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Predicting Upper Limb Motor Impairment
Recovery after Stroke: A Mixture Model

Rick van der Vliet, MD,1,2 Ruud W. Selles, PhD ,2,3,4 Eleni-Rosalina Andrinopoulou, PhD,5

Rinske Nijland, PhD,6,7 Gerard M. Ribbers, MD, PhD,2,4 Maarten A. Frens, PhD,1

Carel Meskers, MD, PhD,6 and Gert Kwakkel, PhD6,7,8

Objective: Spontaneous recovery is an important determinant of upper extremity recovery after stroke and has been
described by the 70% proportional recovery rule for the Fugl–Meyer motor upper extremity (FM-UE) scale. However, this
rule is criticized for overestimating the predictability of FM-UE recovery. Our objectives were to develop a longitudinal
mixture model of FM-UE recovery, identify FM-UE recovery subgroups, and internally validate themodel predictions.
Methods: We developed an exponential recovery function with the following parameters: subgroup assignment proba-
bility, proportional recovery coefficient rk, time constant in weeks τk, and distribution of the initial FM-UE scores. We
fitted the model to FM-UE measurements of 412 first-ever ischemic stroke patients and cross-validated endpoint pre-
dictions and FM-UE recovery cluster assignment.
Results: The model distinguished 5 subgroups with different recovery parameters (r1 = 0.09, τ1 = 5.3, r2 = 0.46,
τ2 = 10.1, r3 = 0.86, τ3 = 9.8, r4 = 0.89, τ4 = 2.7, r5 = 0.93, τ5 = 1.2). Endpoint FM-UE was predicted with a median
absolute error of 4.8 (interquartile range [IQR] = 1.3–12.8) at 1 week poststroke and 4.2 (IQR = 1.3–9.8) at 2 weeks.
Overall accuracy of assignment to the poor (subgroup 1), moderate (subgroups 2 and 3), and good (subgroups 4 and
5) FM-UE recovery clusters was 0.79 (95% equal-tailed interval [ETI] = 0.78–0.80) at 1 week poststroke and 0.81 (95%
ETI = 0.80–0.82) at 2 weeks.
Interpretation: FM-UE recovery reflects different subgroups, each with its own recovery profile. Cross-validation indi-
cates that FM-UE endpoints and FM-UE recovery clusters can be well predicted. Results will contribute to the under-
standing of upper limb recovery patterns in the first 6 months after stroke.
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Longitudinal studies have repeatedly demonstrated the
time-dependency of neurological recovery after stroke,

including upper1,2 and lower limb motor function,3,4

visuo-spatial neglect,5 and speech.6 This suggests that
recovery follows a predictable pattern, which is often
described as spontaneous neurological recovery.7,8 Under-
standing the mechanisms and individual dynamics that
drive stroke recovery is vital for developing better

prognostic models and more effective, personalized thera-
peutic interventions.9–12

The proportional recovery rule has been instrumen-
tal in modeling spontaneous upper extremity recovery by
linking baseline motor impairment, measured with the
Fugl–Meyer assessment of the upper extremity (FM-
UE),13 to the observed motor recovery, defined as the dif-
ference between the measurements early and 3 to 6 months
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after stroke (ΔFM-UE).14 More specifically, the propor-
tional recovery rule states that in 3 to 6 months, (1) the
majority of patients (recoverers) gain a fixed proportion,
estimated between 0.55 and 0.85,2 of their potential
recovery, calculated as the difference between baseline
FM-UE and the scale’s maximum score of 66, and (2) the
minority of patients (nonrecoverers) show only very mod-
erate improvement, which cannot be linked to potential
recovery.1,2,14 Mechanistically, the key underlying differ-
ence between recoverers and nonrecoverers is currently
understood as the intactness of the corticospinal tract early
after stroke.15–18

The proportional recovery rule has been criticized for a
number of reasons. Recent analyses indicated that a strong
correlation between baseline FM-UE and recovery can
emerge even when baseline FM-UE is completely
uncorrelated to endpoint FM-UE.19,20 Therefore, even
though the proportional recovery rule is not wrong,19 it prob-
ably overstates the predictability of endpoint FM-UE.19,20 In
addition, the proportional recovery rule does not model the
time course of recovery early poststroke, which means it can-
not model the rate of recovery nor update predictions with
repeated measurements in time. Finally, predictions of end-
point FM-UE based on the 70% proportional recovery rule
for individual patients have not previously been reported.

To increase our understanding of upper extremity
recovery after stroke, we need a model that relates the
FM-UE to potential recovery as a function of time after
stroke, with separate sets of parameters for different sub-
groups, including those that show no improvement early
poststroke.21 In this study, we developed and cross-
validated a new longitudinal mixture model of FM-UE
recovery that describes different patterns of recovery over
time using exponential functions and identifies subgroups
based on (1) the degree of recovery as a fraction of poten-
tial recovery, (2) the rate of recovery, and (3) the initial
FM-UE score. Our goals were to estimate the number of
recovery subgroups, the recovery parameters for each sub-
group, and the predictability of endpoint FM-UE at 3 to
6 months poststroke, as well as subgroup assignment as a
function of time poststroke. Results will contribute to the
understanding and prediction of upper limb recovery pat-
terns in the first 6 months after stroke.

Patients and Methods
Study Population
We combined FM-UE data of first-ever ischemic stroke
patients collected in 4 different prospective cohort studies:
the EXPLICIT,22 EPOS,23 4D-EEG,24 and EXPLORE
studies. These data sets contain repeated measurements of the
FM-UE scores and the exact measurement dates in days

poststroke, which also differ between patients assigned to the
same follow-up scheme for practical reasons. Data collection
and patient characteristics of the EXPLICIT and EPOS
cohorts have been described extensively elsewhere.22,23 The
4D-EEG and EXPLORE cohorts recruited patients with a
first-ever ischemic stroke within 3 weeks poststroke. In the
4D-EEG study, patients were measured weekly during
the first 5 weeks poststroke and after 8, 12, and 26 weeks. In
the EXPLORE study, patients were measured 1, 2, 3, 5,
12, and 26 weeks poststroke. Inclusion criteria were compa-
rable to the EPOS cohort. The majority of patients received
standard rehabilitation treatment according to the Dutch
rehabilitation guidelines, which are in agreement with current
international rehabilitation guidelines.25,26 In the EXPLICIT
study, half of the patients with an unfavorable prognosis
received electromyography-triggered neuromuscular stimula-
tion, and half of the patients with a favorable prognosis
received modified constrained-induced movement therapy.22

Because both of these interventions did not affect the FM-
UE at any time poststroke,22 we disregarded therapeutic
intervention as a factor in the analysis. The 4D-EEG and
EXPLORE studies have been approved by the medical ethics
committees of the VU University Medical Center
(NL 47079 029 14, for 37 patients measured) and the Leiden
UniversityMedical Center (NL39323.058.12, for 11 patients
measured), respectively.

We included a patient if at least 2 repeated measure-
ments were available and if the first and last measurement
were at least 12 weeks apart. This way, we maximized the
number of included patients while still being able to
cross-validate predictions of endpoint FM-UE. Additional
patient data were age, gender, handedness, and dominant
side affected; Bamford scale (lacunar anterior circulation
infarct/partial anterior circulation infarct/total anterior cir-
culation infarct);27 administration of alteplase (recombi-
nant tissue-type plasminogen activator); National Institutes
of Health Stroke Scale (NIHSS; range, 0–42) with item
11, extinction and inattention (range, 0–2), reported sepa-
rately;28 motricity index (range, 0–99) with the shoulder
abduction item listed separately (dichotomized as no shoul-
der abduction [0] and at least some shoulder abduction
[1]);29,30 and finger extension (dichotomized as no finger
extension [0] and at least some finger extension [1]) as a
separate item of the FM-UE (range, 0–66).31

Longitudinal Mixture Model of FM-UE Recovery
We designed a longitudinal model of FM-UE recovery after
stroke based on the principles of proportional recovery,
which are (1) a proportional relation between observed
recovery over time and potential recovery at baseline (longi-
tudinal), and (2) the existence of clinically distinct sub-
groups of FM-UE recovery (mixture). Longitudinal,
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therefore, refers to the ability of the model to handle
repeated measurements over time, and mixture refers to the
ability of the model to identify different subgroups. Because
FM-UE recovery follows an exponential pattern,7 we chose
an exponential function as the time-dependent element of
the model, with the asymptote defined as a proportion of
the potential recovery and the time constant expressed in
weeks. In addition, we included an intercept which repre-
sents the FM-UE early after stroke. The mathematical
expression of our model is:

μijjk = αijk + rk* 66−αijk
� �

* 1−e− t ij=τk
� �

ð1Þ

yijjk �N μijjk,σ
2
ϵ

� �
ð2Þ

Here, i is the patient identification number (1 I), j is
the measurement identification number (1 J), and k is the
subgroup identification number (1 K). The equation
describes how the FM-UE (yij j k) for a particular patient i
and measurement j is determined by the (estimated) base-
line FM-UE (αi j k) plus an exponential term

rk* 66−αijk
� �

* 1−e− t ij=τk
� �

, which increases over time tij
as the patient recovers. We chose to express measurement
dates poststroke in weeks by dividing the number of days
poststroke by 7. The asymptote of the exponential term is
determined by the potential recovery (66− αi j k) multi-
plied by the recovery coefficient rk (0 1), which describes
how much of the potential recovery is achieved. The rate
of the exponential term (ie, how quickly the patient
recovers) is defined by time constant τk in weeks (1/7 ∞),
which signifies the time point when recovery has reached
a proportion of 1− e−1≈ 0.63 of the asymptotic value.
Finally, σ2ϵ is the residual error variance.

Model Fitting
We chose a Bayesian approach to mixture modeling rather
than expectation maximization, as Bayesian data analysis
(1) focuses on parameter uncertainty rather than on point
estimates, (2) estimates hidden variables (for example the
subgroup identification number k) simultaneously with
the parameters, and (3) offers flexibility in specifying the
form of the model (for example to constrain the recovery
coefficient rk between 0 and 1).32 Modern Bayesian
approaches rely on a family of algorithms called the
Markov-chain Monte-Carlo (MCMC) algorithms.32 These
algorithms require defining a likelihood function (how the
data would be generated if we knew the parameters) and
the prior probability distributions for the parameters, and
they return samples from the posterior joint-probability
function of the parameters. We chose the following prior
probability distributions for the model parameters:

αijk � 66

1 + exp −N μα,k,σ
2
α,k

� �� � ð3Þ

μα,k �N 0,103
� � ð4Þ

σ2α,k � 1=Γ 10−3,10−3
� � ð5Þ

rk � 1
1 + exp −N 0,103ð Þð Þ ð6Þ

τk �Γ 10−3,10−3
� �

+ 1=7 ð7Þ

k�Cat K ,pk
� �

,pk �Dirichlet K ,γð Þ ð8Þ

1=σ2ϵ �Γ 10−3,10−3
� � ð9Þ

For the patient-specific baseline FM-UE αi j k, we
defined a logistic normal prior distribution with the hyper-
parameters sampled from weakly informative normal and
gamma distributions. This means that each subgroup is
characterized by a specific distribution of the FM-UE early
after stroke, which can be close to 0 or to the maximum
of 66 or span the entire range with almost equal probabil-
ity. The subgroup-specific prior distribution for the recov-
ery coefficient rk is also a logistic normal distribution,
which spans the 0 to 1 range. Time constant τk, specified
separately for each subgroup, has a weakly informative
gamma prior distribution, shifted by 1/7 to set the lower
limit at 1 day. Subgroup labels k have a categorical prior
distribution with hyperparameters for the subgroup assign-
ment probability vector pk, sampled from a Dirichlet dis-
tribution with concentration parameter γ. Finally, the
precision 1=σ2ϵ has a weakly informative gamma prior
distribution.

MCMC sampling was used to simultaneously calcu-
late the number of subgroups in the data and the model
parameters. We used the Rousseau and Mengersen33,34

criterion as implemented by Nasserinejad et al35 to select
the number of subgroups KOptimal, setting the overfitted
number of subgroups K at 10, the concentration parame-
ter γ at 0.9 * d/2 (equal to 1.8 for our study), the cutoff
value for the subgroup size at 5% of the number of
patients, and the number of parallel chains to 10. From
the parallel chains, we selected the solution which mini-
mized the number of subgroups and maximized the total
subgroup assignment probability. Subgroup assignment
probabilities were normalized to 1. The subgroups were
arranged according to the recovery coefficient rk, making
r1 the lowest and rK, optimal the highest recovery coefficient.
The “optimal FM-UE recovery cluster” was determined as
the FM-UE recovery cluster a patient was assigned to
most by the model. Goodness of fit was evaluated with
the explained variance, which we calculated as 1 minus
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the residual error variance (σ2ϵ ) divided by the total FM-
UE variance across patients and measurements.

Cross-Validation
Predictability of ΔFM-UE (the difference between the
first and last measurements available for a particular
patient) and endpoint FM-UE (last measurement available
for a particular patient), as well as FM-UE recovery cluster
assignment (poor, moderate, or good recovery; see Results
section for the definitions), were estimated using the pro-
posed model. We used cross-validation, which is a method
for internal validation, to obtain correct estimates of the
predictions. The study population was divided n (total
number of patients) times into a prediction data set con-
taining data from only 1 patient and a fitting data set con-
taining data from all other patients. For all n-folds, we
first ran the fitting data set with settings K = KOptimal and
γ = 1.8 and randomly selected 100 samples from the

posterior distribution of the model parameters. In addi-
tion, we paired the 5 subgroups with 1 of the 3 FM-UE
recovery clusters using a 1-nearest neighbor algorithm

trained on the model parameters rk, τk, μα,k and 1=σ2ϵ .
Next, MCMC sampling was performed for all 100 model
parameter sets using the measurements available from the
prediction data set in the first 1 to 12weeks poststroke
(12 time points). Only patients who had at least 1 mea-
surement available were included in the analysis for a spe-
cific time interval. Therefore, the number of patients
available for cross-validation increased with time post-
stroke. Outcome measures were (1) the predicted ΔFM-
UE between the first and last measurements of a patient,
(2) the predicted FM-UE at the last measurement of a
patient, and (3) the “predicted FM-UE recovery cluster,”
defined as the FM-UE recovery cluster a patient was
assigned to most by the model.

FIGURE 1: Longitudinal mixture model of Fugl–Meyer motor upper extremity (FM-UE) recovery. (A) FM-UE recovery data of the
412 ischemic stroke patients in our data set. Individual patients are color-coded according to the subgroup they were assigned
to most by the longitudinal mixture model of FM-UE recovery. The average subgroup recovery patterns are shown in bold.
Estimated model parameters for the 5 different subgroups: subgroup assignment probability (B), recovery coefficient (C), time
constant (D), and initial distribution of the FM-UE (E). Whiskers indicate 95% equal-tailed intervals.
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To evaluate prediction accuracy, we calculated the
absolute difference between the predicted and observed
values, correlated the predicted and observed ΔFM-UE
and FM-UE, and determined the accuracy of the FM-UE
recovery cluster assignment (proportion of patients in the
study population who were correctly assigned), the positive
predictive value (proportion of patients in 1 of the
3 “predicted FM-UE recovery clusters” who were correctly
assigned), and the miss rate (proportion of patients in 1 of
the 3 “optimal FM-UE recovery clusters” who were

incorrectly assigned). Note that accuracy is only defined for
the entire study population, whereas the positive predictive
value and miss rate are defined for the 3 FM-UE recovery
clusters separately.

Covariate Model
We compared the predictive accuracy of the model pres-
ented here to a model incorporating a set of static (not
changing over time) covariates: age at stroke onset, gender,
Bamford classification, and alteplase treatment. The static

TABLE 1. Model Parameters

FM-UE Recovery Cluster Poor Moderate Good

Subgroup 1 2 3 4 5

pk 0.27 (0.22–0.31) 0.14 (0.10–0.18) 0.11 (0.08–0.15) 0.18 (0.12–0.24) 0.30 (0.24–0.37)

rk 0.09 (0.07–0.11) 0.46 (0.43–0.50) 0.86 (0.83–0.90) 0.89 (0.87–0.90) 0.93 (0.92–0.94)

τk 5.3 (2.8–9.2) 10.1 (8.4–12.3) 9.8 (8.9–10.8) 2.7 (2.5–2.8) 1.2 (1.1–1.3)

μα,k −3.2 (−4.0 to 2.8) −2.1 (−2.9 to 1.2) −2.8 (−4.1 to 1.3) −1.3 (−2.6 to 0.1) 0.0 (−0.6 to 0.6)

σα,k 0.6 (0.3–1.5) 2.2 (1.5–3.3) 3.0 (1.7–4.8) 2.9 (2.0–4.0) 2.4 (1.9–3.0)

Subgroup mean model parameters, with 95% equal-tailed intervals calculated over all samples given in parentheses. pk = subgroup assignment probabil-
ity; rk = recovery coefficient; τk = time constant in weeks; μα,k = mean of the initial distribution of the FM-UE in the logistic space; σα,k = standard
deviation of the initial distribution of the FM-UE in the logistic space.
FM-UE = Fugl–Meyer motor upper extremity.

TABLE 2. Baseline Patient Clinimetric Scores

FM-UE Recovery Cluster Poor Moderate Good

Subgroup 1 2 3 4 5

Patients, n 111 (97–120) 56 (49–66) 44 (37–57) 72 (54–94) 126 (104–146)

Age, yr 63 (42–93) 65 (43–86) 60 (28–85) 64 (38–85) 66 (33–86)

Male, % 56 58 53 53 47

Right-handed, % 90 89 92 90 95

Dominant hand affected, % 27 46 52 49 43

Bamford LACI/PACI/TACI, % 28/47/25 50/37/13 55/31/14 70/22/8 64/26/9

Alteplase treatment, % 29 18 24 15 18

NIHSS 13 (6–21) 8 (2–18) 9 (2–18) 5 (1–18) 5 (0–14)

Motricity index 5 (0–34) 28 (0–84) 23 (0–92) 55 (0–100) 66 (0–100)

Shoulder abduction, % 23 69 51 94 95

Finger extension, % 2 24 24 69 88

Subgroup mean clinimetric scores with 95% equal tailed intervals calculated per subgroup over all samples.
FM-UE = Fugl–Meyer motor upper extremity; LACI = lacunar anterior circulation infarction; NIHSS = National Institutes of Health Stroke Scale;
PACI = partial anterior circulation infarction; TACI = total anterior circulation infarction.
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covariates did not include right-handedness and dominant
side affected, as these were biased by the inclusion criteria
of the cohort studies. We modeled age as a normal distri-
bution with hyperparameters sampled from normal and
gamma distributions, gender and alteplase treatment as
binomial distributions with the hyperparameters sampled
from beta distributions, and Bamford classification as a
categorical distribution with hyperparameters sampled
from Dirichlet distributions. The cross-validated primary
outcomes (absolute median error in endpoint FM-UE and
ΔFM-UE, correlations between actual and observed end-
point FM-UE and ΔFM-UE, and mean accuracy of FM-
UE recovery cluster assignment) of the models with and
without covariates differed less than 10% at every time
point poststroke. Therefore, we decided to present a sim-
pler model without covariates.

MCMC Sampling
MCMC sampling was implemented in JAGS 4.3.0
(https://sourceforge.net/projects/mcmc-jags/). MATLAB
2015a (MathWorks, Natick, MA) and MATJAGS (http://
psiexp.ss.uci.edu/research/programs_data/jags/) were used
for data and sample processing. Settings for determining
the number of subgroups and calculating the model
parameters were 2.5 × 104 burn-in samples and 2.5 × 104

posterior distribution samples, 10 parallel chains, and
initial guesses for the model parameters. Settings for cross-
validation were 103 burn-in samples, 104 posterior distri-
bution samples, 1 parallel chain, and the mean
model parameters estimated in step 1 as initial values for
model fitting. All scripts can be accessed at https://github.
com/rickvandervliet/Bayesian-Proportional-Recovery; this
website also hosts scripts that can prospectively predict

FIGURE 2: Cross-validation of model predictions. (A) Number of patients who had at least 1 measurement at a specific time
poststroke and were therefore included in the cross-validation. (B) Median number of measurements per patient available for
cross-validation at a specific time poststroke. Error bars indicate 95% equal-tailed intervals [ETIs] across patients with at least
1 measurement. Whiskers represent 1.5 times the interquartile range; outliers not shown. (C) Future recovery, defined as
endpoint Fugl–Meyer motor upper extremity (FM-UE) minus last available FM-UE for each patient at a specific time poststroke.
(D, E) Boxplot of the absolute error across all 412 patients times 100 samplings of the endpoint FM-UE (A) and the ΔFM-UE (B).
Whiskers represent 1.5 times the interquartile range; outliers not shown. (F) Correlation between predicted and observed FM-
UE (blue circles) and ΔFM-UE (red triangles) with error bars indicating the 95% ETIs over the 100 samplings. FM-UE recovery
cluster assignment accuracy (G), positive predictive value (H), and miss rate (I) with error bars indicating the 95% ETIs across the
100 samplings.
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FM-UE recovery profiles for individual patients based on
the model presented here. In addition, we have created an
online application offering the same functionality in a
user-friendly format: https://emcbiostatistics.shinyapps.io/
LongitudinalMixtureModelFMUE/.

Results
From the total of 479 patients in all 4 cohorts, we included
data for 412 patients whose FM-UE had been measured at
least 2 times, with the first and last measurements spaced at
least 12 weeks apart. The 412 included patients were found
to have a mean 6.1 measurements (standard deviation
[SD] = 1.9) per patient, with an interval of 26.2 weeks
(SD = 2.0) between the first and last measurements. The
first FM-UE had been measured within the first 72 hours
for 53% of patients, within the first week for 76% of
patients, and within the first 2 weeks for 93% of patients.

The longitudinal mixture model of FM-UE recovery
identified 5 different subgroups, with a residual error SD
σϵ of 3.9 points (95% equal-tailed interval [ETI] = 3.7–4.0)
on the FM-UE, corresponding to a variance explained of
0.97 (95% ETI = 0.97–0.98; Fig 1, Table 1). Patient
characteristics (age, gender, and handedness) were compa-
rable between subgroups. Baseline clinimetric scores corre-
lated with the recovery coefficient as expected (Table 2);
that is, more favorable clinimetric scores were associated
with higher recovery coefficients. For example, subgroup
5, with the highest recovery coefficient, had the lowest
score on the NIHSS and the highest scores on the
motricity index and the finger extension item of the FM-
UE, but the opposite was true for subgroup 1.

The number of patients included in the cross-
validation increased with time poststroke as more patients
with a baseline FM-UE became available (Fig 2). In addi-
tion, the median number of measurements per patient

FIGURE 3: Model Fugl–Meyer motor upper extremity (FM-UE) predictions for 3 typical patients. Model FM-UE predictions for
example patients from the optimal (given all FM-UE data) poor (A–C), moderate (D–F), or good (G–I) FM-UE recovery cluster. The
left column illustrates predictions made using data available at 2 weeks poststroke, the second column at 4 weeks poststroke,
and the final column at 3 months poststroke. Open circles represent data used for prediction modeling. Filled markers indicate
the actual endpoint FM-UE. The prediction is shown as the mean profile (dark line) with 68% equal-tailed intervals (dark shaded
area) and 95% equal-tailed intervals (light shaded area). The figure titles and the colors of the credible intervals (poor [purple],
moderate [orange], or good [green]) indicate the predicted FM-UE clusters as well as the probability of cluster assignment.
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increased from 2 measurements at 1 week poststroke up
to 5 measurements 8 weeks poststroke. Median future
recovery, defined as endpoint FM-UE minus last available
FM-UE for each patient, decreased with time poststroke
from 10.0 (interquartile range [IQR] = 3.0–26.3) to 2.0
(IQR = 0.0–8.0) at 12 weeks poststroke. Reliability of
endpoint FM-UE and ΔFM-UE predictions increased
with time poststroke and was higher for endpoint FM-UE
than for ΔFM-UE. The median absolute error for the
predicted endpoint FM-UE was 4.8 (IQR = 1.3–12.8) at
1 week poststroke and 4.2 (IQR = 1.3–9.8) at 2 weeks
poststroke, and the mean correlation between predicted
and observed FM-UE was 0.84 (95% ETI = 0.83–0.84)
at 1 week poststroke and 0.86 (95% ETI = 0.86–0.87) at
2 weeks poststroke. The median absolute error for the
predicted ΔFM-UE was 5.2 (IQR = 1.7–12.9) at 1 week
poststroke and 4.8 (IQR = 1.7–11.0) at 2 weeks post-
stroke, and the mean correlation between predicted and
observed ΔFM-UE was 0.68 (95% ETI = 0.67–0.69) at
1 week poststroke and 0.71 (95% ETI = 0.71–0.72) at
2 weeks poststroke.

Based on the recovery coefficients (rk), time constants
(τk), and initial distributions (μα,k and σα,k), we organized the
5 subgroups into 3 main FM-UE recovery clusters with poor
(subgroup 1), moderate (subgroups 2 and 3), and good (sub-
groups 4 and 5) recovery profiles (see Tables 1 and 2). Mean
accuracy of the FM-UE recovery cluster assignment was 0.79
(95% ETI =0.78–0.8) at 1 week poststroke and 0.81 (95%
ETI = 0.80–0.82) at 2 weeks (see Fig 2). Positive predictive
value was high (>0.9) for the good FM-UE recovery cluster as
early as 1 week poststroke and low to modest for the poor and
moderate FM-UE recovery cluster at week 1 (0.66 [95%
ETI = 0.63–0.68] and 0.50 [95% ETI = 0.42–0.57], respec-
tively) and week 2 (0.72 [95% ETI = 0.70–0.73] and 0.61
[95% ETI =0.57–0.64], respectively). The miss rate was
lower than 0.1 for the poor and moderate FM-UE recovery
cluster from week 1 onward, and the miss rate for the moder-
ate cluster was much higher at 1 week (0.74 [95%
ETI = 0.68–0.79]) and 2 weeks poststroke (0.63 [95%
ETI = 0.60–0.65]).

FM-UE data for typical patients with model-based pre-
dictions of FM-UE recovery and FM-UE recovery clusters are
shown in Figure 3. This figure illustrates how the credible
intervals of the predictions decrease as more measurements
become available and how individuals can initially be mis-
classified in terms of their FM-UE recovery cluster. Our pre-
diction algorithm is available through a web-based application
(Shiny App), which can be accessed at https://emcbiostatistics.
shinyapps.io/LongitudinalMixtureModelFMUE/. This web-
based application requires FM-UE scores and measurement
dates, and outputs predict FM-UE profiles with credible inter-
vals as well as the most likely FM-UE recovery cluster.

Discussion
We have developed a longitudinal mixture model of FM-
UE recovery that describes the time course of FM-UE
recovery after a first-ever ischemic stroke and does not suf-
fer from mathematical coupling.19,20 Based on this model,
we analyzed a large FM-UE data set of 412 first-ever
ischemic stroke patients collected in prospective cohorts.
Subsequently, we identified 5 subgroups, which we orga-
nized into 3 clinically relevant clusters of poor, moderate,
and good FM-UE recovery. Based on a cross-validation,
our research provides first-ever estimates of predictability
of endpoint FM-UE between 3 and 6 months poststroke,
as well as subgroup assignment as a function of time post-
stroke. These results contribute to the understanding of
recovery patterns in the first 6 months after stroke.

Our current longitudinal mixture model of FM-UE
recovery, as opposed to the proportional recovery model,
cannot be confounded by mathematical coupling. Hope
et al19 showed that the correlations between baseline FM-
UE score (distribution X) and the amount of recovery
defined as endpoint FM-UE minus baseline FM-UE (dis-
tribution Y-X) found in proportional recovery research
could be inflated by mathematical coupling. However,
because mathematical coupling applies to correlations of
data points (baseline and endpoint FM-UE) and not to
models of longitudinal data, the recovery coefficients in
our research represent nonconfounded measures of recov-
ery as a proportion of potential recovery. In addition,
mathematical coupling does not apply to the outcomes of
the cross-validation, as we report correlations between the
model predictions and the observed values for endpoint
FM-UE and ΔFM-UE rather than correlations of the
form X and Y-X.

In contrast to studies relying on the proportional
recovery rule, which have identified 2 subgroups of recov-
erers (fitters) and nonrecoverers (nonfitters),1,2,15–17,36 our
model distinguishes 5 subgroups, differing in the amount
and rate of recovery as well as the distribution of the FM-
UE early after stroke. Patients in subgroup 1, containing
approximately 30% of patients, have a low baseline FM-
UE and a small recovery coefficient, resulting in a poor
outcome. These patients seem to overlap with the non-
recovers from the proportional recovery rule. Subgroups
2 to 5 refine the recovers in a more granular pattern. The
majority of the recoverers (subgroups 4 and 5) regain close
to 0.9 of their potential recovery in the first weeks after
stroke, which is on the high end of previous estimates of
0.55 to 0.85,1,2,15–17,36 whereas the recoverers in sub-
groups 2 (0.45) and 3 (0.86) also regain a fair amount of
their potential recovery but over a much longer time
frame. Because previous studies have identified disruption
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of the corticospinal tract as the essential difference
between recoverers and nonrecoverers,15–18 we expect a
similar contrast between patients from subgroup 1 and
patients from subgroups 2 to 5. Indeed, the baseline
Bamford classification shows a strikingly higher percentage
of total anterior circulation infarctions in subgroup 1 com-
pared with the other 4 subgroups. Further definition of
the structural and possibly also the genetic characteristics
of the 5 subgroups might lead to a better understanding
of FM-UE recovery.

Our study provides first-ever cross-validated esti-
mates of individual endpoint FM-UE and ΔFM-UE pre-
diction errors. Theoretically, it is possible to predict
endpoint FM-UE at baseline using the proportional recov-
ery rule as well. One approach could be to first identify
recoverers and nonrecoverers using measurements of
corticospinal intactness (transcranial magnetic stimulation
[TMS]16 and diffusion tractography [DTI]15) and then
estimate endpoint FM-UE for the recoverers as the base-
line FM-UE plus a proportional recovery term and for the
nonrecovers as just the baseline FM-UE. However, even
though TMS37,38 and DTI17,39 have been validated as
markers of recovers and nonrecoverers, the absolute error
of predicted FM-UE or ΔFM-UE scores for a population
of first-ever ischemic stroke patients based on this com-
bined approach has never been cross-validated. We found
the median absolute error of endpoint FM-UE to be
4.8 at the first week poststroke and 4.2 at the second week
poststroke, which is at the low end of what is deemed to
be a clinically important difference (4.25–7.25).40 There-
fore, our model can provide a satisfactory prognosis to
patients as early as 1 week poststroke. In the future, fur-
ther reduction in prediction errors may be achieved by
adding time-dependent covariates such as the recently rec-
ommended performance assays41 and biomarkers of
corticospinal integrity (eg, TMS16 or DTI15) to improve
the accuracy of subgroup assignment early after stroke.
Interested researchers can apply our model to predict FM-
UE recovery and the FM-UE recovery cluster by accessing
a web-based application at https://emcbiostatistics.
shinyapps.io/LongitudinalMixtureModelFMUE/. This
application requires 1 or multiple FM-UE measurements
(dates and scores) from a single patient to predict upper
limb recovery within the first 6 months. Predictions are
presented as the expected recovery with 68% and 95%
credibility intervals to express uncertainly.

Currently, we do not yet recommend that clinicians
implement our model in clinical practice or provide FM-
UE recovery predictions based on our model. First, future
studies should externally validate the model with different
stroke rehabilitation data sets. Outcomes of these studies
might also be that the precision of the model needs to be

increased (using some of the recommendations listed previ-
ously) before clinical implementation is realistic. Second,
guidelines need to be developed on responsible communica-
tion of stroke recovery prognoses to patients and health-care
professionals, with special emphasis on the uncertainly of
the model predictions. Finally, it is necessary to investigate
whether knowledge of the FM-UE prognosis actually
improves rehabilitation efficiency or outcome.

Based on the 5 subgroups identified by the model,
we defined poor, moderate, and good FM-UE recovery
clusters (similar to the lower, middle, and upper band
groups identified in the classic descriptive cohort study of
Garraway et al42 almost 40 years ago). These clusters
could, in the future, be relevant for personalizing thera-
peutic interventions as well as supporting decisions on the
discharge policy after admission to acute and subacute
stroke units. For example, patients in the poor FM-UE
recovery cluster (subgroup 1) will show very limited motor
recovery and might therefore benefit from learning com-
pensation strategies7 or early started neuropharmacological
interventions43 aimed at promoting neural repair.9 In con-
trast, patients in the moderate FM-UE recovery cluster
(subgroups 2 and 3) recover reasonably well over an
extended period and might benefit from early started
intensive therapeutic interventions aimed at behavioral res-
titution.7 Patients in the good FM-UE recovery cluster
(subgroups 4 and 5) are expected to require support in
regaining advanced skills such as writing.7

In a research setting, the present model can be used
to select patients for interventions designed for a specific
FM-UE recovery cluster (eg, interventions designed specif-
ically for the moderate recovery cluster). Patient selection
can be achieved by predicting the cluster for a patient
based on the patient’s early FM-UE scores using the web-
based application of our model early after stroke. The effi-
ciency of this approach depends critically on the positive
predictive value and the miss rate of cluster assignment.
Positive predictive value in this context indicates the pro-
portion of patients from a predicted cluster who have been
assigned to their optimal cluster and will therefore receive
the personalized intervention specifically designed for their
cluster. In the current model, the positive predictive value
is high for the good FM-UE recovery cluster, fair for the
poor cluster, and relatively low for the moderate cluster.
We therefore expect that an intervention designed for
good recoverers will be regularly offered to patients with
good FM-UE recovery, and an intervention designed for
moderate recovers will be regularly offered to patients with
poor or good recovery. The miss rate is the proportion of
incorrectly assigned patients from an optimal cluster who
will therefore receive a personalized intervention designed
for another cluster. We found that the miss rate is low for
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the good and poor cluster, and we therefore expect that
patients from these clusters will often get the intervention
designed for their cluster; we found the miss rate is high
for the moderate cluster and therefore expect that patients
from this cluster will often receive an intervention
designed for another cluster. Identification of patients in
the poor and moderate FM-UE recovery cluster might
benefit from additional repeated FM-UE measurements
over time. Of particular interest would be to design a deci-
sion algorithm that identifies patients in whom the cluster
prediction is uncertain and advises on specific measure-
ments to achieve sufficient accuracy. An additional option
to increase assignment accuracy would be to incorporate
clinical markers as explained previously.

Another future application of the longitudinal mix-
ture model of FM-UE recovery could be to detect inter-
vention effects in recovery and rehabilitation trials with
more statistical power.14 To estimate an intervention
effect, the model would need to be amended with an addi-
tional term to capture differences in the extent or possibly
also the rate of recovery. This amended model could be
fitted to serially collected clinical data to establish the
added value of an innovative therapeutic intervention
above usual care either for the entire study population or
for the 3 FM-UE recovery clusters separately. Given that
all serial measurements are analyzed, rather than just the
baseline and endpoint FM-UE, as is true for stroke recov-
ery and rehabilitation trials, this approach could signifi-
cantly promote study power. Studies investigating
therapies specifically designed for either poor, moderate,
or good stroke recoverers could additionally use the
model’s predicted FM-UE recovery cluster early after
stroke to select patients, as explained previously. This way,
the proportion of patients from a certain FM-UE recovery
cluster and the power to detect an intervention effect in
that FM-UE recovery cluster will both increase, with the
positive predictive value determining study homogeneity
and the miss rate the study inclusion efficiency.44,45 Fur-
ther quantification of these approaches will be one of the
main targets of our future work.

Limitations of the present study include the lack of
severely affected patients with a hemiparesis in the domi-
nant hand, the restricted generalization to patients with
upper limb motor impairment after a first-ever ischemic
stroke, and the focus on stroke recovery rather than deteri-
oration. The language center is localized in the left hemi-
sphere for most left-handed and right-handed people.46

Therefore, severely affected patients with left hemisphere
lesions often have language impairments that hinder pro-
viding informed consent and therefore participating in a
clinical study. This explains the low percentage of patients
with a hemiparesis on the dominant side in subgroup

1 (severely affected patients). In addition, we cannot con-
clude whether hemorrhagic stroke patients have similar
recovery patterns or investigate how spontaneous neuro-
logical recovery is affected by recurrent stroke. Finally, our
model is not equipped to predict FM-UE deterioration
after stroke. As recently emphasized, the next step is to
start an international collaboration for building data sets
large enough to address these questions and move recovery
and rehabilitation studies forward.44 These databases
could also be used to model recovery of lower limb
impairment3,4 as well as other nonmotor modalities such
as speech6 and visuo-spatial neglect5 after stroke.21
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