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Abstract

Background: Nuclear histones have previously been shown to aggregate LDL in vitro, suggestive of a possible pro-
atherogenic role. Recent studies indicate that histones are released during acute inflammation, and therefore might interact
with circulating lipoproteins in vivo. In view of the associative link between inflammation and cardiovascular disease, the
behaviour of histones was investigated using in vitro models of LDL retention and foam cell formation.

Methodology/Principal Findings: Heparin agarose beads were used as a model of a matrix rich in sulphated
glycosaminoglycans, to which histones bind strongly. Histone-modified beads were observed to pull down more LDL
from solution than untreated beads, indicating that histones can function as bridging molecules, enhancing LDL retention.
Furthermore, addition of heparin inhibited histone-induced aggregation of LDL. To model foam cell formation, murine RAW
264.7 macrophages were incubated for 24 h in the presence of LDL, histones, LDL plus histones or vehicle control. Cells
incubated with LDL in the presence of histones accumulated significantly more intracellular lipid than with LDL or histone
alone.

Conclusions/Significance: These results are consistent with a potential pro-atherogenic role for extracellular histones,
which should be investigated further.
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Introduction

Nuclear histones are highly abundant, small, basic proteins that

serve to package DNA in the nucleosome, as demonstrated by X-

ray crystallography[1]. The predominant histones are the linker

histone H1, and the core histones H2A, H2B, H3 and H4. In

terms of physical characteristics, histones are relatively small

proteins (11–21 kDa), rich in basic amino acid residues.

Histones and other polycationic proteins are known to bind

strongly to polyanions, most notably the highly sulphated

glycosaminoglycan, heparin. Their affinity for heparin is stronger

than that for DNA, such that heparin is able to solubilise histones

from isolated nuclei[2]. Histones also demonstrate a strong affinity

for binding anionic phospholipids such as phosphatidylserine and

cardiolipin[3].

Histones induce plasma proteins to form aggregates, of which

fibrinogen has been identified as a major component[4]. By

applying proteomics to further characterise this aggregate, we

recently discovered[5] that apolipoproteins form a significant part

of such aggregates, indicating the participation of lipoproteins.

The interactions of histones with lipoproteins have not previously

been studied in detail, with the exception of the work of

Skrzydlewski[6], who in the 1970s reported the formation of

aggregates of LDL in the presence of histones, and hypothesised

that this phenomenon might contribute to the development of

atherosclerosis[7]. Intriguingly, the detection of histone H2A in

HDL fractions has been claimed in a patent (US 2007/0099242

A1) to be useful as a biomarker of cardiovascular disease.

In this study therefore, we sought to confirm the aggregation of

LDL by histones, and further investigate the relevance of histones

to atherosclerosis, through the use of in vitro models of LDL

retention and foam cell generation.

Methods

Aggregation of low-density lipoprotein with histones
Human low-density lipoprotein (LDL; density 1.019–1.063 g/

ml; 5 mg/ml total protein, Intracel, Frederick, MD, USA) was

diluted with PBS to 1.67 mg/ml total protein, and any pre-existing

aggregates were removed by centrifugation (10 min at 20,000 g,

15uC). Aliquots (75 ml) of diluted LDL were mixed with 25 ml of

various dilutions of calf thymus histones (Sigma, Poole, Dorset, UK)

in PBS, and incubated at room temperature for 40 min. Turbidity

was then measured at 680 nm. The aggregation of LDL in the

presence of histones was also observed over time (180 sec), by

absorbance at 680 nm, following addition of 25 ml of 0, 0.5, 1 and

2 mg/ml histones in PBS to 75 ml of 1.33 mg/ml LDL in PBS.

Aggregation of high-density lipoprotein with histones
High density lipoprotein (HDL; density 1.063–1.21 g/ml;

20 mg/ml total protein; Intracel, Frederick, MD, USA) was diluted
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to 2 mg/ml by protein in PBS and centrifuged at 20,000 g for

10 min at 15uC. Samples of diluted HDL (50 ml) were mixed with

histones (50 ml of 0, 0.2, 0.4, 0.6, 0.8 and 1 mg/ml histones in PBS),

incubated at room temperature for 40 min, then turbidity measured

at 680 nm. In another experiment, histones (50 ml of 0, 0.5 and

1 mg/ml in PBS) were added to 50 ml of HDL (2 mg/ml in PBS)

and absorbance at 680 nm was measured over the first 180 sec.

Inhibition of histone-induced LDL aggregation using
heparin

Histones (25 ml of 1 mg/ml in PBS) were added to a mixture of

LDL (65 ml of 1.92 mg/ml in PBS) and 10 ml of unfractionated

heparin (UFH, Sigma) or low molecular weight heparin (LMWH,

Sigma) (both at 0, 0.01, 0.1, 1 or 10 mg/ml in PBS). After

incubation for 1 hr at room temperature, turbidity was measured

by absorbance at 680 nm.

Binding of LDL and HDL to histone-loaded heparin
agarose beads

Heparin agarose suspension (100 ml, Sigma) was pre-incubated

in spin columns (VectaSpin Micro, 10 mm, Whatman Interna-

tional Ltd., Maidstone, UK) with 100 ml of 0, 1, 2 or 4 mg/ml calf

thymus histones in PBS. After washing with PBS, the matrix was

incubated with 100 ml of LDL solution (0.5 mg/ml total protein in

PBS) or 100 ml of HDL (1 mg/ml total protein in PBS). The

unbound lipoprotein was recovered following a pulse spin, and the

spin column was then washed twice with 500 ml of PBS before

elution with 100 ml of non-reducing SDS-PAGE sample buffer.

Equal volumes of unbound and eluted material were then analysed

by SDS-PAGE, revealing ApoB100 bands (LDL) or ApoA1 bands

(HDL), which were quantified by gel densitometry (Image J;

http://rsbweb.nih.gov/ij/). In the case of the HDL experiment,

additional lipoprotein-free controls were run to allow densitometry

correction for histone H1 protein in the eluted samples, which

runs at the same MW as ApoA1 by SDS-PAGE.

Histone-induced LDL uptake by RAW macrophages
The mouse macrophage cell line RAW 267.4 (European

Collection of Cell Cultures, Salisbury, UK) was routinely cultured

in DMEM (GIBCO Invitrogen, Paisley, UK) supplemented with

10% heat-inactivated fetal calf serum (FCS: GIBCO Invitrogen),

100 U/mL penicillin, 100 mg/mL streptomycin, and 2 mM L-

glutamine (DMEM/FCS). Histones and LDL were mixed and

incubated for 1 hr at room temperature, before being added to sub-

confluent RAW 267.4 cells in 24-well tissue culture plates. Cells

were fixed and lipid content determined by Oil Red O staining[8].

Cytotoxicity was measured using a commercial kit based on lactate

dehydrogenase (LDH) release, as directed by the manufacturer

(Roche Diagnostics Ltd, Burgess Hill, UK). Optimal concentrations

of histones and LDL, required for foam cell generation in the

absence of cytotoxicity were determined empirically (data not

shown). In subsequent experiments, RAW 267.4 cultures (n = 6)

were incubated with: 50 mg/ml of LDL plus 50 mg/ml of histones;

50 mg/ml of LDL alone; 50 mg/ml of histones alone; vehicle.

Following microscopic examination of Oil Red O staining, wells

were washed with deionised water and air dried, then bound dye

was solubilised by the addition of 250 ml of isopropanol. The

concentration of solubilized Oil Red O determined by absorbance

at 492 nm in a microplate reader, by reference to a standard curve.

Results and Discussion

To confirm the previously reported phenomenon of histone-

induced aggregation of lipoproteins[6], human low-density

lipoprotein (LDL) was titrated with calf thymus histones, an

unfractionated mixture of histones H1, H2A, H2B, H3 and H4.

This produced a concentration and time-dependent increase in

turbidity (Figure 1A,B). Pre-treatment of LDL with LMWH gave a

concentration-dependent inhibition of aggregation on addition of

histones (Figure 1C). Unfractionated heparin gave a similar result

at low concentrations of heparin, but at 0.1 mg/ml it was much

less effective than LMWH (Figure 1C).

It is believed that proteoglycans such as perlecan, which are rich

in the sulphated glycosaminoglycan heparan sulphate, play an

important role in the retention of lipoproteins to endothelial

extracellular matrix. Such proteoglycans are central to the

‘‘response to retention hypothesis’’ of atherosclerosis, proposed

by Williams and Tabas[9]. Indeed, ApoE knockout mice which

were also deficient in perlecan-associated heparan sulphate were

found to be protected from development of atherosclerosis,

compared to heparan sulphate sufficient controls[10]. In order

to test whether histones were capable of performing a bridging role

in the aggregation of LDL, we bound calf thymus histones to

heparin agarose beads, where heparin was used as a structurally

similar (but more highly sulphated) analogue of heparan

sulphate[11]. Thus, if the bound histones were capable of pulling

down LDL from solution, this would be consistent with a bridging

(crosslinking) function. As shown in Figure 1D, a level of baseline

adherence of LDL to heparin-agarose was observed, in accordance

with the known affinity of apolipoprotein B for heparin[12]. With

increasing levels of histones pre-bound to the heparin-agarose

beads, more LDL was bound from solution, and recovered

following elution of the beads with SDS-containing buffer. This

indicates that histones non-covalently linked to a sulphated

glycosaminoglycan-containing matrix under physiological condi-

tions of pH and salt concentration are capable of binding LDL,

suggesting a similar mechanism for lipoprotein retention to that

proposed for lipoprotein lipase[13]. Although these model

experiments conveniently used heparin, it has been shown that

histones H1, H2A and H2B also have a high binding affinity for

heparan sulphate[14,15,16]. Therefore, we suggest that histones

may mediate bridging of LDL to heparan sulphate proteoglycans.

To determine whether the phenomenon of histone-induced

lipoprotein aggregation was limited to LDL, additional experiments

were carried out with HDL (Figure 2). This indicated a concentration

and time-dependent aggregation of HDL in the presence of histones

(Figure 2A and 2B, respectively). Furthermore, like LDL, HDL was

selectively pulled down from solution by histone-charged heparin

agarose (Figure 2C). Therefore LDL and HDL particles, which differ

markedly in size, density and apolipoprotein content, nevertheless

both interact with histones in an apparently similar manner.

Since the formation of lipid-laden macrophages (foam cells) is a

hallmark of the formation of the atherosclerotic plaque, we also

investigated the influence of histones on the accumulation of LDL

by a mouse macrophage line. RAW macrophage cells cultured for

24 hr with LDL (50 mg/ml by total apolipoprotein) contained

more lipid, as visualised by Oil Red O histochemistry (Figure 3A-

D), when histones (50 mg/ml) were present. The bound dye was

solubilised using isopropanol and quantified by spectrometry,

which indicated significantly enhanced lipid binding in the case of

LDL plus histone treatment, compared to LDL or histone alone

(Figure 3E). Histones also significantly increased lipid accumula-

tion by RAW cells in the absence of exogenous LDL, presumably

by enhancing uptake of endogenous lipoproteins from the FCS in

the culture medium. There was no evidence for significant

differences in cell viability between any of the different treatments.

Whilst the physicochemical properties of histones discussed

above are consistent with a potential pro-atherosclerotic function,
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an important question remains as to how histones could possibly

come into contact with the endothelial extracellular matrix.

Possibilities may include lysis of cells within the endothelium, or

transport of histones in complex with lipoproteins or other plasma

proteins from remote areas.

Since histones have been found to be present at low levels in

normal human plasma[17], it would be interesting to determine

whether circulating histone levels are increased during chronic

inflammation, as this may contribute to the known association

between inflammation and atherosclerosis[18]. Chronic in-

flammatory conditions such as rheumatoid arthritis and

systemic lupus erythematosus are associated with increased

incidence of cardiovascular disease[19]. Furthermore, in

models of sepsis, acute inflammation leads to the release of

highly elevated levels of extracellular histones in the circulation,

which mediate organ failure and death[20]. We therefore

hypothesise that chronic inflammation may likewise result in

elevated, although not acutely toxic, levels of histones entering

the circulation. While this has not been addressed directly, a

proteomic study of rheumatoid arthritis for example, reported

that histone H2B was detected in arthritic but not control

plasma[21].

The potential involvement of extracellular histones in athero-

genesis may be envisaged through several routes. Firstly,

lipoproteins such as LDL to which histones have become attached

may have a higher affinity for binding to endothelial proteogly-

cans, and may thereby lead to enhanced lipoprotein retention. In

addition, the secondary necrosis of foam cells, which is known to

occur at the periphery of the necrotic or lipid core of the

atherosclerotic lesion[22], would lead to local extracellular histone

release, enhanced lipoprotein aggregation and in turn, enhanced

uptake by further macrophages, in a positive-feedback mechanism

leading to accelerated progression of the lesion.

Thus, we suggest that extracellular histones are worthy of

further investigation in terms of their atherogenic potential. It will

be important to discover how individual histone types contribute

to this phenomenon, since this study used unfractionated histones

as proof of concept. The affinity of histones for binding lipoprotein

classes other than LDL and HDL should also be explored.

In conclusion, we have demonstrated in vitro properties of

histones that are consistent with a potential pro-atherogenic role. If

confirmed by in vivo studies, this could represent an important new

target for the treatment of cardiovascular disease, particularly

disease associated with chronic inflammatory conditions.

Figure 1. The influence of heparin on histone induced aggregation of low-density lipoprotein. A: Titration of histones into LDL (final
concentration 1.25 mg/ml by protein) was carried out for 1 hr in PBS at 21uC, and protein aggregation measured by spectrophotometric absorbance
at 680 nm. B: Rapid aggregation of LDL was observed over the first 180 seconds of incubation of LDL (75 ml of 1.33 mg/ml by protein in PBS) with
histones (25 ml of 0, 0.5, 1 and 2 mg/ml in PBS). C: Inclusion of varying concentrations of low molecular weight heparin (LMWH) and unfractionated
heparin (UFH) with LDL (1.25 mg/ml) and histone (0.25 mg/ml) caused a general decrease in protein aggregation, relative to uninhibited incubations.
At 0.1 mg/ml, UFH was not effective. D: LDL (100 ml of 0.5 mg/ml in PBS) was incubated with 100 ml of heparin agarose slurry, to which 100 ml of 0, 1,
2 or 4 mg/ml calf thymus histones in PBS had previously been bound. The apolipoprotein B content in the unbound (FT) and SDS-eluted (E) fractions
was determined by SDS-PAGE (inset) and quantified by densitometry. This indicated that LDL was selectively pulled down onto histone-charged
heparin agarose. This experiment was performed three times with similar results.
doi:10.1371/journal.pone.0009884.g001

Histone-LDL Interactions

PLoS ONE | www.plosone.org 3 March 2010 | Volume 5 | Issue 3 | e9884



Acknowledgments

We thank Dr Yuri Kotelevtsev, University of Edinburgh for helpful

discussion and comments.

Author Contributions

Conceived and designed the experiments: AP. Performed the experiments:

AP JKB. Analyzed the data: AP JKB. Wrote the paper: AP.

Figure 2. The influence of heparin on histone induced
aggregation of high-density lipoprotein. A: Titration of histones
into HDL (final concentration 1 mg/ml by protein) was carried out for
1 hr in PBS at 21uC, and protein aggregation measured by spectro-
photometric absorbance at 680 nm. B: Aggregation of HDL was
observed over the first 180 seconds of incubation of HDL (50 ml of
1 mg/ml by protein in PBS) with histones (50 ml of 0, 0.5 and 1 mg/ml in
PBS). C: HDL (100 ml of 1 mg/ml in PBS) was incubated with 100 ml of
heparin agarose slurry, to which 100 ml of 0, 1, 2 or 4 mg/ml calf thymus
histones in PBS had previously been bound. The ApoA1 content in the
unbound (FT) and SDS-eluted (E) fractions was determined by SDS-
PAGE (inset) and quantified by densitometry (see Materials & Methods).
Graph shows mean 6 SEM for an experiment run in duplicate. This
indicated that HDL was selectively pulled down onto histone-charged
heparin agarose. This experiment was performed twice with similar
results.
doi:10.1371/journal.pone.0009884.g002

Figure 3. Histone-aggregated LDL is preferentially taken up by
macrophages. Lipid uptake by RAW 264.7 macrophages was
visualised by Oil Red O staining following incubation for 24 hr with
A: LDL (50 mg/ml) plus histones (50 mg/ml), B: LDL alone, C: histones
alone, or D: vehicle. E: The plate was then washed and dried, and Oil
Red O solubilised from adherent cells by addition of isopropyl alcohol
(250 ml per well). The concentration of cell-retained Oil Red O
solubilised in this way was determined by absorbance at 492 nm in a
microplate reader, by reference to a standard curve (inset). All
treatments resulted in significantly greater lipid uptake by RAW cells
compared to vehicle control (***, p,0.001). Incubations with LDL in the
presence of histones induced a significantly greater lipid uptake than
with LDL alone or histones alone ({, p,0.001). This was repeated three
times with similar results.
doi:10.1371/journal.pone.0009884.g003
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