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Abstract

Human parainfluenza viruses (HPIVs) are a leading cause of acute respiratory infection hos-

pitalization in children, yet little is known about how dose, strain, tissue tropism, and individ-

ual heterogeneity affects the processes driving growth and clearance kinetics. Longitudinal

measurements are possible by using reporter Sendai viruses, the murine counterpart of

HPIV 1, that express luciferase, where the insertion location yields a wild-type (rSeV-luc(M-

F*)) or attenuated (rSeV-luc(P-M)) phenotype. Bioluminescence from individual animals

suggests that there is a rapid increase in expression followed by a peak, biphasic clearance,

and resolution. However, these kinetics vary between individuals and with dose, strain, and

whether the infection was initiated in the upper and/or lower respiratory tract. To quantify the

differences, we translated the bioluminescence measurements from the nasopharynx, tra-

chea, and lung into viral loads and used a mathematical model together a nonlinear mixed

effects approach to define the mechanisms distinguishing each scenario. The results con-

firmed a higher rate of virus production with the rSeV-luc(M-F*) virus compared to its attenu-

ated counterpart, and suggested that low doses result in disproportionately fewer infected

cells. The analyses indicated faster infectivity and infected cell clearance rates in the lung

and that higher viral doses, and concomitantly higher infected cell numbers, resulted in

more rapid clearance. This parameter was also highly variable amongst individuals, which

was particularly evident during infection in the lung. These critical differences provide impor-

tant insight into distinct HPIV dynamics, and show how bioluminescence data can be com-

bined with quantitative analyses to dissect host-, virus-, and dose-dependent effects.

Author summary

Human parainfluenza viruses (HPIVs) cause acute respiratory infections and can lead to

the hospitalization of children. HPIV infection severity may vary due to dose, strain,

patient, and whether the infection initiates within the upper or lower respiratory tract.

There is a need to determine how the rates of virus spread and clearance change in differ-

ent infection scenarios in order to better understand varying clinical manifestations. The

significance of our research is in identifying the dominant mechanisms driving strain-,
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dose-, and tissue-specific HPIV infection kinetics, and in pairing bioluminescence data

with quantitative analyses to determine how the same virus can yield patient-specific out-

comes. This work enhances our understanding of HPIV infection and broadens our

knowledge viral dynamics in the upper and lower respiratory tracts.

Introduction

Human parainfluenza viruses (HPIVs) are a leading cause of acute respiratory infection, with

80% of children seropositive by the age 5 [1]. As a consequence, pediatric hospitalization rates

are second only to respiratory syncytial virus (RSV) [2]. In healthy young adults, this illness is

typically mild, self-limited, and restricted to the upper respiratory tract. However, in infants

and young children, HPIVs cause lower respiratory tract infections that can result in severe ill-

nesses such as croup, bronchiolitis, and pneumonia [3, 4]. Further, immunity following an

infection may be short-lived making individuals susceptible to re-infection [5]. The factors

influencing disease outcome are understudied [6] and there are conflicting reports about

whether serotype-specific kinetics and host responses result in differing clinical manifestations

[7]. With no vaccines or antivirals approved to treat HPIV infection, a better understanding of

the infection kinetics and how these may change with different doses, viral attenuation, and

infection site is vital to effectively abrogating HPIV-related illnesses.

The murine parainfluenza counterpart, Sendai virus (SeV) [8], has been used extensively to

understand HPIV infection [9–13]. SeV infection can be studied using luciferase reporter

SeVs [14–16] enabling noninvasive bioluminescence imaging to study the temporal and spatial

dynamics in the respiratory tracts of living animals during HPIV infection [14–16]. Luciferase

insertion at the M and F junction (rSeV-luc(M-F�)) yielded a wild-type-like virus while inser-

tion at the P and M gene junction (rSeV-luc(P-M)) resulted in a virus with an attenuated phe-

notype [14]. Animals infected with a high dose in a high volume (“high d/v”; 7000 plaque

forming units (PFU) in 30μl) of either virus lead to viral growth throughout the respiratory

tracts and caused high level of lung infection with severe disease condition in the mice [16].

Conversely, animals infected with a low dose in a low volume (“low d/v”; 70 PFU in 5μl) initi-

ated an upper respiratory tract (URT; nasopharynx) infection that ultimately migrated to the

lower respiratory tract (LRT; trachea and lung) after�2 d with reduced dissemination in the

lung [16]. Infection at the low d/v with either virus resembled infection dynamics after contact

transmission [16]. These data showed that different doses and strains initiated distinct levels of

infection in the nasopharynx, trachea, and lung. Understanding which infection processes

drive the differing dynamics may provide insight into the pathogenicity and transmissibility of

HPIV infection.

Mathematical models are useful to understand and quantify in vivo kinetics of a myriad of

viral infections and have been used to analyze other respiratory viruses like influenza A virus

(IAV) (reviewed in [6, 17–19]), respiratory syncytial virus (RSV) [20–22] and severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) [23–26]. A strength of these models is that

they can estimate the rates of infection that are not easily measured within the laboratory or

clinic (e.g., virus production and infected cell half-life) and define the primary infection pro-

cesses that drive differing kinetics (e.g., between strains or doses; e.g., as in [27, 28]) in addition

to their magnitude. To date, no modeling study has assessed the in vivo dynamics of HPIVs,

which is the focus of this work.

Here, we pair a mathematical model [29] together with bioluminescence data from mice

[16] to identify how viral attenuation, dose, respiratory tissue, and individual heterogeneity
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affect the kinetic rates of parainfluenza virus infection. The analyses confirmed that the attenu-

ated strain has a lower rate of virus production compared to the wild-type-like strain, and that

low dose infections result in disproportionately fewer infected cells compared to high dose

infections. In addition, the rates of infectivity and infected cell clearance were highest in the

lung and slowest in the nasopharynx. In the LRT, this rate was distinct between individuals

with increased values in high d/v infections. Together, these analyses highlight the underlying

processes that drive distinct kinetics resulting from different infection scenarios.

Materials and methods

Experimental data

The data used are from Burke et al. [16]. Briefly, groups of 15 129X1 mice were intranasally

infected with rSeV-luc(M-F�) or rSeV-luc(P-M) at a low dose/volume (“d/v”) (70 PFU in 5 μl)

or high d/v (7000 PFU in 30 μl). Bioluminescence (the total flux (photons/second)) in the

nasopharynx, trachea, and lungs was measured daily for 10 d in all mice. To obtain the relation

between bioluminescence and viral loads, a separate experiment was completed where groups

of 5 mice intranasally inoculated with a low d/v or high d/v of rSeV-luc(M-F�) or rSeV-luc

(P-M) were noninvasively imaged to obtain bioluminescence after 3, 5, or 7 days of infection

before nasal, tracheal, and lung tissues were harvested from the same animal so that viral loads

could be measured by plaque titration.

Translating bioluminescence to viral load

Plotting the bioluminescence data against the corresponding viral loads for individual mice

and separately for each virus revealed a nonlinear correlation in the lung data and a linear cor-

relation in the nasopharynx and trachea data (Fig 1). To translate the lung bioluminescence

into viral loads, we fit the following Hill-type function to the paired data.

VðBLÞ ¼
aBn

L

Kn
BL
þ Bn

L

; ð1Þ

where V is virus (PFU/ml), B is bioluminescence (photons/sec.), α is the maximum interaction

rate, KB is the half-saturation constant, and n is the Hill coefficient. The subscript ‘L’ denotes

the measurements in the lung. We also examined whether a linear function fit the data better

and found that Eq (1) gave a better fit based on AICc (77 versus 86 for the rSeV-luc(M-F�)

virus and 95 versus 106 for the rSeV-luc(P-M) virus).

Similarly, to translate the bioluminescence from the trachea and nasopharynx into viral

loads, we fit the following linear function to the paired data.

VðBN;TÞ ¼ lBN;T þ g; ð2Þ

where λ is the slope (PFU/ml)/(photons/sec.) and γ is the intercept (PFU/ml). Subscripts ‘N’

and ‘T’ denote the measurements in the nasopharynx and trachea, respectively. This linear

relation is similar to our previous work [14] and gave a better fit compared to nonlinear rela-

tion based on AICc (47 versus 103 for the rSeV-luc(M-F�) virus and 115 versus 119 for the

rSeV-luc(P-M) virus in trachea, and 15 versus 19 for the rSeV-luc(M-F�) virus and 74 versus

88 for the rSeV-luc(P-M) virus in nasopharynx).

Each function was fit to the respective paired data using scipy.optimize.curvefit in Python.

Fits were performed independently for the rSeV-luc(M-F�) and rSeV-luc(P-M) viruses and

estimated viral loads for bioluminescence below the limit of detection (� 5.6 log10 photons/

sec. [16]) were set to 0 log10 PFU/ml. Comparison of the bioluminescence and measured or
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Fig 1. Translation of bioluminescence into viral loads. Fits of Eq (1) or Eq (2) to the paired bioluminescence and viral loads

from the lung (Panel A), trachea (Panel B), or nasopharynx (Panel C) of individual mice at 3, 5, or 7 days after infection with low

d/v or high d/v of rSeV-luc(M-F�) virus (“M-F”, black) or rSeV-luc(P-M) virus (“P-M”, white). Correlation was derived for each

compartment by combining the low d/v and high d/v infections for each strain. Estimated viral load time-series in the lung (Panel

A, squares), trachea (Panel B, diamonds), and nasopharynx (Panel C, circles) for infection with rSeV-luc(M-F�) (black) or rSeV-

luc(P-M) (white) at high d/v (solid line) or low d/v (dashed line) from the bioluminescence (red). Data are shown as geometric

mean ± standard deviation for 5 (paired data) or 15 mice per time point (time series data).

https://doi.org/10.1371/journal.pcbi.1009299.g001
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estimated viral loads from the time series and paired data verified the accuracy of the transla-

tions (Fig A in S1 Text).

Viral kinetic model

We used a mathematical model previously developed to describe the biphasic viral load decay

during influenza A virus infection [29]. The model tracks 4 populations: susceptible epithelial

(“target”) cells (T), infected cells in the eclipse phase (I1), productive infected cells (I2), and

virus (V).

dT
dt
¼ � bTV ð3Þ

dI1

dt
¼ bTV � kI1 ð4Þ

dI2

dt
¼ kI1 � dðI2ÞI2 ð5Þ

dV
dt
¼ pI2 � cV ð6Þ

In this model, target cells become infected with virus at rate βV per day. Once infected, the

cells enter an eclipse phase (I1) before transitioning to virus-producing infected cells (I2) at a

rate k per day. Infected cells produce virus at a rate p PFU/ml/cell/day. Free virus is cleared at

a rate c per day. The rate of infected cell clearance changes with their density according to the

function δ(I2) = δd/(Kδ + I2), where δd/Kδ is the maximum rate and Kδ is the half-saturation

constant.

Parameter estimation

Parameters were estimated using a non-linear mixed-effect modeling (NLME) and stochastic

approximation expectation minimization (SAEM) algorithm implemented in Monolix 2019R1

[30]. In this approach, each individual parameter is written as yi ¼ yeZi , Zi ¼ N ð0;o2
i Þ, where

θ denotes the median value of the parameter in the population and ηi denotes the random

effect that accounts for the inter-individual variability of the parameter within the population.

Parameters for each individual were obtained using empirical Bayes estimates, and inter-indi-

vidual variability was allowed for all parameters with the assumption of an additive error

model for the log10 viral loads. Estimated viral loads from bioluminescence data below the

limit of detection or V = 0 log10 PFU/ml were left-censored.

Estimated parameters included the rates of virus infection (β), virus production (p), virus

clearance (c), eclipse phase transition (k), infected cell clearance (δd), and the half-saturation

constant (Kδ). The rate of infection (β) was allowed to vary between 1 × 10−9 − 1.0 (PFU/

ml)−1d−1, the rate of viral clearance between 1 × 10−2 − 1 × 103 d−1, and the rate of viral pro-

duction (p) between 1 × 10−2 − 1 × 103 (PFU/ml) cell−1 d−1. The eclipse phase transition rate

(k) bounds were set to 3 d−1 and 6 d−1 to constrain it within biologically feasible values [29].

The rate of infected cell clearance (δd) was given a lower limit of 1 × 102 cells d−1 and an upper

limit of 1 × 107 cells d−1. The saturation constant (Kδ) was bounded between 1.0 − 1 × 107 cells.

The initial number of target cells (T0) was set to 1 × 107 cells for the lung to maintain consis-

tency with previous studies for high d/v infections in mice [27–29]. The number of susceptible

cells in the nasopharynx and trachea was estimated to account for the physiological differences
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in different parts of the respiratory tract. To do this, the production rate (p) was fixed to the

value obtained for high d/v infections in the lung. To account for the difference in virus depo-

sition within the respiratory tract due to inoculum volume, we set the value of initial infected

cells (I1(0)) in the nasopharynx, trachea, and lung to 35 cells, 21 cells, and 7 cells for low d/v

and to 7 cells, 70 cells, and 700 cells for high d/v, respectively. Similar to previous studies [29],

we evaluated other values of I1(0) and found no significant differences (Table A in S1 Text).

The initial number of productively infected cells (I2(0)) and the initial free virus (V0) were set

to 0. To explore and visualize the regions of parameters consistent with the model, we per-

formed bootstrapping with the model (Eqs (3)–(6)) for each of the infection groups using

Rsmlx package [31].

Statistical analysis

The Welch’s t-test was used to determine the statistical significance of parameter differences

among each group of infection with significance established at p<0.05. To compare models,

the Akaike Information Criteria with small sample size correction (AICc) was used. The model

with the lowest AICc was considered the best, and ΔAICc < 2 was considered statistically

equivalent [32, 33].

Results

Kinetics of bioluminescence and translation into viral loads

In animals infected with either the rSeV-luc(M-F�) or rSeV-luc(P-M) Sendai viruses at a high

d/v (7000 PFU in 30 μl), bioluminescence increases in the lung, trachea, and nasopharynx

within 2 d of infection (Fig 1). Peak bioluminescence occurs at 2–3 d pi before biphasically

decaying and returning to baseline by 10 d pi. Comparatively, in animals infected with a low

d/v, bioluminescence was delayed by 2 d with a peak occurring after 4 d pi. Because it is not

clear that how much bioluminescence is emitted per infected cell, we translated the biolumi-

nescence into viral loads by fitting Eq (1) to the paired data from the lung and Eq (2) to the

paired data from the nasopharynx or trachea independently for the rSeV-luc(M-F�) and rSeV-

luc(P-M) viruses (Fig 1 and Table 1). Using the estimated parameters, we then translated the

time course bioluminescence data into viral loads for each individual (Fig 1) and verified it

against the viral loads from the paired data (Fig A in S1 Text). The translated viral loads in the

lung, trachea, and nasopharynx suggested a viral load trend of an initial exponential growth,

peak, and biphasic decay. However, the magnitudes and timescales of the viral loads differed

depending on virus strain, dose, and respiratory tissue. As expected, the high d/v infections

resulted in� 1 log10 PFU/ml higher viral peaks with faster growth rates (Fig B and Table B in

Table 1. Best-fit parameters from translating bioluminescence into viral loads. Parameters obtained by fitting Eq (1) to paired bioluminescence and viral loads from the

lung or by fitting Eq (2) to paired bioluminescence and viral loads from the trachea or nasopharynx of individual mice infected with the rSeV-luc(M-F�) virus (“M-F”) or

the rSeV-luc(P-M) virus (“P-M”).

Tissue Virus Maximum interaction rate, α log10 (PFU/ml)/(photons/sec.) Half-saturation constant, KB log10 photons/sec. Hill coefficient, n

Lung M-F 2.08 0.80 7.12

P-M 2.24 0.46 5.66

Slope, λ log10 (PFU/ml)/(photons/sec.) Intercept, γ log10 PFU/ml

Trachea M-F 2.0 0.37

P-M 1.8 0.72

Nasopharynx M-F 1.2 2.75

P-M 1.9 -0.37

https://doi.org/10.1371/journal.pcbi.1009299.t001
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S1 Text),�1 d longer infection duration in the nasopharynx, and�2 d earlier peak compared

to the low d/v infections in all tissues. High d/v infections in the lung also resulted in faster

decay rates (Fig B and Table B in S1 Text), and the rSeV-luc(M-F�) virus showed� 1 log10

PFU/ml higher viral peak in the lung and slightly longer infection duration in each tissue com-

pared to the rSeV-luc(P-M) virus.

Number of infected cells varies with dose and infection site

To quantify the kinetic differences between the two strains, between the high d/v and low d/v

infections, and between the lung, trachea, and nasopharyx, we employed a mathematical

model (Eqs (3)–(6)) that describes the biphasic decay of viral loads [29]. We first fit the model

to the estimated viral loads from the lungs of infected mice while fixing the initial number of

target cells (T0) to the same value for both the high d/v and low d/v infections (i.e., T0 =

1 × 107cells [27]; Fig C and Table C in S1 Text). Although the model provided a close fit to

both data sets and could accurately reproduce both virus- and dose-specific patterns, the

resulting parameter estimates for the rate of virus production (p) differed between the high d/v

and low d/v infections (Table C in S1 Text). Biologically, we anticipated that this parameter

could be virus-specific but did not expect it to be dose-dependent. Mathematically, the param-

eter is dependent on the initial number of target cells where only the product (pT0) can be reli-

ably estimated [34, 35]. Because the value of T0 is approximately equivalent to the final

number of infected cells [36] and low dose infections likely result in fewer infected cells, we re-

fit the model to estimate T0 for the low d/v infection in the lung while keeping the rate of virus

production (p) fixed to the value obtained for high d/v infection (i.e., 8.6 PFU/ml/cell/d for the

rSeV-luc(M-F�) virus and 0.9 PFU/ml/cell/d for the rSeV-luc(P-M) virus; Table C in S1 Text).

The model solutions were indistinguishable visually and statistically (Fig C in S1 Text), and it

resulted in a 1 log10 lower estimate for the initial number of target cells for the low d/v infec-

tions (i.e., T0 = 1.0 × 106 cells for the rSeV-luc(M-F�) virus and T0 = 1.1 × 106 cells for the

rSeV-luc(P-M) virus; Table D in S1 Text).

We extended this workflow to account for the anatomical differences between the upper

and lower respiratory tracts (Table D in S1 Text). The analysis suggested a higher number of

target cells in the nasopharynx compared to the trachea (4.5 × 106 cells versus 1.5 × 105 cells

for the rSeV-luc(M-F�) virus; p< 1 × 10−5, and T0 = 1.6 × 107 cells versus T0 = 1.2 × 106 cells

for the rSeV-luc(P-M) virus; p< 1 × 10−5) at high d/v infections. For high d/v infections with

either virus, T0 was the highest in the lung (1 × 107 cells for both strains; p< 1 × 10−5). For low

d/v infections, the estimated T0 was the lowest in the trachea and highest in the nasopharynx

(3.2 × 104 cells and 2.5 × 106 cells for the rSeV-luc(M-F�) virus; p< 1 × 10−5, and T0 =

1.1 × 105 cells and T0 = 9.0 × 106 cells for the rSeV-luc(P-M) virus; p< 1 × 10−5, in the trachea

and nasopharynx, respectively).

Strain-, dose-, and individual-dependent processes

To effectively identify strain-, dose-, and individual-specific parameters, we fixed the initial

number of target cells (T0) to their estimated values and re-fit the model to each data set (Fig 2

and Table 2 and Fig D in S1 Text). This was sufficient to recover the distribution of the virus

production rate (p) (Fig 3). Comparing the resulting parameters for each virus showed that the

primary strain-specific differences were the rates of virus production (p) and infected cell

clearance (δd/Kδ) (Fig 3 and Table 2 and Figs E-G in S1 Text). As expected, the rSeV-luc(P-M)

virus, which exhibits an attenuated phenotype, had a lower virus production rate (�0.9 PFU/

cell/d) compared to the rSeV-luc(M-F�) virus (�8.6 PFU/cell/d). In the lung (Fig 3A), the

maximum rate of infected cell clearance (δd/Kδ) for the rSeV-luc(M-F�) virus was increased in
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high d/v infections (4.6 × 103 d−1) compared to low d/v infections (5.4 × 102 d−1; p<1 × 10−5)

and compared to the rSeV-luc(P-M) virus at high d/v (6.2 × 102 d−1; p<1 × 10−5). At low d/v,

this rate was lowest for the rSeV-luc(P-M) virus (1.6 × 102 d−1) compared to the high d/v and

to the rSeV-luc(M-F�) virus (p<1 × 10−3 for both). The majority of the other parameters (i.e.,

virus infection (β), eclipse phase (k), and virus clearance (c)) were similar for all the infection

groups in the lung with the exception of the rate of virus clearance. This parameter was signifi-

cantly lower for the rSeV-luc(P-M) virus at low d/v than at high d/v (7.4 d−1 versus 16 d−1;

p<1 × 10−3). In the trachea (Fig 3B), there were small differences in the maximum rate of

infected cell clearance between the two strains but statistical significance was not reached

(high d/v, p = 0.09; low d/v, p = 0.07). In contrast, there was a dose dependency in this parame-

ter, where it was larger in the high d/v infections (p<1 × 10−3 for both strains). In the naso-

pharynx (Fig 3C), the infected cell clearance rate was neither strain- nor dose-dependent.

However, the rates of virus infection (β) and clearance (c) were different between the two

strains at both doses (p<0.01 for both parameters).

To assess the parameters driving inter-individual variability, we examined the estimated

standard deviation (ω) of the random effect for each parameter and the individual fits (Table E

and Figs L-W in S1 Text). The largest deviance that accounted for the variability in the SeV

dynamics within the lung was in the infected cell clearance parameters (δd and Kδ). There was

little variability in parameters for infection in the trachea and nasopharynx.

Fig 2. Fit of the viral kinetic model to estimated viral loads from the lung, trachea, and nasopharynx during SeV infection with different strains

and doses. (A-C) Fit of the model (Eqs (3)–(6)) to estimated viral loads from the lung (Panel A, squares), trachea (Panel B, diamonds) and nasopharynx

(Panel C, circles) of mice infected with rSeV-luc(M-F�) (“M-F”, black) at high d/v (solid blue line) or low d/v (dashed orange line) or with rSeV-luc

(P-M) (“P-M”, white) at high d/v (solid magenta line) or low d/v (dashed green line). The gray regions are the model solutions using parameter sets

within the 95% CIs. Data are shown as geometric mean ± standard deviation for 15 mice per group.

https://doi.org/10.1371/journal.pcbi.1009299.g002
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Similar to our previous work for influenza [29], two main parameter correlations were evi-

dent. These were between the rates of virus production (p) and clearance (c) and between the

rates of infection (β) and infected cell clearance (δd/Kδ). Despite the aforementioned differ-

ences, the basic reproduction number (R0 = βpKδT0/cδd [29]) was similar within the lung for

each strain and dose (R0 2.0 − 2.7; Table 2). R0 was maximal in the high d/v scenarios within

the other respiratory tissues (3.8 − 4.6 versus 2.3 − 2.9 in the trachea for both viruses,

p<1 × 10−3; 28 versus 9 (rSeV-luc(M-F�)) and 8.8 versus 6.2 (rSeV-luc(P-M)) in the nasophar-

ynx, p<1 × 10−3; Table 2).

Respiratory tissue-dependent processes

Comparing the resulting parameters between the lung, trachea, and nasopharynx, the primary

tissue-dependent alteration was in the maximum rate of infected cell clearance (δd/Kδ) (Fig 4

and Figs H-K in S1 Text). This parameter was significantly higher in the lung (4.6 × 103 d−1)

than in the trachea (2.4 × 102 d−1; p< 1 × 10−5) and nasopharynx (7.7 d−1; p< 1 × 10−5) for the

rSeV-luc(M-F�) virus at high d/v (Fig 4A). The same trend was also observed for the remaining

infection groups for this parameter (Fig 4B–4D). The rate of virus infection (β) was similar

between the lung and trachea but significantly lower in the nasopharynx (p< 1 × 10−5 for

Table 2. Maximum likelihood estimates of population parameters. Population parameters (median values) and 95% confidence intervals obtained from fitting the

model (Eqs (3)–(6)) to estimated viral loads from the lung, trachea, or nasopharynx of mice infected with either the rSeV-luc(M-F�) virus (“M-F”) or the rSeV-luc(P-M)

virus (“P-M”) at a high d/v or low d/v. The initial numbers of target cells (T(0)) and infected cells (I1(0)) were fixed to the indicated value, and the initial number of produc-

tively infected cells (I2(0)) and the initial virus (V(0)) were set to 0.

Virus Dose

PFU

Virus

production, p
(PFU/ml) cell−1

d−1

Virus

clearance, c
d−1

Virus

infection, β
(PFU/ml)−1

d−1 × 10−3

Eclipse

phase, k
d−1

Infected cell

clearance, δd
cell−1d−1 × 105

Half-

saturation

constant, Kδ

cells × 104

Initial

infected

cells, I1(0)

cells

Initial

target

cells, T(0)

cells

Basic

reproduction

number, R0

Lung M-F 70 8.2 17 2.5 3.0 1.9 0.035 7 1.0×106 2.2

[4.0–12] [9.0–28] [1.8–3.8] [2.9–3.2] [1.8–2.3] [0.023–0.052] - - [1.9–2.5]

7000 8.6 17 2.1 3.5 14 0.03 700 1.0×107 2.3

[5.0–12] [10–24] [1.8–3.0] [3.1–4.8] [13–14] [0.025–0.035] - - [2.1–2.9]

P-M 70 0.8 7.4 3.5 3.0 2.4 0.14 7 1.1×106 2.4

[0.7–1.4] [6.0–10] [1.9–4.4] [2.9–3.0] [2.4–3.0] [0.092–0.21] - - [2.0–2.4]

7000 0.9 16 3.1 3.0 15 0.23 700 1.0×107 2.6

[0.6–1.3] [12–21] [1.7–5.0] [3.0–3.1] [14–15] [0.14–0.41] - - [2.4–3.0]

Trachea M-F 70 8.0 5.4 2.9 3.0 0.06 0.013 21 3.2×104 2.9

[7.0–9.0] [5.4–8.8] [2.1–4.7] [2.9–3.0] [0.057–0.067] [0.01–0.025] - - [1.8–2.2]

7000 7.9 3.6 3.4 3.0 0.24 0.01 70 1.5×105 4.6

[6.7–8.5] [3.4–4.0] [2.9–4.0] [2.9–3.0] [0.23–0.25] [0.01–0.02] - - [3.8–4.3]

P-M 70 1.0 4.9 4.1 3.0 0.20 0.05 21 1.1×105 2.3

[0.5–1.2] [4.0–6.2] [2.8–5.1] [2.9–3.0] [0.16–0.20] [0.05–0.11] - - [2.0–2.4]

7000 1.0 4.3 4.1 3.0 2.5 0.084 70 1.2×106 3.8

[0.7–1.4] [3.9–4.7] [2.6–5.3] [2.9–3.0] [2.2–3.0] [0.066–0.14] - - [3.5–4.7]

Nasopharynx M-F 70 7.4 3.5 0.011 3.0 4.8 7.5 35 2.5×106 9.0

[5.0–7.8] [2.7–3.8] [0.01–0.02] [2.9–3.0] [3.8–4.9] [3.5–7.2] - - [7.2–9.8]

7000 7.6 3.0 0.019 3.0 7.7 10 7 4.5×106 28.1

[6.6–10] [2.6–3.8] [0.011–0.022] [2.9–3.1] [7.5–8.7] [9.9–20] - - [27–37]

P-M 70 1.0 7.7 0.039 3.0 22 30 35 9.0×106 6.2

[0.8–1.1] [6.5–8.2] [0.031–0.045] [2.9–3.0] [13–27] [15–37] - - [5.2–7.2]

7000 1.0 4.9 0.028 3.0 35 34 7 1.6×107 8.8

[0.9–1.1] [4.3–5.6] [0.025–0.061] [2.9–3.0] [31–38] [13–47] - - [7.7–12.2]

https://doi.org/10.1371/journal.pcbi.1009299.t002
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Fig 3. Strain- and dose-dependent parameters in the lung, trachea, and nasopharynx. Comparison of parameter histograms and

ensembles resulting from fitting the model (Eqs (3)–(6)) to estimated viral loads from the lung (Panel A), trachea (Panel B) or nasopharynx

(Panel C) of mice infected with the rSeV-luc(M-F�) virus (“M-F”) at high d/v (blue) or low d/v (orange), or infected with the rSeV-luc

(P-M) virus (“P-M”) at high d/v (magenta) or low d/v (green). Parameters shown are virus production (p), virus clearance (c), virus

infection (β), and infected cell clearance (δd/Kδ). Additional histograms and ensemble plots are in Figs E-G in S1 Text.

https://doi.org/10.1371/journal.pcbi.1009299.g003

PLOS COMPUTATIONAL BIOLOGY Modeling parainfluenza virus infection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009299 August 12, 2021 10 / 19

https://doi.org/10.1371/journal.pcbi.1009299.g003
https://doi.org/10.1371/journal.pcbi.1009299


both). The rate of virus clearance (c) was the highest in the lung for all infection groups with

the exception of rSeV-luc(P-M) virus infection at low d/v (p<1 × 10−5 for all groups). The

basic reproduction number (R0) was significantly higher in the nasopharynx than in the lung

or trachea for all infection groups (p< 1 × 10−5 for all groups; Table 2).

Fig 4. Respiratory tissue-dependent parameters. Comparison of parameter histograms and ensembles resulting from fitting the model (Eqs (3)–(6))

to estimated viral loads from the lung (cyan), trachea (gray), or nasopharynx (black) of mice infected with the rSeV-luc(M-F�) virus (“M-F”) at high d/v

(Panel A) or low d/v (Panel B), or infected with the rSeV-luc(P-M) virus (“P-M”) at high d/v (Panel C) or low d/v (Panel D). Parameters shown are

virus clearance (c), virus infection (β), and infected cell clearance (δd/Kδ). Additional histograms and ensemble plots are in Figs H-K in S1 Text.

https://doi.org/10.1371/journal.pcbi.1009299.g004
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Discussion

Parainfluenza virus infections can target different areas of the respiratory tract and tend to

increase in severity with greater impact on the lung, which can lead to bronchiolitis, pneumo-

nia, and hospitalization [5, 37]. However, most infections are mild with the virus primarily

infecting the upper respiratory tract without progressing to the lower airways [38, 39]. Many

factors likely contribute to this heterogeneity, including serotype, strain, dose, immune status,

and age. Our analysis of different infection scenarios suggested that only a few selected pro-

cesses drive distinct HPIV dynamics due to strain, doses, individual, and/or site of infection

(upper versus lower airways; summarized in Fig 5).

Our analyses were able to verify that the rSeV-luc(P-M) virus, which produces an attenu-

ated phenotype [14], replicates more slowly (lower p) than the wild-type-like strain, rSeV-luc

(M-F�) (Fig 3). In the lung, this was paired with slower infected cell clearance (Fig 5A). The

change in infected cell clearance was evident in several of the infection scenarios and a major

driver of the dose- and tissue-specific differences (Fig 5B and 5C). This rate was also the most

variable amongst individuals, which was unsurprising given that the model dynamics are

highly sensitive to changes in this parameter [29]. Our previous studies on influenza virus

infection found that this rate predominantly reflects the expansion rate of CD8+ T cells [40].

Thus, a slower infected cell clearance rate would indicate that fewer CD8+ T cells are recruited

to the infected area. Reduced B cells and antibody generation may accompany these changes.

This is consistent with dose-dependent experimental studies on other viruses [41, 42] and our

own study on SeV infection [16] where fewer pulmonary T cells and B cells were observed in

low d/v infections compared to high d/v infections. Although the relative distribution and

functionality of CD8+ T cells in different areas of the respiratory tract is mostly unknown [43],

some evidence suggests differing phenotypes are present in the trachea and lung [44] and that

tissue tropism drives their patterns [45]. Interestingly, our model suggests that the rates of

infected cell clearance and viral infectivity (β) are correlated [29], and that both of these rates

are highest in the lung and lowest in the nasopharynx (Figs 4 and 5). This same trend was evi-

dent in the rate of viral clearance (c), which could be related to spatially-variable antibody con-

centrations within the respiratory tissue [46, 47].

Depending on the timing of the CD8+ T cell and neutralizing antibody responses or in

immunocompromised hosts, it is possible that the correlation between bioluminescence and

viral loads could deviate. The data used here were obtained from an acute infection in immu-

nocompetent, naive mice [16], and bioluminescence in this system reflects the number of

infected cells rather than extracellular virus because it is dependent on reporter gene expres-

sion and measured only when the viral genome is translated [14]. We chose to estimate the

viral loads because it is not known how bioluminescence and, consequently, virus production

in a single cell changes over its infected lifetime. That is, increases in bioluminescence may not

directly translate to an increase in the number of infected cells. This is likely why the relation

between these two entities in the lung, which is denser than the trachea or nasopharynx, was

nonlinear. Our previous work on influenza virus infection in the lung showed that our model

can accurately estimate the infected cell kinetics throughout the infection by using viral load

data [40]. However, further studies would be needed to determine how the relation between

bioluminescence and viral loads might change with alter immunologic environments.

Fitting the model to viral load data from different tissues in the upper and lower respiratory

tracts required altering the number of target cells (T0) to recover the same virus production

rate (p). While it is possible that the rate could vary across tissues or even within a tissue, the

estimated number of target cells in the URT and LRT (Table D in S1 Text) were consistent

with the relative differences in surface area of the murine respiratory tract [48–50]. Further,
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Fig 5. Summary of strain-, dose- and tissue-dependent processes. Summary of parameters that were distinct between different infection scenarios.

Parameters consistently different included (A) strain-dependent virus production rates (p), (B-C) dose- and tissue-dependent infected cell clearance

rates (δd/Kδ). Other parameters shown include the initial number of target cells (T0), virus clearance (c), and virus infection (β). Subscripts “M” and “P”

denote the rSeV-luc(M-F�) (“M-F”) and rSeV-luc(P-M) (“P-M”) viruses, respectively. Subscripts “L”, “T”, and “N” denote the lung, trachea, and

nasopharynx, respectively. Subscripts “H” and “S” denote high d/v and low d/v, respectively.

https://doi.org/10.1371/journal.pcbi.1009299.g005
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the variation in dosing volume was also captured where the low volume resulted in a higher

number of infected cells in the nasopharynx compared to the lung while the high volume

resulted in a larger number of infected cells in the lung compared to the low volume. Although

it is readily apparent that less virus (i.e., from lower doses) would infect fewer cells, the differ-

ences in T0 between each virus in some tissues (e.g., 1.5 × 105 cells (rSeV-luc(M-F�)) versus

1.2 × 106 cells (rSeV-luc(P-M)) in the trachea) could be attributed to other mechanisms. Host

responses, such as type I IFN, play a role in limiting virus spread [51–53] and HPIV serotypes

have been reported to differ in their ability to induce cytokine production [7, 54]. Including

innate immune responses within a model can limit the number of infected cells [55] and some

studies have suggested that these may help to investigate dose-dependent kinetics for some

viruses [56, 57]. However, the effects seem to be relatively small and additional studies would

be necessary to investigate the contribution from specific immune components.

A low volume (5μl) was used to mimic the progression of an URT infection to the LRT and

would suggest that the majority of the inoculum is deposited in the nasopharynx with little

reaching the lower airways. Indeed, the low d/v infection was initially restricted to the upper

respiratory tract and only visible in the lung after�2 days while virus was immediately appar-

ent in both the upper and lower respiratory airways during high d/v infections (Fig 1) [16].

Here, we modeled the nasopharynx, trachea, and lung independently and assumed viral trans-

port within the respiratory tract played a minimal role in the viral kinetics. Modeling studies

that have taken this into account found that the rates of virus transport to and from each tissue

are relatively negligible or unidentifiable [58–61]. Although spatial structure, even within a tis-

sue, can yield spatially-dependent dynamics (e.g., as in [58]), we were still able to recover rea-

sonable estimates of the relative infection sizes by ensuring similar virus replication rates (p)

throughout the entire respiratory tract. That is, the high d/v infections yielded only�1.8x

more infected cells in nasopharynx where we would anticipate similar or slightly higher infec-

tion levels as in low d/v infections (Table 2). Comparatively, our model estimated that�10x

more cells were infected in the lung. In addition, the values of T0 reflected the differences in

surface area of the respiratory tract where the lung and nasopharynx are significantly larger

than the trachea [48–50].

Although the low dose resulted in slightly fewer infected cells in the nasopharynx, there was

little change in the other processes compared to the high dose (Fig 3C) and little individual

heterogeneity within this tissue (Table E in S1 Text). This is likely because it is the first contact

site of the virus and may not be a particularly sensitive location to detect these types of

changes. This may help explain the lack of heterogeneity observed in clinical symptoms with

respect to the HPIV serotype [62]. These findings also support the idea that sampling of nasal

or throat tissue may not reflect disease, which is typically more linked to the impact on the

lower respiratory tract [40, 63–66].

In the data used here, there was minimal weight loss in the animals infected with low d/v

compared to high d/v [16], which indicates reduced disease severity. We previously established

that disease severity (as measured by weight loss) is nonlinearly connected with pathological

findings, including the extent of virus-mediated lung damage and inflammation [40]. In addi-

tion, we discovered that each of these metrics could be approximated using the infected cell

dynamics (e.g., cumulative area under the curve of I2 approximates the lung damage). Thus,

our finding that the number of infected cells was significantly lower in the low d/v groups is in

accordance with the reduced weight loss in these animals. In general, having fewer infected

cells and/or reduced activation of host responses should lessen virus-induced lung damage

and immunopathology.

Distinguishing the drivers of HPIV infection heterogeneity and the impact of different

strains, doses, patients, and sites of infection as we did here is central to understanding the
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disease course and developing effective treatments. It may also help identify the mechanisms

that influence disproportionate disease in children and the immunocompromised, who may

develop more severe presentations from otherwise low doses. In addition, although transmis-

sion dynamics are complex and typically associated with viral presence in the URT, further

insight into tissue-specific viral dynamics and the possibility of prolonged virus shedding is

vital to abrogate the disease [16, 67, 68].
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