exhibited higher prevalence of both M-private clonal and subclonal driver mutations 

as compared to colorectal and lung cancers (Fig. 1c). Gene ontology (GO) analysis of M-

private driver genes showed enrichment for chromatin binding, modification and 

organization genes (Supplementary Fig. 5, Supplementary Table 7), implicating chromatin 

regulators in metastatic progression 39.

Amongst all non-silent clonal SSNVs in metastases, functional driver mutations were highly 

enriched on the trunk (P/M shared clonal) of the phylogenetic tree in both colorectal and 

breast cancers (Fig. 1d, Methods). However, this pattern was much weaker in lung cancer 

(Fig. 1d), presumably due to the large number of tobacco-associated non-silent clonal 

SSNVs (C>A mutations) induced early during lung cancer development (Supplementary 

Fig. 6) as most of the lung cancer patients in this cohort (~90%) had a smoking history 23,24, 

whereas driver mutations did not increase proportionally (Fig. 1d). In line with these results, 

the decreased ratio of nonsynonymous versus synonymous SSNVs (dN/dS) 40 amongst 

putative driver genes in metastases (Extended Data Fig. 3) suggests relaxed selective 
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pressure relative to early cancer development in colorectal and breast cancers, but not lung 

cancer. Only 25%, 33% and 48% of colorectal, lung and breast cancer metastases, 

respectively, harbored one or more private clonal driver mutations and these values were 

lower when restricted to untreated metastases (19%, 22% and 22%, respectively) (Fig. 1e). 

These data suggest that untreated metastases commonly arise from the major (or dominant) 

clone in the primary tumor leading to driver homogeneity (Fig. 1f). However, amongst 

treated metastases, the proportion of private-clonal drivers increased dramatically across all 

three cancer types with 71%, 75% and 53% in colorectal, lung and breast cancer, 

respectively (Fig. 1e). This pattern was similarly evident in patients where both untreated 

and treated metastases were sampled where all (10/10) treated metastases harbored private 

functional driver mutation(s), but few (2/10) untreated lymph node metastases did 

(Supplementary Table 6). Therefore, these data suggest that the therapy selects a minor 

micrometastatic subclone (Fig. 1g). Hence, treatment confers a stringent selective pressure 

and promotes clonal evolution of the metastasis. Meanwhile, although the overall copy 

number landscape is highly concordant between paired primary tumors and metastases 

(Extended Data Fig. 4), copy number analysis identified a small number of putative driver 

genes that were more frequently amplified or deleted in metastases relative to primary 

tumors (increasing from P to M by 15%, Extended Data Fig. 5). These include amplification 

of RAC1 and deletions of FAT1 and ALB in colorectal cancer, amplifications of PLCG1 and 

SALL4 and deletions of NOTCH2, CDKN1B in lung cancer and amplifications of IL7R, 
NIPBL and deletions of NOTCH1, PTEN in breast cancer (Extended Data Fig. 5). 

Collectively, these data suggest that the genomic drivers required for invasion and metastasis 

often occur early in the primary tumor (Fig. 1f).

Clonality of metastatic seeding

In order to infer the clonality of individual metastases (Fig. 2a), we compared the CCFs of 

SSNVs in each P/M pair and the number of M-private clonal SSNVs, P-private clonal 

SSNVs and P/M shared subclonal SSNVs was denoted as Lm, Lp and Ws, respectively (Fig. 

2b). We used the Jaccard similarity index (JSI) where JSI = W s/(Lm + Lp + W s) to quantify 

mutational similarity between P/M pairs 41 (Methods). Polyclonal seeding is expected to 

result in a higher JSI than monoclonal seeding due to the higher proportion of shared 

subclonal SSNVs (higher Ws) and the presence of fewer M or P-private clonal SSNVs 

(lower Lm and Lp) (Fig. 2b). These patterns were verified by simulation studies using an 

established agent-based model of spatial tumor progression 16,30 (Extended Data Figs. 6–7, 

Methods). Notably, polyclonal seeding can be either a multicellular event (by cell cluster) or 

multiple consecutive single-cell events (Fig. 2a). However, current data is underpowered to 

distinguish these two scenarios as the resultant patterns of genomic heterogeneity between 

the primary tumor and metastasis are highly similar. We therefore only modeled polyclonal 

seeding by cell clusters (Methods). By analyzing data from virtual tumors simulated under 

varied parameters where one biopsy (~106 cells) was sampled from each primary tumor and 

metastasis (Methods), we found that a JSI value of 0.3 maximizes the classification accuracy 

(91.1%) in distinguishing monoclonal versus polyclonal seeding (Fig. 2c). We also 

simulated MRS data (n=4 samples from each of primary tumor and metastasis) and found 

that the optimal JSI cutoff increased to 0.4 and yielded an increased classification accuracy 

(96.3%) relative to single sample data (Supplementary Fig. 7). Given that most (>80%) 
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patients in this study only had only a single sample from the primary tumor and metastasis, 

we retain the 0.3 cutoff for analyses (Fig. 2c). Most metastases exhibited patterns consistent 

with monoclonal seeding (n=151, 76% of metastases; median JSI=0.075, interquartile range, 

IQR=0.021−0.138), whereas polyclonal seeding was less frequent (n=48, 24% of 

metastases; median JSI=0.523, IQR=0.469−0.800) (Figs. 2c).

As expected, monoclonal metastases (n=151) exhibited significantly higher Lm and Lp 

values than polyclonal metastases (n=48) (P = 6.2 × 10−16 and P = 2.1 × 10−9 for Lm and Lp, 

respectively, two-sided Wilcoxon Rank Sum Test) and significantly lower Ws values (P = 2.1 

× 10−12, two-sided Wilcoxon Rank Sum Test) (Fig. 2d). Metastases of monoclonal origin 

also harbored significantly more SCNAs relative to paired primary tumors than polyclonal 

metastases (P = 1.9 × 10−8, two-sided Wilcoxon Rank Sum Test; Fig. 2e). Indeed, Lm is 

highly correlated with the number of P-to-M altered SCNAs (Spearman’s rho=0.61, P = 3.3 

× 10−20; Fig. 2f), indicating that both SSNVs and SCNAs reflect the clonality of metastases. 

Polyclonal seeding was more prevalent in axillary lymph node metastases (all, 19/35 or 

54%) relative to distant metastases (29/164 or 18%) (P = 1.8 × 10−5, two-sided Fisher’s 

exact test; Fig. 2g, Extended Data Fig. 8). This pattern is also true for untreated metastases 

(lymph node vs distant, 17/29 or 59% vs 20/70 or 29%; P=0.007, two-sided Fisher’s exact 

test), potentially reflecting greater lymphatic spread of disseminated cells to the lymph 

nodes via multiple dissemination events (Fig. 2a). Amongst distant metastases, polyclonal 

seeding was more prevalent in untreated metastases (20/70 or 29%) than treated metastases 

(9/94 or 10%) (P=0.002, two-sided Fisher’s exact test; Fig. 2g), presumably because 

treatment selects for resistant micrometastatic subclones that manifest clinically as 

monoclonal metastases (Fig. 2h). The higher P/M driver gene heterogeneity observed in 

treated versus untreated metastases (Fig. 1e) is consistent with this scenario. The prevalence 

of polyclonal seeding differed across metastatic sites (lymph node, liver, brain and lung), 

with brain and lung more commonly exhibiting monoclonal seeding (Extended Data Fig. 

8b); these two sites were more commonly biopsied after treatment. In fact, the prevalence of 

polyclonal seeding amongst lymph node (54%), liver (26%), brain (17%) and lung (8%) 

metastases is negatively associated with the fraction of metastases that were treated amongst 

these four sites (17%, 21%, 68%, 92%). This pattern is most evident for brain metastases 

which had ample numbers of both treated (n=43) and untreated (n=21) metastases. Here, the 

prevalence of polyclonal seeding is 7% (3/43) amongst treated and 38% (8/21) amongst 

untreated metastases (P=0.004, two-sided Fisher’s exact test; Extended Data Fig. 8b). 

Therefore, the prevalence of polyclonal seeding is variable across metastatic sites and 

dependent on whether treatment was administrated before sampling. Since treatment 

influences the clonality of metastases, we would expect that polyclonal seeding of distant 

metastases might be more common during the natural course of metastasis (in the absence of 

treatment) than was observed (18%) here.

We further verified the JSI-based classification of monoclonal versus polyclonal seeding by 

phylogenetic analysis of patients with MRS of the primary tumor and metastasis (n=13 

patients; Fig. 3, Supplementary Fig. 8). Monoclonal seeding was associated with a 

monophyletic tree structure (metastatic samples comprise a single phylogenetic clade), 

whereas polyclonal seeding was associated with a polyphyletic structure (metastatic samples 

comprise multiple phylogenetic clades) (Fig. 3, Supplementary Fig. 8).
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We also evaluated the association between clonality and patient outcome (e.g. time to 

metastatic relapse) based on untreated distant metastases, whereas treated metastases were 

excluded due the impact of treatment on clonality. In total, there were 70 untreated distant 

metastases in our cohort: liver: n=45; brain: n=21; bone: n=2; lung: n=1; skin: n=1. We thus 

focus on liver and brain metastases. Most untreated liver metastases were synchronously 

diagnosed (91%; 41/45). Of note, all four metachronous liver metastases (time to relapse 

ranged from 7–8 months) were monoclonal. Amongst brain metastases, 13 exhibited 

patterns consistent with monoclonal seeding while 8 were polyclonal seeding. Amongst, 

31% (4/13) and 37.5% (3/8) were metachronous, respectively. Notably, the time to relapse 

was longer for monoclonal brain metastasis (median=26 months, IQR=(19, 36); 

synchronous metastases excluded) than polyclonal brain metastasis (median=11 months, 

IQR=(9, 17); synchronous metastases excluded). Although limited by the small sample size, 

this (non-significant) trend suggests that polyclonal seeding may be associated with worse 

prognosis. However, further studies on large untreated metastatic cohorts are warranted.

Chronology of metastatic seeding

Previously, we described a computational framework (SCIMET) to estimate the timing of 

metastatic seeding relative to primary tumor size based on MRS of P/M pairs 16. Application 

of this approach to colorectal cancer yielded quantitative evidence for early systemic spread, 

well before the primary tumor was clinically detectable. Since MRS data were not available 

for the vast majority of patients in this cohort, we developed a new computational method 

that leverages exome sequencing data from a single biopsy to time metastatic seeding (Fig. 

4a, Extended Data Fig. 9a, Supplementary Note). The time (in years) from metastatic 

seeding to diagnosis of the primary tumor (ts) can be approximated by:

ts ≈ 1 − Lm
Lp

α × T Eq. (1)

where Lm and Lp correspond to the number of M-private clonal SSNVs and P-private clonal 

SSNVs, respectively; T is the primary tumor expansion age (time from emergence of 

carcinoma founder cell to diagnosis); α = tp/T  where tp is the time from emergence of 

carcinoma founder cell to the most recent common ancestor in the primary tumor sample 

(pMRCA, Fig. 4a, Extended Data Fig. 9a, Supplementary Note). The time fraction α is 

expected to be small because bulk sequencing only detects relatively high frequency 

mutations that occur early during tumor growth or that are strongly selected for 42–44. We 

applied our established agent-based model of spatial tumor growth 30 to simulate a large set 

of virtual tumors (n=1,000, each ~109 cells) with varying growth rates (Methods). In silico 
sequencing of a single biopsy (each ~106 cells, mean depth=100X) from the virtual tumors 

(n=1,000) yields an estimate of α =0.13±0.0028 (Extended Data Fig. 9b), confirming the 

observation that bulk sequencing typically only detects high-frequency mutations that occur 

early during tumor growth. Here we assume a model of stringent selection (selection 

coefficient, s=0.1) during growth of the primary tumor based on our prior analysis of MRS 

data which showed evidence for selection in primary colon cancers within a metastatic 

cohort 16, as well as in primary lung 30 and breast 45 cancers. This assumption is further 

supported by the finding that most primary tumors in this cohort (57/65 or 88% evaluable 
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tumors) exhibited variant allelic frequencies (VAF) distributions that were not consistent 

with neutral evolution 46, despite limitations of this analysis (Supplementary Fig. 9; 

Methods).

We utilized a Gompertzian model of tumor growth 47, to estimate the tumor expansion age 

(T) for each of the three cancer types (Supplementary Note) where tumor size and doubling 

time (DT) at diagnosis were obtained from literature review (Supplementary Table 8). This 

yields estimates of average tumor expansion age of T  =5.2 (IQR, 4.3−7.7), 4.3 (IQR, 

2.7−4.4) and 4.6 (IQR, 3.2−6.6) years for colorectal, lung and breast cancer, respectively 

(Fig. 4b, Supplementary Table 9). Chronological estimates of seeding time relative to 

diagnosis of the primary tumor (ts)can be computed by Eq.(1) as follows: 4.1 years (IQR, 

3.2−4.6), 3.6 years (IQR, 2.8−3.7) and 2.7 years (IQR, 1.1−3.5) for colorectal, lung and 

breast cancers, respectively (Fig. 4c, Supplementary Table 9). The estimated timing of 

metastasis here (ts) agreed with our previous estimates (using the colorectal cancer cohort) 

of primary tumor size at time of metastatic seeding 16 (Spearman’s rho= −0.55, P=0.014, 

Supplementary Fig. 10; note the negative correlation with SCIMET, which estimates 

metastatic timing forward in time, whereas here we estimate this backwards in time). Of 

note, while ts < 0 may indicate metastatic seeding after diagnosis/resection of the primary 

tumor, large Lm values can lead to ts < 0 (see Eq.(1)) even when the metastasis was seeded 

before diagnosis of the primary tumor. To mitigate this uncertainty, samples with estimated 

seeding times later than the actual time of diagnosis of metastasis were excluded (n=12 for 

breast, 1 for colorectal and 1 for lung cancer, respectively) (Supplementary Note). We find 

that ts < 0 was more common in breast cancer and more generally breast cancers 

disseminated closer to the time of detection (later) compared to colorectal and lung cancers 

(Fig. 4c). This may be because screening mammography detects relatively small primary 

breast tumors (<2 cm) 48. However, even after normalization to primary tumor age (namely 

ts/T), which depends on tumor size and the underlying growth parameters (Supplementary 

Note), breast cancer was found to disseminate later than colorectal and lung cancers 

(Supplementary Fig. 11). Most breast cancer metastases (83%) in this cohort were biopsied 

after adjuvant therapy (Extended Data Fig. 1), whereas this fraction is fewer in colorectal 

(13%) and lung (20%) cancer metastases and breast cancers harbored more private driver 

mutations than colorectal and lung cancers (Fig. 1a-c). Thus, the genomic complexity of 

metastatic relapses in breast cancer relative to unpaired early-stage primary tumors 12 at 

least in part reflects the selective effect of treatment on the genome, rather than the drivers of 

metastatic spread. Of note, HER2-positive breast cancers tended to disseminate earlier than 

HER2-negative breast cancers (Supplementary Fig. 12) consistent with this subgroup having 

the highest risk of distant metastasis before the routine use of adjuvant trastuzumab 33, 

which has revolutionized the treatment of this disease in part by targeting occult 

micrometastases.

As expected, metachronous metastases were often seeded later than synchronous metastases 

(median ts=3.8 vs 3.0, P = 5.6 × 10−5, two-sided Wilcoxon Rank-Sum Test; Fig. 4d). In fact, 

ts was highly correlated with the clinical time span from diagnosis of primary tumor to 

metastasis (Fig. 4e), indicating that metastases that manifest late clinically were seeded later. 

Since primary tumor size at diagnosis is an important predictor of a patient’s prognosis (time 
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to metastatic relapse) (Supplementary Fig. 13a), we speculated that metastases were seeded 

earlier (namely larger ts) in patients with larger primary tumor size at initial diagnosis. 

Indeed, ts is positively associated with primary tumor size at diagnosis (Spearman’s 

rho=0.24, P=0.023; Supplementary Fig. 13b). These results corroborate our estimates of 

metastatic timing. According to Eq.(1), a larger number of M-private clonal mutations 

(larger Lm) indicates later dissemination. Supporting this theory, metachronous metastases 

showed significantly larger Lm than synchronous metastases (metachronous: median Lm=24, 

IQR=16−40; synchronous: median Lm=11, IQR=6−32; P = 6.5 × 10−4, two-sided Wilcoxon 

Rank-Sum Test; Extended Data Fig. 10a). This pattern held for SCNAs where metachronous 

metastases showed significantly more SCNAs relative to the primary tumor as compared to 

synchronous metastases (Extended Data Fig. 10b). Since metachronous metastases were 

generally seeded later than synchronous metastases (Fig. 4d), this is consistent with the 

higher degree of genomic divergence with primary tumor in late seeded metastases 18. Given 

that adjuvant treatment targets micrometastases, presumably delaying clinical metastasis 49, 

the timing of metastatic seeding of metachronous metastases following treatment might be 

even earlier. Collectively, these data indicate that systemic spread can occur several years 

prior to diagnosis of the primary tumor but with variability across histologies and subgroups.

Discussion

We performed a systematic analysis of exome sequencing data in paired primary tumors and 

metastases across three common cancers: colorectal, lung and breast and find that polyclonal 

seeding is common in lymph node metastases (19/35, 54%; most untreated) and untreated 

distant metastases (20/70, 29%), but rare (9/94, 10%) in metastases sampled after adjuvant 

therapy (Fig. 2g). Consistent with these results, treated metastases were strongly enriched 

for functional driver mutations as compared to untreated metastases (Fig. 1e). This finding 

indicates that driver gene heterogeneity is minimal between untreated metastases and 

primary tumors (Fig. 1e). Comparisons of paired primary tumors and distant metastases 

suggests that systemic spread can occur rapidly following malignant transformation, often 

several years prior to diagnosis of the primary tumor across three major types (Fig. 4c). 

These results are consistent with other reports of early seeding based on animal models and 

the genomic profiles of disseminated tumor cells 9,50,51.

Our analyses on driver gene heterogeneity, clonality and the timing of metastases provide 

important insights into the clonal dynamics of metastatic progression. First, in the absence of 

treatment, metastases often arise from the major clone in the primary tumor and lack 

metastasis-specific driver mutations (Fig. 1f). Consistent with these observations, a recent 

multi-cancer study demonstrated that driver gene heterogeneity is also minimal amongst 

multiple untreated metastases within individual patients 52. Moreover, the prevalence of 

polyclonal seeding in untreated lymph node and distant metastases indicates multiple cell 

subpopulations in primary tumor have acquired the metastatic competence. Half of all 

metastases (51%) studied here were biopsied after treatment, and these commonly exhibited 

monoclonal seeding accompanied by private driver mutations. As such, polyclonal seeding 

may be relatively common, but the ultimate pattern of clonality in the metastatic lesion is 

influenced by treatment. Further, these data cannot discriminate between polyclonal seeding 

due to multiple independent clones or one multi-clonal event (e.g. cell cluster 7).
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Second, our quantitative framework demonstrates that systemic spread typically begins 2–4 

years prior to the diagnosis of primary tumor (Fig. 4c). These data suggest that in some 

patients, metastatic seeding can happen very early especially for synchronously diagnosed 

metastases (Figs. 4e, 5a). Metachronous distant metastases following treatment occurred 

relatively later than synchronous distant metastases and harbored more genomic aberrations 

and driver mutations (Fig. 1e, Extended Data Fig. 10). These data imply that treatment 

remodels the clonal evolution of metastasis and may select disseminated cells harboring 

drug resistant mutations (Fig. 5a-b). As such metastasis-specific mutations are unlikely to be 

the drivers of metastasis, but instead are associated with resistance (Fig. 5b). This 

interpretation is of clinical relevance and helps to clarify the observation that metastatic 

relapses are more genomically complex than unpaired early-stage primary breast tumors 12. 

At the same time, adjuvant therapy directed at micrometastatic disease is effective for many 

patients, at least for a period of time, thus forestalling disease progression. Unfortunately, in 

cases where relapse occurs, the resultant metastatic outgrowth may be driven by a more 

aggressive, treatment resistant clone.

This study is based on a large collection of paired primary tumors and metastases across 

multiple cancer types with genomic data, but several limitations remain. First, the majority 

of tumors (>80% for P or M) were sequenced to standard depth (median=88, IQR=(65, 110), 

Supplementary Table 3), which is likely underpowered to identify polyclonal seeding 

patterns based on shared subclonal (low frequency) mutations (Fig. 2b). Simulations show 

that multi-region sequencing (n=4 from each of P and M) increases the accuracy of 

classifying monoclonal and polyclonal seeding as compared to single sample. Second, more 

than half of the distant metastases included here were biopsied after drug treatment, which 

substantially remodels the clonal architecture of the metastasis by promoting monoclonality 

and genomic divergence. If these two main confounders are considered, we would expect 

that polyclonal seeding of distant metastases is more common than inferred (18%) here and 

that metastatic dissemination might occur even earlier. Our findings highlight the importance 

of studying the natural course of metastasis as well as the impact of therapy on this process. 

Future studies of paired primary tumors and metastases with comprehensive treatment 

information subject to dense multi-region sampling and single cell sequencing may provide 

additional resolution on these processes.

Online Methods

Whole-exome sequencing (WES) of paired primary tumors and metastases

We performed a comprehensive review on the published studies through surveying the 

PubMed database (https://www.ncbi.nlm.nih.gov/pubmed/), in which whole-exome 

sequencing (WES) was performed for matched normal tissues, primary tumors (P) and 

metastases (M) in the same patients. We focused on colorectal, lung and breast cancers given 

the availability of large patient data in these three cancer types. In total, the raw sequencing 

reads data for 586 tumor samples from 181 patients in 13 published studies were accessed 

and retrieved (Supplementary Table 1). We also generated multi-region sequencing (MRS) 

data for two colorectal cancer patients (mCRCTB1 and mCRCTB7) with liver metastases 

from whom excess de-identified tissue was collected during the course of routine care, hence 
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this is not considered human subjects research. A total of n=5–7 regions were sequenced for 

these two P/M pairs resulting in 24 tumor samples. Here tumor tissues with cellularity >60% 

were selected for DNA isolation using the QIAamp DNA FFPE Tissue Kit (Qiagen) and 

libraries were generated using the Agilent SureSelect Human All Exon kit for sequencing on 

the Illumina HiSeq 2500. Clinical information was retrieved from the original studies, 

including patient age at initial diagnosis, time span from initial diagnosis of primary tumor 

to diagnosis of metastasis, treated information and subtype (Supplementary Tables 2–3). We 

define synchronous metastases if the time span between diagnosis of primary tumor and 

metastasis is within 3 months and metachronous metastases if the time span is ≥3 months.

An established bioinformatics pipeline was used to detect somatic single nucleotide 

variations (SSNVs), small insertions/deletions (indels) and somatic copy number alterations 

(SCNAs), estimate tumor purity/ploidy and estimate the cancer cell fraction (CCF) for each 

SSNVs/indels in corresponding samples 16,30. In particular, paired sequencing reads were 

aligned to human reference genome (NCBI build hg19) with BWA (v.0.7.10) 53. Duplicate 

reads were marked with Picard Tools (v.1.111). Aligned reads were further processed with 

GATK 3.4.0 for local re-alignment around insertions and deletions and base quality 

recalibration.

SSNVs and indel calling

SSNVs were called by MuTect (v.1.1.7) 54 for each tumor/normal pair. SSNVs failing 

MuTect’s internal filters, having fewer than 10 total reads or 3 variant reads in the tumor 

sample, fewer than 10 total reads in the normal sample, or mapping to paralogous genomic 

regions were removed. Additional Varscan (v.2.3.9) 55 filters were applied to remove SSNVs 

with low average variant base qualities, low average mapping qualities among variant 

supporting reads, strand bias among variant supporting reads and high average mismatch 

base quality sums among variant supporting reads, either within each tumor sample or across 

all tumor samples from the same patient. The maximal observed variant allele frequencies 

(VAF) across all samples from each patient were calculated based on raw output files from 

MuTect. SSNVs with maximal observed VAFs lower than 0.05 were removed. For FFPE 

specimens, additional filters were applied to exclude possible artifactual SSNVs. 

Specifically, artifacts among C>T/G>A SSNVs with bias in read pair orientation were 

filtered in each individual FFPE sample, similar to the approach of Costello et al 56. Of note, 

26%, 80% and 81% of primary colorectal, lung and breast cancer samples were FFPE while 

29%, 50% and 55% of metastatic samples in these three cancer types were FFPE. FFPE 

artifacts are at low frequency in primary tumors (median VAF= 0.056–0.085 across studies) 

and metastases (median VAF= 0.017–0.090 across studies). On average, more than 70% of 

the FFPE artifacts across the cohort were specific to the primary tumors, consistent the 

primary tumor more commonly being FFPE than the metastasis. We also sought to exploit 

the multi-sample information in the same patients to retrieve read counts for SSNVs. To 

obtain the depth and VAF information across all samples from the same patient, for each 

SSNV and in each tumor sample that an SSNV was not originally called in, the total reads 

and variant supporting reads were counted using the mpileup command in SAMtools (v.1.2) 
57. Only reads with mapping quality ≥ 40 and base quality at the SSNV locus ≥ 20 were 

counted and used to calculate the VAF for that SSNV. Small insertions/deletions (indels) 
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were called with Strelka (v.1.0.14) 58. SSNVs and indels were annotated with ANNOVAR 

(v.20150617) 59 and those in protein coding regions were retained for downstream analyses.

Copy number analysis

Copy number analysis was performed using TitanCNA (v.1.5.7) 60. Briefly, TitanCNA uses 

depth ratio and B-allele frequency information to estimate allele-specific absolute copy 

numbers with a hidden Markov model, and estimates tumor purity and clonal frequencies. 

Only autosomes were used in copy number analysis. First, for each patient, germline 

heterozygous SNP at dbSNP 138 loci were identified using SAMtools and SnpEff (v.3.6) in 

the normal sample. HMMcopy (v.0.99.0) 61 was used to generate read counts for 1000bp 

bins across the genome for all tumor samples. TitanCNA was used to calculate allelic ratios 

at the germline heterozygous SNP loci in the tumor sample and depth ratios between the 

tumor sample and the normal sample in bins containing those SNP loci. Only SNP loci 

within WES covered regions were then used to estimate allele-specific absolute copy 

number profiles. TitanCNA was run with different numbers of subclones (n=1–3). One run 

was chosen for each tumor sample based on visual inspection of fitted results, with 

preference given to the results with a single subclone unless results with multiple subclones 

had visibly better fit to the data. Results from tumor samples from the same patient were 

inspected together to ensure consistency. Overall ploidy and purity for each tumor sample 

was calculated from the TitanCNA results.

Differentially altered SCNAs in the metastasis relative to paired primary tumor (P-to-M) 

were identified if following three criteria were satisfied simultaneously: 1) absolute copy 

number in the metastasis was larger than 2.8 or less than 1.2; 2) copy number relative to 

median ploidy in the metastasis was larger than 0.8 or less than −0.8; 3) changes relative to 

the primary tumor in both absolute copy number and relative copy number were larger than 

0.8 or less than −0.8. For multi-region sequencing data, segmented log depth ratios (adjusted 

for purity and ploidy) for each primary CRC and paired metastasis were averaged across 

multiple-regions from the same tumor site.

Cancer cell fraction (CCF) estimates and identification of clonal and subclonal mutations

The CCFs and their variation (95% confidence interval or 95% CI) for each SSNVs/indels in 

the corresponding samples were estimated with CHAT (v 1.0) 62. CHAT includes a function 

to estimate the CCF of each SSNVs by adjusting its variant allele frequency (VAF) based on 

local allele-specific copy numbers at the SSNV locus. SSNV frequencies and copy number 

profiles estimated from previous steps were used to calculate the CCFs for all SSNVs in 

autosomes. The CCFs were also adjusted for tumor purity using the estimates by TitanCNA. 

In brief, for an SSNV residing in a genomic segment with a total copy number of CNt, minor 

allele copy number of CNb and cellular prevalence PCNA of the CNA in the tumor content, 

the estimated CCF of the SSNV is:
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CCF =

CNc × V AF
p′ − PCNA × CNt − CNb − 1 Early Major

CNc × V AF
p′ − PCNA × CNb − 1 Early Minor

CNc × V AF
p′ Late/Independent

Eq. (2)

where CNc = CNt × PCNA + 2 × 1 − PCNA  and the effective purity p′ =
CNt × p

CNt × p + 2 × 1 − p

(p is estimated tumor purity) and VAF is the observed variant allele frequency. The temporal 

ordering and background composition of SSNVs and SCNAs was inferred by comparing the 

conditional probabilities of the observed number of mutant reads out of total reads, under 

each scenario and CNA configuration CNt, CNb, PCNA) as follows: Early Major or Minor: 

SSNV in the major or minor allele occurred before the CNA; Late: SSNV occurred after the 

CNA; Independent: the SSNV and CNA occurred in independent lineages 62.

To distinguish clonal and subclonal SSNVs/indels in each sample, we employ the following 

criterion: clonal – 95% CI overlaps with 1; subclonal – the upper bound of 95% CI is 

smaller than 1, as previously used 63.

Since bulk sequencing data is underpowered to detect low frequency mutations, determining 

whether a mutation is truly private mutations to one site is challenging. Thus, “private” 

SSNV/indels in one site relative to another site is paratactically defined as the CCF<5% in 

another site as our previous study 16. For multi-region sequencing data, the merged CCFs by 

integrating multiple regions were used:

CCF =
∑i = 1

k CCFi × di

∑i = 1
k di

, CCF < 1

1, CCF ≥ 1
Eq. (3)

where di and CCFi are the sequencing depth and CCF estimation in region i, respectively.

Sample quality control for downstream analysis

The CCFs of SSNV/indels for each P/M sample pair were visualized using the scatter plot 

and manually checked in order to identify problematic samples. In particular, for each P/M 

pair, a cluster of SSNV/indels centered around CCF=1 is expected which represent truncal 

(P/M shared clonal) mutations that occurred prior to malignant transformation of the 

founding cell in the primary tumor. The patients (n=5) with none of or very few (<10) trunk 

SSNVs/indels were excluded as which implies independent (non-clonal) origin for the 

primary tumor and metastasis. Furthermore, patients (n=42) with a diffusely distributed 

cluster for truncal SSNVs/indels were also excluded since this is likely caused by low tumor 

purity or low sequencing quality. After these filtering steps, 457 tumor samples from 136 

metastatic cancer patients including 39 colorectal cancers (181 tumor samples), 30 lung 

cancers (74 tumor samples) and 67 breast cancers (202 tumor samples) were retained for 

downstream analysis in this study. Regarding the histological subtypes, all colorectal cancers 
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were microsatellite stable (MSS). For lung cancer, 67% (20/30) were adenocarcinoma, 30% 

(9/30) were squamous carcinoma, while 3% (1/30) were small cell lung cancer. For breast 

cancer, 6% (4/67) were ER+/HER2+, 6% (4/67) were ER−/HER2+, 51% (34/67) were ER+/

HER2-, 19% (13/67) were triple negative (TN), while 18% (12/67) were unknown 

(Supplementary Table 2). Of note, there is a bias towards obtaining more paired primary and 

distant metastases from triple negative (TN) breast tumors since they tend to recur earlier 

than ER+ tumors (many within 5 years), where for some subsets of ER+/HER2− disease 

there is a persistent risk of recurrence up to two decades after diagnosis 33,64.

Jaccard similarity index

The number of M-private clonal, P-private clonal and P-M shared subclonal SSNVs for each 

P/M pair was denoted as Lm, Lp and Ws respectively. For two sets, the Jaccard similarity 

index (JSI) is defined for the intersection divided by the union of these two sets. Thus, the 

JSI for a P/M pair can be defined as:

JSI = W s
Lp + Lm + W s

Eq. (4)

For multi-region sequencing data, Lm, Lp and Ws was counted by pairwise comparison of 

each sample pair from the P and M. The mean Lm, Lp and Ws was used to compute the JSI 

by Eq. (4).

Functional assessment of non-silent somatic mutations

To identify functional driver gene mutations, three commonly used computational methods, 

PolyPhen-2 36 (http://genetics.bwh.harvard.edu/pph2/), FATHMM-XF 37 (http://

fathmm.biocompute.org.uk/fathmm-xf/) and CHASMplus 38 (https://karchinlab.github.io/

CHASMplus/), were utilized to perform the function (“driverness”) assessment on the 

nonsynonymous SSNVs amongst putative cancer genes derived from TCGA pan-cancer 65 

and COSMIC (Release v87, Nov. 13, 2018). Stopgain/splicing point mutations and indels on 

putative cancer genes are classified as functional drivers automatically.

Putative cancer genes were curated by merging all TCGA pan-cancer drivers (n=299) 65 and 

additional cancer type-specific drivers annotated by COSMIC Cancer Gene Census (https://

cancer.sanger.ac.uk/cosmic; n=47, 40 and 9 for colorectal, lung and breast cancers, 

respectively). For PolyPhen-2, a SSNV is considered as “functional” when the functional 

report (“pph2_class”) is “deleterious”. For FATHMM-XF, a SSNV is considered as 

“functional” when the functional report (“Warning”) is “ pathogenic”. For CHASMplus, a 

SSNV is considered as “functional” when the false discovery rate (FDR) < 0.05. In this 

study, the SSNVs, predicted to be functional by any of these three methods, were considered 

as functional mutations. Metascape 66 (http://metascape.org) was used to perform gene 

ontology (GO) analysis of functional driver genes.

Driver enrichment analysis

Clonal non-silent SSNVs/indels in a metastatic lesion can be considered truncal clonal (or P-

M shared clonal) or M-private clonal where the number is denoted Ls_total and Lm_total, 
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respectively. Meanwhile, the functional driver SSNVs/indels in a metastasis are denoted 

Ls_driver and Lm_driver, respectively. The ratios, Ls_total/Lm_total and Ls_driver/
Lm_driver, can be evaluated for functional enrichment of drivers on the truncal or M-private 

branch of the corresponding phylogenetic tree. Since Ls_driver and Lm_driver are small 

values (Lm_driver ~ 0 for many metastases), they lead to high variation in the Ls_driver/
Lm_driver ratio. A down-sampling (bootstrapping) step (50% of patients each time) was 

performed in which sampled patient data were merged to derive the Ls_total/Lm_total and 
Ls_driver/Lm_driver ratios. 100 down-samplings were performed for each of the three 

cancer types to derive statistical measures.

Mutational signatures, dN/dS and test of neutrality

MuSiCa 67 (http://bioinfo.ciberehd.org:3838/MuSiCa/) was used to extract mutation 

signatures based on non-negative matrix factorization 68 for P/M shared clonal (truncal) 

SSNVs, M-private clonal SSNVs and M-private subclonal SSNVs respectively, in each of 

the three cancer types. dndscv 40 (https://github.com/im3sanger/dndscv) was used to 

compute the ratio of nonsynonymous and synonymous SSNVs (dN/dS) for missense and 

nonsense mutations, respectively and for P/M shared clonal (trunk) SSNVs, M-private clonal 

SSNVs and M-private subclonal SSNVs, respectively, in each of the three cancer types. We 

evaluated whether a tumor exhibits a pattern consistent with neutral evolution or strong 

selection during growth by analyzing the variant frequency distribution (VAF) of subclonal 

SSNVs. Under neutral evolution, the number of subclonal SSNVs with VAF larger than f in 

a tumor cell population follows a power-law distribution: m f 1/f 46. The adjusted VAFs 

(equivalent to CCF/2) for subclonal SSNVs (in the range of 0.1–0.3) were used here and 

only tumors with at least 20 subclonal SSNVs in this range were analyzed (n=65 primary 

tumors and 79 metastases). By fitting this model and using a threshold of R2=0.98, the mode 

of evolution (neutral or selection) can be inferred (Supplementary Fig. 9). There are notable 

limitations to this analysis, including the lack of MRS data and the fact that many primary 

tumors were FFPE. Nonetheless, the finding that the majority of patients exhibit primary 

tumor VAF distributions consistent with subclonal selection, is in-line with our prior reports 

in a metastatic colorectal cancer cohort with MRS data, where the majority of primary colon 

cancers exhibited evidence of subclonal selection, consistent with the metastatic clone 

having a selective growth advantage 16. Additionally, analysis of multi-region sequencing 

data suggest that subclonal selection may be relatively common in primary lung 30 and 

breast 45 cancers.

Phylogenetic tree reconstruction

We ran PHYLIP 69 via an online version—(http://www.trex.uqam.ca/index.php?

action=phylip&apP=dnapars) and applied the Maximum Parsimony method to reconstruct 

the phylogeny of multiple specimens from individual patients based on the presence or 

absence of SSNVs/indels. The SSNVs/indels residing a region with different loss-of-

heterozygosity (LOH) status between paired primary tumor and metastasis were filtered, 

since which may lead to erroneous presence or absence of SSNVs/indels in paired P and M. 

When multiple maximum parsimony trees were reported, we chose the top ranked solution. 

FigTree (http://tree.bio.ed.ac.uk/software/Figuretree/) was employed to visualize the 

reconstructed trees.
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Spatial agent-based modeling of metastatic progression

We employed our previously established three-dimensional agent-based tumor evolution 

framework 30 to model tumor growth, mutation accumulation and metastatic dissemination 

after malignant transformation. Pre-malignant clonal expansions prior to transformation do 

not contribute to the genetic heterogeneity of an established tumor (since all such alterations 

are clonal), and thus were not modeled since dissemination is assumed to occur after 

malignant transformation of the founding carcinoma cell. In this model, spatial tumor 

growth is simulated via the expansion of deme subpopulations (composed of ~5k cells with 

diploid genome), mimicking the glandular structures often found in epithelial tumors and 

metastases and consistent with the number of cells found in individual colorectal cancer 

glands (~2,000–10,000 cells). The deme subpopulations expand within a defined 3D cubic 

lattice (Moore neighborhood, 26 neighbors), via peripheral growth while cells within each 

deme are well-mixed without spatial constraints and grow via a random birth-and-death 

process (division probability b and death probability d=1−b at each generation). Once a 

deme exceeds the maximum size (10,000 cells), it splits into two offspring demes via 

random sampling of cells from a binomial distribution (Nc, 0.5), where Nc is the current 

deme size.

To model monoclonal seeding, a single cell at the tumor periphery was randomly sampled as 

the metastasis founder cell. To model polyclonal seeding, a cluster of cells (n=10) were 

randomly sampled from the whole tumor in order to maximize the clonal diversity within the 

metastasis founder cells. This is because if the clonal diversity in the metastasis founder 

cells is low, it essentially models the scenario of monoclonal seeding by a cluster of 

genetically similar cells. The metastasis grows at same spatial model with primary tumor 

started from the metastasis founder cell or cell cluster (n=10). During each cell division in 

the growth of primary tumor and metastasis, the number of neutral passenger mutations 

acquired in the coding portion of the genome follows a Poisson distribution with mean u. 

Thus, the probability that k mutations occurred in each cell division is as follows:

P x = k = uke−u

k! Eq. (5)

where an infinite sites model and constant mutation rate are assumed during tumor 

progression. Advantageous mutations also arise stochastically via a Poisson process with 

mean us during each cell division. We assume us=10−5 per cell division in the genome and 

each increases the cell division probability 70. The cell birth and death probabilities for a 

selectively beneficial clone are bs=b×(1+s) and ds=1−ds=1−b×(1+s), respectively, thus the 

selective advantage for an advantageous mutation is defined as s=bs/b−1.

During simulation of primary and metastatic growth, each mutation is assigned a unique 

index that is recorded with respect to its genealogy and host cells, enabling analysis of the 

mutational frequency in a bulk sample of tumor cells during different stages of growth. We 

simulate growth until the primary and metastasis reach a size of ~109 cells (or ~10 cm3) and 

then sample a bulk subpopulation (consisting of ~106 cells) at the peripheral region of the 

primary tumor and metastasis, respectively. The VAF of all SSNVs in the sampled bulk 

subpopulation is considered the true VAF (denoted by fT), whereas the observed allele 
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frequency is obtained via a statistical model that mimics the random sampling of alleles 

during sequencing. Specifically, we employ a Binomial distribution (n, fT) to generate the 

observed VAF at each site given its true frequency fT and number of covered reads n. The 

number of covered reads at each site is assumed to follow a negative-binomial distribution 

(Negative Binomial(size, depth)) where depth is the mean sequencing depth and size 

corresponds to the variation parameter. We assume depth=100 and size=2 for the sequencing 

data in each tumor region and tissue purity=0.6 in order to model normal cell contamination 

in clinical samples. A mutation is called when the number of variant reads is ≥3, thereby 

applying the same criteria as for the patient tumors.

We employed a mutation rate u=0.6 per cell division in the exonic region (corresponding to 

10−8 per site per cell division in the 60Mb diploid coding regions). In order to model varying 

scenarios of tumor growth dynamics, selection and timing of metastatic dissemination, for 

each primary tumor/metastasis (P/M) pair, the birth probability b of founding cells, selection 

coefficient s and primary tumor size at dissemination Nd was sampled from a uniform 

distribution, b~U(0.55, 0.65), log10(s)~U(−3,−1) and log10(Nd)~U(4,8), respectively. 500 

virtual P/M pairs were simulated under each of the monoclonal seeding and polyclonal 

seeding scenarios, where a mean (in silico) sequencing depth of 100X is assumed. The 

number of M-private clonal SSNVs (Lm), P-private clonal SSNVs (Lp) and P/M shared 

subclonal SSNVs (Ws) for each P/M pair were counted from the simulation data and the 

simulated JSI was computed by Eq.(4).

Extended Data
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Extended Data Fig. 1. Sankey diagram of patient cohorts with paired primary tumors and 
metastases
In total, 136 primary tumors and 199 matched metastases from colorectal, lung and breast 

cancers were included. Treatment status is indicated.
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Extended Data Fig. 2. Concordance of mutation burden in paired primary tumors (P) and 
metastasis (M)
Concordance amongst a, Clonal SSNVs; b, Subclonal SSNVs and c, SCNAs are indicated. 

Spearman’s correlation (rho) is reported. Line indicates the linear regression and gray 

shading indicates the 95% confidence interval (CI) of the regression. The mean mutation 

burden across samples is reported for samples with multi-region sequencing data.
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Extended Data Fig. 3. The ratio of nonsynonymous to synonymous mutations, dN/dS
The dN/dS ratios of missense mutations (left panel) or nonsense mutations (right panel) 

relative to synonymous mutations are shown (on log2 scale). The dN/dS ratios for putative 

driver genes and passengers were computed separately. The driver gene list was obtained by 

merging TCGA pan-cancer drivers and COSMIC Cancer Gene Census (Methods). Circles 

and vertical lines correspond to the mean and 95% CI of the dN/dS ratio, respectively.
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Extended Data Fig. 4. The frequency of somatic copy number alterations (SCNAs) for primary 
tumors and metastases across three cancer types
The frequency of amplifications or deletions across 1Mb genomic bins is shown for primary 

tumors and metastases.
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Extended Data Fig. 5. The frequency of somatic copy number alterations (SCNAs) in putative 
driver genes in paired primary tumors (P) and metastases (M)
Left panel, amplifications (AMP) where oncogenes with an increased frequency (≥15%) in 

the metastasis (M) versus primary (P) are labeled. Right panel, deletions (DEL) where tumor 

suppressor genes with increased frequency (≥15%) in the metastasis (M) versus primary (P) 

are labeled.
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Extended Data Fig. 6. Schematic illustration of a 3-D spatial-agent based model of tumor growth 
and metastasis
Tumor growth is simulated via the expansion of deme subpopulations (mimicking the 

glandular structures often found in epithelial tumors and metastases) within a defined 3-D 

cubic lattice according to explicit rules dictated by spatial constraints, where cells within 

each deme are well-mixed and grow via a stochastic branching (birth-death) process 

(Methods). To model monoclonal seeding, a single cell at the tumor periphery was randomly 

sampled as the metastasis founder cell. To model polyclonal seeding, a cluster of cells 

(n=10) was randomly sampled from the whole tumor in order to maximize the clonal 

diversity within the metastasis founder cells. Metastatic growth follows the same spatial-

constraints as the primary and starts from the metastasis founder cell or cell cluster. The final 

sizes of both the primary tumor and metastasis is ~109 cells (~2×105 demes). Clonal 

selection is modeled by assuming a constant beneficial mutation rate that alters the cell birth/

death probability according to the selection coefficient (denoted s). By simulating the 

acquisition of random mutations (neutral or beneficial), tracing the mutational genealogy of 

each cell as the tumor expands and subsequently spatially sampling (~106 cells in each 

sample) and sequencing the ‘final’ virtual tumor as is done experimentally after resection or 

biopsy, we obtain the variant allele frequencies (VAF) and cancer cell fraction (CCF) in both 

primary tumor and metastasis.
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Extended Data Fig. 7. Lm, Lp and Ws values in tumors simulated under monoclonal versus 
polyclonal seeding
The number of SSNVs in each of the three categories (M-private clonal or Lm, P-private 

clonal or Lp, P/M shared subclonal or Ws) in the simulated data generated by modeling 

monoclonal seeding or polyclonal seeding within an agent-based model (Methods) where 

one sample (~106 cells) was biopsied from each primary tumor and metastasis. We 

employed a mutation rate u=0.6 per cell division in exonic regions (corresponding to 10−8 

per site per cell division in the 60Mb diploid coding regions). In order to account for varying 

scenarios of tumor growth dynamics, selection and timing of metastatic dissemination, the 

birth probability b of founding cells, selection coefficient s and primary tumor size at 

dissemination Nd was randomly sampled from a uniform distribution, b~U(0.55, 0.65), 

log10(s)~U(−3,−1) and log10(Nd)~U(4,8), respectively. A total of n=500 virtual P/M pairs 

were simulated under monoclonal seeding and polyclonal seeding by randomly sampling 

these three parameters. Bar, median; box, 25th to 75th percentile (interquartile range, IQR); 

vertical line, data within 1.5 times the IQR.
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Extended Data Fig. 8. Jaccard similarity index (JSI) values in lymph node and distant metastases 
and the percentage of polyclonal seeding across metastatic sites
a, Lymph node metastases (LNM; n=35) showed significantly higher JSI than distant 

metastases (n=164). Among distant metastases, untreated metastasis showed higher JSI than 

treated metastasis although this was not statistically significant. However, using a cutoff of 

JSI=0.3 to classify polyclonal (JSI ≥ 0.3) versus monoclonal seeding (JSI<0.3), untreated 

distant metastases showed a significantly higher percentage of polyclonal seeding than 

treated distant metastases (Fig. 2e). P-value, Wilcoxon Rank-Sum Test (two-sided). Bar, 

median; box, 25th to 75th percentile (interquartile range, IQR); vertical line, data within 1.5 

times the IQR. b, The percentage of polyclonal seeding among all LNM (lymph node 

metastasis), LiM (liver metastasis), BM (brain metastasis) and LuM (lung metastasis) (left 

panel) and stratified by treatment (right panel). P-value, Fisher’s exact test (two sided).
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Extended Data Fig. 9. A mathematical method to quantify the chronology of metastatic seeding, 
ts
a, Schematic of the parameters used to quantify metastatic timing ts (number of years prior 

to primary tumor diagnosis). We assume metastatic spread occurs at tm following the 

emergence of malignant founder of primary carcinoma (denoted t=0). Let T be the time from 

emergence of malignant founder to diagnosis of the primary tumor, thus ts=T−tm. Let Lp and 

Lm be the number of private clonal SSNVs in a bulk sample from primary tumor and 

metastasis, respectively. Lp represents the number of SSNVs that occurred from emergence 

of the primary tumor founder to the most recent common ancestor (pMRCA) of cell lineages 

in a bulk sample. This time span is denoted as tp. Similarly, Lm denotes the number of 

SSNVs occurred from the emergence of primary tumor founder to the MRCA in a bulk 

sample from the metastasis (denoted mMRCA). Lm includes the number of M-private clonal 

mutations that occur: (i) within the primary tumor (Lm1) and (ii) after cells have 

disseminated from the primary tumor (Lm2), thus Lm = Lm1 + Lm2. b, Estimation of α by 

simulating an agent-based model of tumor evolution (Methods). The mean α and standard 

deviation from 1000 simulated tumors are shown.
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Extended Data Fig. 10. Later metastatic seeding is associated with higher genomic divergence in 
matched primary tumors
a, The number of primary (P)-private clonal SSNVs and metastasis (M)-private clonal 

SSNVs in synchronous (distant and monoclonal, n=41) and metachronous (distant and 

monoclonal, n=80) metastases, respectively. b, The number of P-to-M altered SCNAs in 

synchronous and metachronous metastases, respectively; P-values, two-sided Wilcoxon 

Rank-Sum Test. Bar, median; box, 25th to 75th percentile (interquartile range, IQR); vertical 

line, data within 1.5 times the IQR.
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Fig. 1 |. Landscape of driver mutations in paired primary tumors (P) and metastases (M).
a, Oncoprint of functional driver mutations in shared, P-private or M-private drivers. Genes 

mutated in at least three patients are shown. White circles indicate genes with multiple 

mutations in an individual patient. b, Ternary plot of mutation counts in driver genes, 

comparing P-private (left, green), M-private (right, red), and shared (top, blue). The size 

represents their overall count in the corresponding cancer type. c, The proportion of different 

classes of clonal and subclonal mutations in each of the three cancer types. d, The ratio of 

shared clonal to M-private clonal mutations for all non-silent or driver mutations. A down-

sampling procedure was performed to derive the ratio (Methods). P-value, Wilcoxon Rank-

Sum Test (two-sided). Bar, median; box, 25th to 75th percentile (interquartile range, IQR); 

vertical line, data within 1.5 times the IQR. e, The proportion of metastases harboring at 

least one private clonal driver mutation in all, untreated or treated metastases. P-value, 

Fisher’s exact test (two-sided). f-g, Schematic of the major clone model where metastasis 
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originates from the major driver clone in the primary tumor (f) leading to driver 

homogeneity between paired P and M biopsies or of the minor clonal model where the 

metastasis originates from a minor driver clone in the primary tumor (g). Due to the inability 

to detect low frequency mutations by bulk sequencing, the minor clone model leads to driver 

heterogeneity between P and M biopsies.
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Fig. 2 |. The clonality of metastatic seeding.
a, Schematic of monoclonal versus polyclonal seeding of a metastasis. Polyclonal seeding 

occurs either through a cell cluster or multiple monoclonal dissemination events. b, Distinct 

patterns of seeding are evident based on the cancer cell fraction (CCF) of SSNVs between 

primary (P)/metastatic (M) pairs, where representative patients are shown: monoclonal 

(colon cancer V402); polyclonal (lung cancer TH6). c, Classification of monoclonal versus 

polyclonal seeding based on the JSI. Top, JSI values in 1000 virtual P/M tumor pairs. 

Middle, classification accuracy by varying the cutoff of JSI from 0–1 based on simulation 

data. Bottom, JSI values in patient data (n=199 P/M pairs) where the 0.3 cutoff was used to 

identify monoclonal (n=151) or polyclonal seeding (n=48). d, Lm, Lp, Ws values in patient 

data. e, The number of P-to-M altered SCNAs for monoclonal (n=151) and polyclonal 

(n=48) metastases. P-value, Wilcoxon Rank-Sum Test (two-sided). f, Positive correlation 

between Lm and the number of P-to-M altered SCNAs. n=199 P/M pairs; Spearman’s 

correlation (rho) and P-value are reported. g, Polyclonal seeding is common in LNM and 

untreated distant metastases relative to treated distant metastases. h, Schematic of how 

treatment can promote monoclonality as a result of selection for a resistant subclone, despite 

initial seeding by polyclonal disseminated cells. Box plots: bar, median; box, 25th to 75th 

percentile (interquartile range, IQR); vertical/horizontal line across box, data within 1.5 

times the IQR. Jaccard similarity index, JSI; brain metastasis, BM; lymph node metastasis; 

LNM.
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Fig. 3 |. Tumor sample phylogenies based on multi-region sequencing data.
The maximum parsimony method was used to reconstruct multi-sample trees for each 

patient based on the presence or absence SSNVs/indels amongst the samples. For each 

primary(P)/metastatic(M) sample pair, the Jaccard similarity index (JSI) was computed 

according to Eq. (4) based on the numbers of M-private clonal, P-private clonal and P-M 

shared subclonal SSNVs. High JSI values (≥0.3) indicates polyclonal seeding while low JSI 

values (<0.3) indicates monoclonal seeding. Monoclonal seeding gives rise to monophyletic 

tree structures (pink shading indicates metastatic samples within a single phylogenetic 

clade), whereas polyclonal seeding gives rise to a polyphyletic structure (blue shading 

indicates metastatic samples within multiple phylogenetic clades) in the metastasis samples. 

P, primary tumor; OvM, ovarian metastasis; LNM, lymph node metastasis; SkM, skin 

metastasis; LiM, liver metastasis. Additional patient data are shown in Supplementary Fig. 

8.
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Fig. 4 |. Chronology of metastatic seeding.
a, Schematic for the timing of metastatic seeding prior to diagnosis of the primary tumor in 

number of years, ts. T denotes the total time of primary tumor expansion from emergence of 

the malignant founder cell to diagnosis while tp denotes the time from emergence of the 

malignant founder cell to the most recent common ancestor (MRCA) of cells in a bulk 

sample from primary tumor (denoted pMRCA). mMRCA denotes the MRCA of cells in a 

bulk sample from metastasis. ts can be estimated by Eq.(1). Dx, diagnosis. b, Estimation of 

the average T with a Gompertzian growth model is 5.2 (interquartile range or IQR, 4.3−7.7), 

4.3 (IQR, 2.7−4.4) and 4.6 (IQR, 3.2−6.6) years for colorectal, lung and breast cancer, 

respectively. c, Estimation of the time of metastatic seeding (ts) for individual distant 

metastases (monoclonal metastases) in each cancer type. The median ts and IQR are shown. 

Negative ts indicates that the metastasis was seeded after the diagnosis of primary tumor. d, 

The distribution of ts in synchronous metastases (n=41) and metachronous metastases 

(n=80). P-value, Wilcoxon Rank-Sum Test (two-sided). Bar, median; box, 25th to 75th 

percentile (IQR); vertical line, data within 1.5 times the IQR. e, Correlation between ts and 

the time span from diagnosis of primary tumor to metastasis. Spearman’s correlation (rho) 

and P-value are reported. Line indicates the linear regression and gray shading indicates the 

95% confidence interval (CI) of the regression.
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Fig. 5 |. Schematic model of metastatic spread and the impact of therapy
a, Schematic illustration of early versus late metastatic seeding leading to synchronous and 

metachronous metastases. Metastatic seeding occurs quickly following the emergence of the 

founding carcinoma cell. Synchronous metastases, which exhibit low genomic divergence 

from the primary tumor, is seeded early by the major/founding clone in the primary tumor. 

Metachronous metastases, exhibit higher genomic divergence relative to the primary tumor 

and often emerge after adjuvant therapy. Metachronous metastases with specific driver 

mutations that confer resistance can be selected leading to high genomic divergence between 

the primary tumor and treated metastasis. b, Treatment (adjuvant therapy), remodels the 

clonal architecture of metastasis. Dissemination and metastatic seeding (monoclonal or 

polyclonal) initially give rise to undetectable micrometastases. While treatment may 

eliminate drug-sensitive micrometastatic lesions, those that are resistant grow out. Metastatic 

relapse following adjuvant treatment may be delayed by adjuvant treatment, but this may 

result in a more aggressive, resistant lesion. DTCs, disseminated tumor cells. Dx, diagnosis; 

Tx, treatment.
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