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The tree of life shows the relationship between all organisms based on their
common ancestry. Until 1977, it comprised two major branches: prokaryotes
and eukaryotes. Work by Carl Woese and other microbiologists led to the
recategorization of prokaryotes and the proposal of three primary domains:
Eukarya, Bacteria and Archaea. Microbiological, genetic and biochemical
techniques were then needed to study the third domain of life. Haloferax
volcanii, a halophilic species belonging to the phylum Euryarchaeota, has
provided many useful tools to study Archaea, including easy culturing
methods, genetic manipulation and phenotypic screening. This review will
focus on DNA replication and DNA repair pathways in H. volcanii, how
this work has advanced our knowledge of archaeal cellular biology, and
how it may deepen our understanding of bacterial and eukaryotic processes.
1. Haloferax volcanii
Pioneering work in the 1970s by Carl Woese and other microbiologists led to a
profound reorganization of the tree of life. Woese’s discovery of Archaea was
initially based on small-subunit ribosomal RNA sequences [1], but was soon
consolidated by work from Wolfram Zillig on RNA polymerase [2] and Otto
Kandler on cell membranes [3]. Eventually, archaea took their place as members
of a bona fide domain, alongside Eukarya and Bacteria [4]. Archaea share
morphological features with bacteria—both are prokaryotic cells—but they
show dramatic differences at the enzymatic level. The information processing
machinery found in archaea, which includes the enzymes involved in DNA
replication, is strikingly similar to that of eukaryotes. In the decades since
their discovery, archaea have been shown to be neither ‘exotic bacteria’ nor
‘simplified eukaryotes’; instead, they display a mosaic of eukaryotic, bacterial
and uniquely archaeal features. Furthermore, the recent discovery of Asgard
archaea has provided support for a two-domain tree of life, where eukaryotes
emerge from within the archaeal clade [5–7]. Thus, further study of archaea
is needed to deepen our understanding of fundamental processes such as
DNA replication and repair, and to shed light on our evolutionary history.

One of the model archaeal species is Haloferax volcanii, which is a member of
the phylum Euryarchaeota. It is a halophile with disc-shaped cells and grows
optimally at 45°C in 1.7–2.5 M NaCl, similar to the conditions found in the
Dead Sea where it was first isolated in 1975 [8]. Haloferax volcanii cells do not
possess a rigid cell wall but are instead surrounded by a glycoprotein surface
(S-) layer, which can be a target for glycosylation [9]. Haloferax volcanii use a
‘salt-in’ mechanism to deal with the highly halophilic environment; this mech-
anism ensures that the internal salt concentration is maintained at the same
molarity as the external environment [10,11]. The genome of H. volcanii is
highly polyploid, with a copy number of approximately 20 copies per cell, as
well as being relatively GC rich (approx. 65%) [12,13].

In the 1980s and 1990s, ground-breaking work from the groups of W. Ford
Doolittle, Moshe Mevarech and Mike Dyall-Smith developed techniques for the
transformation and genetic manipulation of H. volcanii, enabling researchers to
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use this organism to study halophilic archaea [9,14,15]. Since
then, a variety of genetic, molecular and biochemical tools
have been developed, making H. volcanii one of the key
model organisms within the Archaea [16].

1.2. Genetics, molecular biology and biochemistry tools
for H. volcanii

— Ability to grow in complex and defined media, in both
broth and agar, in a wide range of salinities;

— antibiotic selection including novobiocin resistance and
mevinolin resistance [15,17];

— auxotrophic selection including selectable markers for
uracil, leucine, tryptophan and thymidine biosynthesis
[18–20];

— efficient markerless gene deletion methods based on
selection for uracil biosynthesis and counter-selection of
resistance to 5-fluoroorotic acid [18,19];

— reporter genes including ß-galactosidase [21], GFP and
related fluorescent proteins [22,23], and luciferase [24];

— shuttle vectors based on different H. volcanii replication
origins [17,19,25,26];

— inducible gene expression based on a tryptophan-
inducible promoter [27], and constitutive gene expression
using a strong synthetic promoter [28,29];

— random genome insertion mutagenesis library [30];
— utilization of own CRISPR system as a method of gene

interference (CRISPRi) [31,32];
— natural gene transfer system (cell mating), which can be

used for combining mutations [14,33,34];
— genome sequence with manually curated annotation [35];
— protein overexpression and purification, and other

biotechnology applications [29,36];
— proteomic methods using metabolic labelling (SILAC)

along with pulse-chase lipid analysis [16,37];
— mapping of post-translational modifications [38];
— pioneer species in the Archaeal Proteome Project

(ArcPP) [39].

The ease with which H. volcanii can be cultured in broth and
on solid media, and the extensive range of genetic, molecular
and biochemical tools that have been developed, have made
this organism ideal to compare and contrast fundamental
cellular processes with other halophiles, other archaea and
other domains of life. Here, we focus on DNA replication
and repair pathways in archaea, and in particular in
H. volcanii. The knowledge gained on mechanisms of DNA
replication and repair in H. volcanii has highlighted both simi-
larities and differences to bacteria and eukaryotes, and has
contributed to an appreciation of the diversity (and grandeur)
in this view of life.
2. DNA replication
DNA replication is a fundamental cellular process and can be
divided into three stages: initiation, elongation and termin-
ation. The initiation of DNA replication occurs at specific
chromosomal sites termed origins and relies on the binding
of initiator proteins at these sites [40]. Origins contain AT-
rich sequences named duplex unwinding elements (DUEs),
whereweaker hydrogen bonding facilitates DNA strand open-
ing. Binding of initiator proteins triggers the recruitment of a
helicase that, when active, further unwinds the DNA double
helix, exposing single-stranded DNA (ssDNA; outlined in
figure 1 and table 1). The ssDNA is protected by single-
strandedDNA-binding proteins (SSBs) that have an additional
role in the downstream recruitment of replication factors,
including primases and DNA polymerases. The formation of
a replisome complex initiates bidirectional DNA synthesis in
opposing directions away from the origin. During elongation,
primases generate short RNA primers fromwhich DNA poly-
merases prime synthesis of the leading strand continuously in
a 50–30 direction, while replication of the lagging strand occurs
discontinuously via the formation of Okazaki fragments.
Additional components of the replisome include clamp
loader proteins, which act to load sliding clamp proteins that
act both as a molecular toolbelt and processivity factor for
DNA polymerases. Termination of DNA replication occurs
when replication forks meet and resolve, allowing for correct
chromosome segregation upon completion of DNA synthesis.

2.1. Initiation of DNA replication
Bacteria generally have a single circular chromosome with a
single origin of replication, oriC. Initiation of replication
begins when initiator protein DnaA binds oriC at sequence-
specific sites called DnaA boxes. The cooperative binding of
DnaA forces open the duplex at the DUE, forming a
ssDNA bubble [41], while bacterial SSB binds to the exposed
ssDNA. The helix opening at oriC allows access to the heli-
case loader DnaC, which acts as a chaperone to recruit
replicative helicase DnaB onto the lagging strand. Activation
of the helicase is dictated by DnaC; when DnaC is bound by
ATP, DnaB is inactive, but when DnaC is bound by ADP
DnaB helicase is activated [42,43]. Active DnaB unwinds
double-stranded DNA (dsDNA), increasing the size of the
replication bubble and allowing downstream recruitment of
the remainder of the replication components including pri-
mase, DNA polymerase and clamp protein ß. Only a single
hexamer of DnaB is loaded per replication fork [44].

DNA replication initiation in eukaryotes is inherently more
complex than in bacteria; multiple origins are present along the
length of multiple linear chromosomes, with initiation being
triggered by the binding of a multimer of initiation proteins
known as the origin recognition complex (ORC). The ORC
complex consists of six origin recognition proteins (termed
Orc1-Orc6) [45]; Orc1–5 proteins contain a winged-helix
(WH) domain that facilitates their binding at the origin [46].
Prior to S-phase, the ORC complex, together with the regulator
cell division cycle 6 protein (Cdc6) and the licensing factor
Cdc10-dependent transcript 1 protein (Cdt1), load the replica-
tive helicase mini-chromosome maintenance (MCM2–7;
consisting of 6 paralogous proteins) to form the pre-replicative
complex (pre-RC) [47,48]. The ATPase AAA+ domains of
Orc1–5 initiator proteins interact with the C-terminal WH
domain of MCM in an ATP-dependent reaction. Any exposed
ssDNA is coated with eukaryotic SSB protein, named replica-
tion protein A (RPA), for protection. Upon recruitment to the
pre-RC, MCM helicase is inactive; activation must occur for
elongation to begin. Activation of the replicative complex
occurs in S phase, whereupon ORC, Cdc6 and Cdt1 are no
longer required and will dissociate. MCM helicase is loaded
onto the leading strand and, unlike the situation in bacteria,
multiple MCM molecules can associate with a single
replication fork [49,50].
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Figure 1. Structural components of the replisome. The CMG replicative helicase complex (RecJ:MCM:GINS in H. volcanii) unwinds DNA to expose single-stranded DNA
(ssDNA). It remains unknown which of the four RecJ proteins in H. volcanii forms part of the CMG complex. The ssDNA is protected from damage by binding protein
RPA and is used as a template for the synthesis of RNA primers by the primase activities of PriS and PriL. Replicative DNA polymerases (PolB1 and PolD) extend the
RNA primer to initiate DNA replication. Clamp loader RFC removes primases from the replication fork and the open DNA structure is held in place by the sliding
clamp PCNA. H. volcanii gene loci (HVO_#) for each component of the replisome are indicated.
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Archaea have circular chromosomes and can use single
or multiple origins to initiate DNA replication [51]. Despite
the similarity in genome organization between archaea and
bacteria, DNA replication mechanisms used by archaea
differ widely from those used in bacteria; archaeal cells
possess eukaryotic-like replication mechanisms employing
multiple origins and Orc1/Cdc6-like proteins (referred to
onwards as Orc).

Similar to bacterial and eukaryotic origins, archaeal repli-
cation origins are AT-rich regions (DUE), but in archaea are
surrounded by origin recognition box (ORB) sequences, of
which pairs are often inverted around the DUE [52]. ORBs
direct the binding of Orc proteins onto DNA, with one Orc
monomer binding a single ORB sequence with a defined
polarity. ORBs are found on the minor groove of DNA and
contain a signature string of guanine nucleotides known as
the G-string [53]. Strand opening enables stable binding of
the N-terminal AAA+ domain of the Orc protein(s) to the
G-string, while the C-terminal WH DNA-binding domain
of the Orc protein determines the binding affinity to the
origin through binding to the ORB more generally [54,55].

Orc binding at the origin does not cause further melting
of the dsDNA; instead, it facilitates the recruitment of MCM
helicase (a single polypeptide in archaea, homologous to
eukaryotic MCM2–7) to mark the origin for replisome loading
[51,52]. Only the ATP-bound Orc is capable of MCM recruit-
ment, while ADP-bound Orc is unable to sustain interactions
with MCM [52,56]. Archaeal MCM forms a homohexameric
ring, which is loaded onto the leading strand of DNA as a
double hexamer, the pair of inverted Orc proteins surrounding
the DUE each load a single hexamer of MCM.

An initial study on archaeal DNA replication mechanisms
mapped the single replication origin of Pyrococcus abyssi
using nucleotide skew analysis [57]. Since then, more
advanced techniques, including two-dimensional gels,
whole-genome microarrays and marker frequency analysis
(MFA), have enabled the identification and mapping of ori-
gins in over 20 archaeal species (reviewed in [58]). It is now
clear that the number of origins and Orc proteins varies con-
siderably throughout the archaea [40], but one of the striking
consistencies is that the gene encoding the Orc protein is
(nearly) always found directly adjacent to its cognate origin.
The association of origin and Orc in close proximity allows
independent control of each origin and reduces competition
between origins and initiators [56].

The origins of replication for H. volcanii were first mapped
in 2007 [59]. The genomic architecture of H. volcanii consists of
one main circular chromosome (2.8 Mb) and three circular
mini-chromosomes; pHV4 (636 kb), pHV3 (438 kb) and
pHV1 (85 kb) [35]; the 6 kb plasmid pHV2 has been cured
from the laboratory strain and its derivatives [15]. The main
chromosome features three active origins, each associated
with their own corresponding Orc initiator protein (oriC1 is
associated with Orc1, oriC2 with Orc5 and oriC3 with Orc2)



Table 1. DNA replication and repair enzymes and gene loci in H. volcanii.

process function enzyme

HVO_
gene
locus notes

replication initiation origin binding Orc1 0001 oriC1

Orc2 0634 oriC3

Orc3 A0001 ori-pHV4

Orc5 1725 oriC2

Orc6 B0001 ori-pHV3

Orc10 C0001 ori-pHV1

replisome formation CMG replicative helicase complex MCM 0220

GINS 2698

RecJ1 0073 alternative GAN proteins, Cdc45 orthologue not

yet determinedRecJ2 1147

RecJ3 1018

RecJ4 2889

primer generation (primase) DnaG 2321 ‘bacterial’ primase, unlikely to act in replication

PriS 2697 ‘eukaryotic’ primase

PriL 0173

clamp loader RFC-A 0203

RFC-B 2427

RFC-C 0145

clamp protein PCNA 0175

single-stranded DNA-binding

protein

RPA1 1338 only RPA2 essential, RPA1/3 unlikely to play

major role in replicationRPA2 0519

RPA3 0292

DNA ligase LigA 1565 alternative and redundant ligases

LigN 3000

DNA synthesis replicative DNA polymerase PolB1 0858

PolD1

(DP1)

0003 small exonuclease subunit of PolD

PolD2

(DP2)

0065 large subunit of PolD

termination of DNA

replication

dimer and superhelical torsion

resolution

XerC-like 1422 involvement in termination of replication yet

to be shown2259

2273

2290

TopoIA 0681 ‘bacterial’ topoisomerase

TopoVI-A 1570 ‘archaeal’ topoisomerases

TopoVI-B 1571

GyrA 1572 ‘bacterial’ topoisomerases

GyrB 1573

removal of RNA primers from

replicated DNA/DNA:RNA

hybrids

RNaseH-A 2438 Type I RNase H

RNaseH-B 1978 Type II RNase H

RNaseH-C A0463 Type I RNase H

RNaseH-D A0277

RNaseH-E 0732 Type I RNase H

flap endonuclease Fen1 2873 also acts in various repair pathways

(Continued.)
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Table 1. (Continued.)

process function enzyme

HVO_
gene
locus notes

direct DNA repair photolyase Phr1 2911

Phr2 2843

Phr3 1234 as yet uncharacterized

type IV restriction enzyme Mrr 0682

methyltransferase A0006 targets cytosine at Cm4TAG motifs

Zim 0794

A0237

rmeRMS 2269–2271 targets adenine at GCAm6BN6VTGC motifs

base excision repair DNA glycosylase Udg1 0231 uracil DNA glycosylase

Udg2 2792

Udg3 0444

Udg4 1038

OGG 1681 DNA N-glycosylase

AlkA 2814 DNA-3-methyladenine glycosylase

MutY1 2896 A/G-specific adenine glycosylase

MutY2 2834

AP endonuclease Apn1 0573 endonuclease IV

NthA 0848 endonuclease III

NthB 0878

EndIV 2708

EndV 0726

EndVb 0443 endonuclease V homologue

nucleotide excision repair damaged DNA recognition UvrA 0393

helicase UvrB 0029

endonuclease UvrC 3006

helicase UvrD 0415 redundant function with other helicases

mismatch repair predicted ATPase MutLa 1939 active in mismatch repair

MutLb 0551

mismatch repair ATPase MutS1a 1940

MutS1b 0552

MutS5a 0191 not involved in mismatch repair

MutS5b 1354

branched structure endonuclease NucS 0486 also called EndoMS

translesion synthesis translesion polymerase PolY 1302

microhomology-mediated

end joining (end

resection)

ATPase Rad50 0854 work together in Mre11-Rad50 complex

exonuclease Mre11 0853

homologous recombination recombinase RadA 0104

recombinase mediator RadB 2383

strand displacement Hel308 0014

Hef 3010

Holliday junction resolvase Hjc 0170 alternative and redundant resolvases

Hef 3010
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[35,59]. Aswith themain chromosome, eachmini-chromosome
ofH. volcanii has its own origin and corresponding Orc protein
[40]. Origins vary in activity; oriC1 the most active origin in H.
volcanii [60] and deletion of oriC1 and its corresponding Orc
protein Orc1 results in a reduced ploidy, suggesting an
additional regulatory role for this origin [61,62]. Subsequent
studies have confirmed these initial findings and the replica-
tion profile of the main chromosome of H. volcanii is now
mapped in detail [60,63].

The laboratory strain of H. volcanii contains a fourth
replication origin on the main chromosome, ori-pHV4 (and
its corresponding Orc protein, Orc3). A fusion event between
insertion sequence (IS) elements on pHV4 and the main
chromosome led to the stable integration of pHV4 and thus
a newly acquired main chromosomal origin [60]. Additional
stable genomic rearrangements in H. volcanii have been
observed, where a recombination event between two near-
identical sod1 and sod2 genes led to the creation of a stable
mini-chromosome [64].

Alongside the three origin-associated Orc proteins in
H. volcanii, there are 12 additional Orc proteins whose genes
are not linked to origins. Their function is currently unknown,
but they are most likely to be dormant Orc proteins that have
been orphaned due to the integration of foreign genetic
elements. For example, the genes encoding Orc11 and Orc14
are both locatedwithin a 50 kb prophage region [35]. Such inte-
gration events, coupled with the fluctuating genome
configurations of archaeal species, hints at evolutionary mech-
anisms that have facilitated a multi-origin replication system,
including horizontal gene transfer (HGT) and gene duplication
events [61,65]. For example, the replicon takeover hypothesis
postulates that the host chromosome becomes dependent on
extra-chromosomal elements for its propagation [66]. The
apparent fluidity of the H. volcanii genome architecture pro-
vides a tool for study of how the loss or gain of an origin
and/or Orc can lead to the multi-origin chromosomes seen in
several archaeal species.

2.2. Elongation
For DNA replication to proceed away from the origin, a full
replisome must be established. All domains of life share
basic mechanisms of DNA synthesis, but differ primarily in
the proteins used [67,68]. In eukaryotes, the pre-replication
complex (pre-RC) must be activated prior to elongation;
this activation provides a further level of regulation above
that of bacteria.

Formation of a replisome in bacteria is relatively simple; fol-
lowing activation of DnaB helicase, the remaining components
are recruited in a stepwise manner. Primase DnaG, a DNA-
dependent RNA polymerase, acts to synthesize short (approx.
8–12 nucleotide) primers used by DNA polymerase to prime
synthesis [69]. Pol-III is the main replicative polymerase in bac-
teria, while Pol-I is involved in Okazaki fragment maturation
(discussed in more detail later). Bacterial clamp protein ß
ensures Pol-III remains associated with the template and
increases the processivity of the polymerase during synthesis.

In eukaryotes, the activation of MCM2–7, and therefore
activation of the pre-RC, is dependent upon two events:
phosphorylation by kinases cyclin-dependent kinase (CDK)
and Dbf4-dependent kinase (DDK) [70], and the formation
of the CMG replicative helicase complex (consisting of
Cdc45, MCM and GINS proteins). Assembly of the CMG
complex in eukaryotes causes switching of MCM binding
from dsDNA to ssDNA, activating the helicase for helix
unwinding [71,72]. At this point, further replication compo-
nents can be loaded, such as replicative DNA polymerases
(Pol-α, Pol-δ and Pol-ε), primases (PriS/L) and clamp protein
proliferating cell nuclear antigen (PCNA). Primase acts in
complex with Pol-α (as complex PrimPol) to synthesize an
approximately 30 bp RNA-DNA primer for extension by
Pol-ε to synthesize the leading strand, while Pol-δ performs
synthesis of the lagging strand.

Elongation in archaea is akin to the more complex system
of eukaryotes: MCM associates with Cdc45-like and GINS-
like proteins to form an archaeal CMG complex, following
which the remainder of replication components are loaded
and replication proceeds bidirectionally away from the
origin. Archaeal replication components will be discussed in
further detail below.
2.2.1. The CMG replicative helicase complex

2.2.1.1. Mini-chromosome maintenance helicase
Despite the ubiquitous function of MCM helicases, there is sig-
nificant genetic and structural diversity within this family of
proteins. Most archaeal species encode a single MCM homol-
ogue thought to act as the replicative helicase [73]. Where
species encode more than one mcm homologue, such as
Thermococcus kodakarensis and Methanococcus maripaludis,
which possess three and four MCM homologues, respectively,
only one will be essential for viability [74–76]. The essential
MCMprotein in species withmultiple paralogues shares struc-
tural and sequence similarity with the single MCM proteins in
other species [75,76].

As a hexamer, archaeal MCM possesses 30–50 helicase
activity that opens the DNA duplex while translocating along
the leading strand. Archaeal MCM proteins are members of
the AAA+ ATPase superfamily and are made up of a non-cat-
alytic N-terminal domain, a central catalytic AAA+ domain
and a C-terminal winged-helix-turn-helix (wHTH) domain
[77]. However, structural variations of archaeal MCM have
been found with some homologues lacking an N-terminal
domain or helicase activity, while others consist only of a par-
tial C-terminal domain [73,78]. The N-terminal portion is
important for hexamer formation, enzyme regulation and
DNA binding [73]. The catalytic region contains residues
associated with other AAA+ ATPases, with Walker A and
Walker B motifs being required for ATP binding and hydroly-
sis, respectively. The presence of an arginine finger motif
within the catalytic domain is characteristic of MCM as a
protein of this superfamily, with the string of positively
charged residues instigating a strong interaction with nega-
tively charged DNA [77]. At the interface of N-terminal and
catalytic domains is the allosteric control loop (ACL); the
ACL consists of a β7–β8 β-hairpin loop and acts to regulate
interactions between the N- and C-terminus of MCM [79,80].
The C-terminal wHTH domain is implicated in the regulation
of MCM but is yet to be fully characterized [73,81].

Unlike eukaryotic MCM, archaeal MCM has basal activity
without the requirement for interactors Cdc45 and GINS
[82–84]. Archaeal MCM proteins can form a range of struc-
tures in solution, but only hexameric MCM has been shown
to possess helicase activity [85]. Double hexameric MCM
has been shown to be more active than the monomeric
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form, suggesting double hexameric MCM acts during canoni-
cal replication [86]. The crystal structure for Sulfolobus
solfataricus MCM has revealed a feature specific to archaea;
each monomer of MCM encodes four β-hairpins, three posi-
tioned within the main channel and one externally [79].
Mutational analysis has since revealed these structures play
a key role in both DNA-binding and helicase activity [78].

H. volcanii encodes a single essential MCM homologue
(HVO_0220), which forms a homohexameric structure akin
to other archaeal MCM complexes [77,87]. Structurally,
H. volcanii MCM is made up of a zinc-binding N-terminal
domain, an AAA+ catalytic core and a C-terminal wHTH
domain. It uses a zinc-cofactor to break the hydrogen bond-
ing of the DNA double helix [77]. Mutagenesis studies have
shown short β7-β8 β-hairpin loop deletions and large β9-β10
β-hairpin loop deletions within the N-terminal domain are
intolerable to the cells; it is speculated that these loops
are crucial for the coordination of zinc binding [77]. Further-
more, a G187A mutation and alanine substitutions of
conserved zinc-binding cysteines show these residues play a
critical role in MCM function. Like other archaeal MCM
homologues, it is essential for cell viability; deletion of the
full-length gene is not possible (T.A. 2020, unpublished)
and specific β7–β8 loop and zinc-binding domain mutants
of H. volcanii MCM could not be generated [77].
2.2.1.2. GINS complex
GINS complex (named after Japanese numbers 5-1-2-3, go-
ichi-ni-san, representing subunits of the eukaryotic complex
Sld5, Psf1, Psf2 and Psf3, respectively) is known to play an
essential role in eukaryotic replication [88]. The four subunits
of eukaryotic GINS are predicted to be paralogous [89], but
can be clustered into two groupings based on protein struc-
tures; A-domains contain high amounts of α-helices, while
B-domains are smaller and rich in β-strands. This structural
grouping places Sld5 and Psf1 together with an AB domain
organization, and Psf2 and Psf3 together with a BA domain
organization [90]. Archaeal GINS complex, as with MCM, is
a simplified version of the eukaryotic counterpart. Structurally,
archaeal and eukaryotic GINS are comparable, but archaeal
GINS is encoded by only one (gins51) or two (gins51 and
gins23) genes, depending on species [89,91,92]. Archaeal
GINS51 protein shares structural similarity with Sld5 and
Psf1 (AB-type), while GINS23 shares similarity with Psf2 and
Psf3 (BA-type). Species can either form a dimer of dimers
where GINS51 and GINS23 are encoded, or a homotetramer
of GINS51 alone in the absence of GINS23.

The first archaeal GINS homologue to be identified and
characterized was from S. solfataricus. Its GINS complex forms
a tetrameric structure made up of GINS51 and GINS23 dimers.
In S. solfataricus, these genes are found in the same operon as
both MCM and primase. A clear interaction has since been
demonstrated between GINS23, MCM and primase, providing
evidence for a functional and eukaryotic-like CMG complex in
S. solfataricus [84,91]. Eukaryotic-like GINS has also been ident-
ified and characterized in T. kodakarensis, where the crystal
structure of GINS is directly comparable to that of human
GINS complex [93]. As in S. solfataricus, T. kodakarensis GINS
forms a dimer of dimers of GINS51 and GINS23 proteins [93].

Interactions between archaeal MCM and GINS are well
documented, with GINS interaction boosting the ATPase and
helicase activities of MCM. In species encoding both GINS51
and GINS23 subunits, interactions with MCM are mediated
by GINS23 [91,94]. Thermoplasma acidophilum encodes only
GINS51 subunits, forming a homotetramer, but has been
shown to carry out MCM :GINS interactions in a GINS51-
dependent manner [83,95]. A GINS51-MCM interaction has
yet to be observed in species carrying both GINS51 and
GINS23 subunits.

A single homologue of GINS has been identified in
H. volcanii. The gene HVO_2968 encodes a GINS51-type
protein and is located within an operon with primase gene
priS (HVO_2697) [87]. Structurally, H. volcanii GINS is larger
than the eukaryotic counterparts, due to the presence of a
large sequence insertion between the conserved A and B
domains. Such an insertion is seen in numerous halophilic
species; however, the function of such an insertion remains
unknown and warrants further study [92]. As yet, interactions
between H. volcanii GINS and other components of replication
have not been described; like MCM, GINS is essential for cell
viability (T.A. and Stuart MacNeill 2020, unpublished).
2.2.1.3. Cdc45/recJ/GAN
While archaeal MCM and GINS homologues are easy to ident-
ify based on similarity to their eukaryotic counterparts,
identification of a Cdc45-like protein in archaea has been less
straightforward. Bioinformatic analysis of Cdc45 revealed it
is the eukaryotic orthologue of bacterial and archaeal RecJ
phosphodiesterase/nuclease family proteins [96,97]. Specifi-
cally, the N-terminus of eukaryotic Cdc45 shows similarity to
the DHH domain associated with RecJ family nucleases [98].
However, unlike well-characterized RecJ proteins, Cdc45 is
known to lack catalytic activity; this can be explained by the
loss of key catalytic residues within the DHH domain [96,99].
Instead, eukaryotic Cdc45 plays an essential structural role
within the CMG complex. Akin to RecJ nucleases, eukaryotic
Cdc45 has maintained the ability to bind ssDNA [100],
which may account for its role at the replication fork.

Bacterial RecJ is relatively well characterized; it has been
implicated in a number of DNA repair pathways, including
mismatch repair (MMR), homologous recombination (HR)
and base excision repair (BER), along with a role in the restart
of stalled replication forks [101–104]. Bacterial RecJ is com-
posed of an N-terminally located catalytic core, made up of
DHH and DHHA1 domains, and a C-terminal oligonucleo-
tide-binding (OB)-fold domain responsible for binding
ssDNA. DHHA1 is a subfamily of DHH superfamily pro-
teins, found in both bacteria and archaea but absent from
eukaryotes; this subfamily domain is involved in substrate
specificity [105,106]. The C-terminal positioning of the
OB-fold is specific to bacterial RecJ and is not found within
Cdc45 or archaeal RecJ proteins.

The DHH superfamily has undergone an expansion event
within the archaea (specifically within the phylum Euryarch-
aea), where multiple species now encode several RecJ-like
proteins. To date, every archaeal species studied encodes at
least one RecJ protein [107] and while some homologues
retain previous identities, others evolved quickly and devel-
oped novel roles [96]. RecJ proteins in archaea have now
been implicated in DNA repair and replication, some have
lost all activity, while the roles of many remain unknown [96].

RecJ proteins were first implicated in archaeal DNA repli-
cation following the identification of in vivo interactors with a
range of replication components in T. kodakarensis [108]. Two
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RecJ-like proteins were identified in T. kodakarensis, termed
GAN (GINS-associated nuclease) and HAN (Hef-associated
nuclease) [109,110]. GAN was primarily identified as an
in vivo interactor with GINS, interacting specifically with
the GINS51 subunit, while HAN interacted with stalled
fork repair protein Hef, favouring GAN as the Cdc45-like
protein in T. kodakarensis [110–112]. Since its discovery in
T. kodakarensis, GAN homologues have been identified in var-
ious archaeal species, reflecting the complexity and diversity
of archaeal DNA replication factors [96]. RecJ-like/GAN pro-
teins are thought to be the Cdc45-like protein within the
CMG complex of archaea (also called GMG for GAN :
MCM : GINS). For all characterized archaeal CMG complex
interactions mapped to date, GINS is essential to bridge the
interaction between MCM and Cdc45 [82–84].

The GAN : GINS complex acts to boost the helicase
activity of MCM, akin to the role of Cdc45 in eukaryotic
CMG complexes [82]. The crystal structure of GAN has
revealed similarities to eukaryotic Cdc45; the DHH domain
contains a CID (CMG-interacting domain), as in Cdc45
[109,113]. However, unlike its eukaryotic counterpart, GAN
remains catalytically active as a processive 50–30 ssDNA exo-
nuclease [112]. GAN has been shown to form a complex with
GINS and MCM in vitro, and the interaction with GINS51
stimulates the exonuclease activity of GAN [82]. By contrast,
the alternative RecJ protein HAN does not interact with GINS
[110], suggesting an alternative role for this RecJ homologue.
It has recently been shown that the T. kodakarensis replicative
DNA polymerase subunit PolD2 interacts with GAN via the
GINS complex, placing GAN at the heart of the replication
complex as in eukaryotes [108,109,112,114].

Similar to T. kodakarensis, Pyrococcus furiosus encodes two
RecJ-like proteins, one sharing sequence and structural simi-
larity with GAN (PF2055; here called PfuRecJ) and the other
sharing characteristics with HAN (PF0399). The DHH
domain of PfuRecJ is intact, facilitating 50–30 DNA exonu-
clease activity, 30–50 RNA exonuclease activity, and
interactions with GINS51, implicating PfuRecJ in DNA repli-
cation as a member of the CMG complex. Interaction of
PfuRecJ and the SSB protein RPA results in 30–50 exonuclease
activity on both ssRNA and dsRNA/DNA hybrids; such an
activity could be used at the replication fork to deal with
Okazaki fragments [115,116]. The crystal structure of PfuRecJ
has been solved and is comparable to that of T. kodakarensis
GAN [116]; PfuRecJ is therefore is a strong candidate for the
Cdc45-like protein in P. furiosus.

However, this pattern is not observed in all Euryarchaea.
Two RecJ homologues, TaRecJ1 and TaRecJ2, have been ident-
ified in Thermoplasma acidophilum, both bearing resemblance to
T. kodakarensis GAN [117]. TaRecJ1 possesses 50–30 ssDNA-
specific exonuclease activity, while TaRecJ2 possesses 30–50

exonuclease activity specific for RNA. Interactions between
TaRecJ2 and GINS51 occur in a stable fashion and it has been
shown that TaRecJ2, not TaRecJ1, in combination with GINS,
stimulates the helicase activity of T. acidophilum MCM [117].
A CMG-like complex comprising TaRecJ2 :MCM :GINS was
recapitulated in vitro and also observed in vivo, making
TaRecJ2 the true ‘GAN’ of this species [117]. The 50-30 direction-
ality of TaRecJ1 is akin to that of bacterial RecJ, and it is possible
that TaRecJ1 has gained a role in DNA repair akin to bacterial
RecJ; this is yet to be confirmed.

Unlike the full-length RecJ proteins acting as Cdc45 in the
aforementioned examples, the crenarchaeon S. solfataricus
instead uses a truncated form of RecJ [91]. Primarily ident-
ified through its interaction with GINS51, RecJdbh (RecJ
DNA-binding homologue) or ‘Cdc45’ shares only the DNA-
binding portion of bacterial RecJ. These ‘inactive’ RecJ pro-
teins have been shown to form CMG-like complexes and
boost the helicase activity of MCM, making them bona fide
Cdc45-like proteins [84,91]. RecJdbh shares very little hom-
ology to characterized GAN proteins, carrying a degenerate
DHH domain and lacking any exonucleolytic activity. This
suggests that there is more than one type of RecJ protein
able to act in the manner of Cdc45 in archaea and warrants
further study.

The identity of the Cdc45 homologue in H. volcanii is also
an open question. Preliminary work has identified four RecJ
homologues: RecJ1 (HVO_0073), RecJ2 (HVO_1147), RecJ3
(HVO_1018) and RecJ4 (HVO_2889) [107]. Based on simi-
larity to Cdc45, GAN and RecJ proteins in general, it has
been proposed that one (or more) of these RecJ homologues
function as the Cdc45 homologue in H. volcanii [71]. Analysis
of catalytic residues within RecJ1 and RecJ3 suggest they have
retained nuclease activity, but in vitro and in vivo studies are
needed to determine whether these nucleases are active, and
whether they act in DNA repair or replication. By contrast,
RecJ2 and RecJ4 are both predicted to have lost key catalytic
residues and therefore nuclear activity. Comparison of H. vol-
canii RecJ proteins by arCOG grouping (archaeal clusters of
orthologous genes) suggests that RecJ1 is the best candidate
for GAN, while RecJ3 and RecJ4 are HAN candidates; RecJ2
has diverged away from the other H. volcanii RecJ proteins
and its function remains unknown. RecJ1, RecJ3 and RecJ4
are all non-essential (even in combination) but the cellular
requirement for RecJ2 is an open question (T.A. and Stuart
MacNeill 2020, unpublished). Further work is needed to deci-
pher which RecJ(s) play the role of Cdc45 and whether there
is any redundancy between the four RecJ proteins inH. volcanii.
2.2.2. Other replisome components

2.2.2.1. Primases
Bacteria use a single subunit primase protein, DnaG, while
eukaryotes encode heterodimers consisting of catalytic
(PriS/p48) and regulatory (PriL/p58) subunits that work in
tandem to synthesize short primers [69,118].

Archaea encode both bacteria-like and eukaryotic-like pri-
mases, depending on the species. The eukaryotic-like
replicative primase found in archaea is a two-subunit com-
plex consisting of a small catalytic subunit (PriS/p41) and a
large regulatory subunit (PriL/p46); fusion events of PriS
and PriL have been seen within nanoarchaeal genomes
[61,68]. Unlike bacterial and eukaryotic primases that are
only capable of synthesizing ribonucleotides, archaeal pri-
mases have been shown capable of synthesizing both RNA
and DNA [119]. DNA synthesis can reach lengths of several
kilobases, meaning archaeal primases in some cases can be
defined as non-canonical DNA polymerases [119,120]. PriS/
L-like primases in archaea have also been implicated in func-
tions outside of replication, including gap-filling and strand
displacement activities [121]. Bacterial-like DnaG proteins in
archaea do not appear to act in DNA replication. For example
in S. solfataricus, DnaG has been strongly implicated in RNA
degradation and has only limited primer synthesis activity
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[122,123]; instead, S. solfataricus uses PriS/L to carry out
primer synthesis during DNA replication [123,124].

H. volcanii also encodes homologues of both bacterial and
eukaryotic primases. Bacterial DnaG primase (HVO_2321)
can be deleted from H. volcaniiwithout any effect on cell viabi-
lity [121], suggesting that this protein has no role in DNA
replication. As in S. solfataricus, DnaG may have gained an
alternative role in RNA degradation but this requires further
testing. By contrast, eukaryotic-like PriS and PriL genes
(HVO_2697 and HVO_0173 respectively) are essential for cell
viability [121], most likely primingDNA replication at the repli-
some. Significant work on the activities of PriS/L is still needed,
including the length of RNA/DNA primers synthesized,
polymerase specificity and any additional roles in the cell.

2.2.2.2. Clamp loader replication factor C
Sliding clamp proteins are required to boost the otherwise low
processivity of replicative DNA polymerases. Sliding clamps
are stable ring proteins and thus cannot self-assemble onto
DNA; instead, they are assembled onto DNA by a clamp
loader protein [125]. Clamp loader proteins facilitate the
opening and loading of the clamp protein (ß-clamp protein
in bacteria, PCNA in eukaryotes and archaea) onto a primer-
template junction in an ATP-dependent manner [126]. Bacteria
use clamp loader γ-complex while eukaryotes and archaea rely
on replication factor C (RFC). The ability of clamp loader pro-
teins to distinguish ssDNA : dsDNA junctions allows loading
of clamp proteins specifically at primer-template junctions
[126]. The primase, at the time of clamp recruitment, remains
associated with the primer. Both primases and clamp loaders
interact with SSB and this facilitates the handoff from primase
to clamp loader protein binding the primer-template junction
[127]. Due to the discontinuous priming of the lagging
strand, clamp proteins are continuously recruited, meaning
there is a constant requirement for clamp loaders during
processive replication [128].

Eukaryotic RFC is pentameric and is composed of one large
subunit (Rfc1) and four small subunits (Rfc2–5). Most archaea
encode two homologues of RFC: one corresponding to the
small eukaryotic RFC subunit (RFCS) and the other corre-
sponding to the large subunit (RFCL) [44,125]. Akin to
eukaryotic RFC, archaeal RFC forms a pentamer consisting of
four RFCS subunits and one RFCL subunit [129]. Stimulation
of PCNA by RFC has been characterized in Pyrococcus
horikoshii, whereby RFC enables PCNA to recruit and activate
both replicative DNA polymerases [130,131].

H. volcanii possesses three homologues of RFC (RFC-A,
HVO_0203; RFC-B, HVO_2427; RFC-C, HVO_0145), all of
which are essential for growth [132]. All three homologues
possess AAA+ domains that enable ATP-dependent DNA
binding. The larger of the three, RFC-B, carries an additional
C-terminal PIP box that is absent from the smaller RFC sub-
units. A PIP box (PCNA-interacting protein peptide box,
discussed in more detail later) facilitates interaction with
PCNA, suggesting that RFC-B acts to stimulate PCNA for
polymerase recruitment. Further work is required to decipher
the roles of the RFC subunits in H. volcanii.

2.2.2.3. Proliferating cell nuclear antigen
The clamp protein proliferating cell nuclear antigen (PCNA)
acts as a platform for the recruitment of DNA polymerases
and other replicative proteins in eukaryotes and archaea.
The protein binds dsDNA in a sequence-independent
manner where it can move bidirectionally. PCNA acts as a
clamp at the replication fork to tether replication factors
onto DNA via the opening and closing of its ring structure
around dsDNA (aided by clamp loader protein). Bacteria
have a differing clamp protein, named β, which forms a
homodimer, while both eukaryotes and archaea use trimeric
protein PCNA [125].

Regarding clamp proteins in archaea, there appears to be
a division along phylogenetic lines: in most euryarchaea,
there is a single PCNA homologue that forms a homotrimer.
Only one euryarchaeal species, T. kodakarensis, carries two
PCNA homologues; however, one is believed to have been
acquired relatively recently by lateral gene transfer (LGT)
[133]. On the other hand, crenarchaea commonly encode mul-
tiple PCNA homologues and have been shown to form both
homo- and hetero-trimeric structures [134].

H. volcanii, as a euryarchaeon, encodes a single homologue
of PCNA (HVO_0175). PCNA is essential for viability in
H. volcanii and forms a homotrimer in solution, with mono-
mers interacting in a head-to-tail manner [135–137].
H. volcanii PCNAhas been predicted to interact with numerous
replication components, including replicative DNA poly-
merases PolB1 and PolD, clamp loader protein RFC-B,
endonuclease Fen1 and ribonuclease RNase H2 [137]. All of
these proteins contain a PIP box, a defined region of the protein
made up of bulky aromatic groups containing conserved resi-
dues QxxLxxFx (where x represents any amino acid) [137].
Interactions of PCNA with proteins via PIP boxes is well-
characterized throughout archaeal and eukaryotic species
[68,138] and underlines a key role for PCNA in DNA replica-
tion. Alongside its role in replication, PCNA has also been
linked to proteins associated with DNA repair via the identifi-
cation of PIP boxes; these links are discussed in detail later.
The ability of PCNA to interact with multiple proteins simul-
taneously has given rise to the ‘molecular toolbelt’ model,
where PCNA acts to bring together replication and repair
proteins at the site they will be required.

Structural studies of PCNA in H. volcanii have advanced
our knowledge of protein adaptation to high intracellular
salt concentrations [135,136]. Bacterial and eukaryotic
PCNA homologues feature positively charged residues (com-
monly lysine and arginine) in the two α-helices that make up
the inner channel of the ring structure. This facilitates strong
interactions between PCNA and negatively charged DNA.
Due to the high internal salt concentration of H. volcanii
cells, proteins have adapted by increasing their surface
acidity (specifically by increasing the percentage of aspartate
and alanine residues), along with increasing the number of
bound cations and intermolecular ion pairs. The crystal struc-
ture of H. volcanii PCNA shows a notable increase in surface
acidic residues to alter the overall electrostatic charge distri-
bution of the protein. This enables the protein to function
with only two basic residues per monomer in the channel.
H. volcanii PCNA also has increased cation binding to poten-
tially facilitate a reduction in positively charged atoms at the
pore region with three Na+ ions over two sites in each mono-
mer. These adaptation mechanisms enable PCNA be stable at
a wide range of salt concentrations while still facilitating the
critical interaction of PCNA with DNA.

Interestingly, the deletion of proteasome-activating nucleo-
tidase A (PanA; HVO_0850) increases the half-life of PCNA,
demonstrating thatH. volcanii PCNA is a target of proteasomal
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degradation [139,140]. This study, using pulse-chase labelling,
immobilized metal affinity chromatography (IMAC) and
immunoprecipitation, is one of the first to demonstrate any
post-translational regulatory mechanisms during DNA repli-
cation in H. volcanii. It is suggested that post-translational
phosphorylation events may also target H. volcanii PCNA as
these same techniques purify phosphopeptides. Significant
work needs to be carried to understand the intricacy of
post-translational events occurring in H. volcanii.
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2.2.2.4. DNA polymerases
Replicative DNA polymerases (DNAPs) function in a 50 to 30

manner, extending RNA primers to replicate the genome.
Due to their directionality, synthesis of the leading strand is
a continuous process, requiring only a single priming event,
while the lagging strand must be synthesized discontinu-
ously as Okazaki fragments.

Based on amino acid sequence, DNAPs were assigned to
six main families: A, B, C, D and Y [141]. More recently,
reverse transcriptase (RT) enzymes have also been defined
as DNA polymerases of a separate novel family [142]. Repli-
cative DNAPs used in each of the three domains differ,
spreading across families A, B, C and D [143]. The identity
and role of bacterial and eukaryotic replicative polymerases
are relatively well defined. Although the families of DNAPs
used by archaea have been identified, the definition of
which replicative polymerase acts on which strand still
remains a matter of contention.

Genome replication in bacteria is reliant on Pol-III (Family
C polymerase) [141]. Two copies of Pol-III replicate both the
leading and lagging strands simultaneously. The Pol-III core
is tightly associated with the replisome via interactions with
both clamp loader γ and clamp protein ß. Alongside the cat-
alytic subunit, Pol-III also encodes subunits possessing 30–50

exonuclease proofreading activity. Gram-negative bacteria
with a low GC content use two distinct copies of Pol-III,
named PolC and DnaE, for leading and lagging strand syn-
thesis, respectively [144,145]. Bacteria also encode family A
polymerases, such as Pol-I. These function primarily in the
processing and maturation of Okazaki fragments and
removal of RNA primers [146].

Eukaryotes can encode up to 15 family B DNA poly-
merases. The main eukaryotic replicative DNAPs fall within
this family, named Pol-α, Pol-ε and Pol-δ. These are all
multi-subunit enzymes containing a catalytic core identifiable
as a family B polymerase, alongside various accessory
domains depending on the polymerase [147]. PrimPol gener-
ates a short RNA primer, which is then extended for
approximately 40 nucleotides by low-fidelity Pol-α [68,148].
The bulk of synthesis is completed by high-fidelity replicative
polymerases Pol-ε and Pol-δ [67,149,150].

Interestingly, there is a phylogenetic divide in the distribu-
tion of DNAP families in the archaea.While all archaea possess
family B polymerases, archaeal-specific family D DNAPs are
absent from crenarchaeal species. Work is beginning to eluci-
date the roles and functions of these polymerases but the
question of which polymerase(s) acts at the leading and/or
lagging strand remains under dispute.

Archaeal family B polymerases share homology with
the catalytic subunit of family B replicative polymerases in
eukaryotes [151,152]. Archaeal family B polymerases have
been isolated, with some now being routinely used for PCR
applications [153]. Three groups of archaeal PolB polymerases
exist, historically termed PolB1, PolB2 and PolB3 [154]. PolB1
and PolB3 are active polymerases, while PolB2 proteins gener-
ally carry disrupted catalytic and exonuclease domains which
can result in either an active or inactive PolB2 protein [154–
156]. A single species can encode single or multiple copies of
PolB, with all archaea encoding at least one PolB polymerase.
It is usually present as a single protein, with one polypeptide
encoding both the catalytic and proofreading activities; the
exception is Methanothermobacter thermautotrophicus, where
PolB is encoded by twopolypeptides [154,157]. The distribution
of specific PolB proteins changes throughout the archaeal
domain; PolB1 ismissing inEuryarchaeota and PolB3 ismissing
in Thaumarchaeota,whilemembers of the PolB2 group are scat-
tered across archaea [154]. Several groups of archaea carry
multiple inteins within PolB3 genes, sometimes up to three
per gene [158]. Inteins are selfish genetic elements that insert
themselves into a coding sequence and self-splice once trans-
lated; they typically encode an endonuclease that propagates
further intein insertions [159,160]. Across species carrying
PolB3 proteins, intein insertion sites are generally conserved;
however, some are lineage-specific [87,158].

Since Crenarchaeota species possess only family B poly-
merases, it is hypothesized that PolB alone must be capable
of both leading and lagging strand synthesis [154,161].
However, crenarchaea typically possess multiple family B
polymerases; it is possible that the multiple PolB polymerases
within a strain have gained specialized functions and act on
different strands. This is known to be the case for S. solfataricus:
PolB1 (Dpo1) has been implicated in leading strand synthesis,
while PolB3 (Dpo3) has been for lagging strand synthesis.

Archaeal family B DNAPs generally feature a polymerase
core (made up of three domains; palm, fingers and thumb),
an N-terminal 30–50 exonuclease domain and an uracil-recog-
nition domain specific to archaea [154,162,163]. The uracil-
recognition domain provides archaea with a unique damage
sensing mechanism whereby the polymerase scans ahead
of the catalytic site, pausing at misincorporated uracil or
hypoxanthine moieties that have escaped canonical repair by
uracil-N-glycosylase [164,165]. PolB is capable of extending
DNA-primed templates efficiently; however, it struggles to
extend RNA primers [166]. This suggests that the inherent
DNA polymerase activity of archaeal primases or, in non-cre-
narchaeal species, family D polymerases are used to extent
RNA primers with a short DNA template, prior to handover
to PolB.

Recent studies have revealed that PolB is not essential for
viability in all archaea, but can be deleted in some euryarchaeal
species (which also encode PolD). In Thermococcus barophilus,
T. kodakarensis and M. maripaludis, it has been shown that
PolB is dispensable and PolD alone is essential [167–169]. The
ability to delete PolB but not PolD in these species suggests
PolD has the ability to carry out both leading and lagging
strand replicative DNA synthesis, while PolB may carry out
DNA synthesis as part of DNA repair. Cells of T. kodakarensis
deleted for PolB have been shown to be sensitive to gamma
irradiation, consistent with the suggestion that PolB carries
out DNA synthesis during homologous recombination
(which would be used to repair DNA double-strand breaks)
[170]. Recent in vitro reconstitution studies in P. furiosus have
shown that both PolB and PolD are capable of extending
RadA recombinase-primed recombination intermediates
[171], but that PolB was more efficient than PolD. This activity,
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of extending a D-loop recombination intermediate, is
consistent with the role of PolB as a DNA repair polymerase.

However, the ability to replicate in the absence of PolB is not
true of all euryarchaea. In the halophileHalobacterium sp.NRC-1,
both PolB and PolD are essential for cell viability [172] and
similar findings havebeenmade inH. volcanii (T.A. 2020, unpub-
lished). It is possible that in some species PolB has gained a novel
role, or that the high ploidy associated with halophiles increases
demand on replication proteins in general. Further work is
required to explain the differing requirements for DNA poly-
merases (specifically PolB) within the euryarchaea.

The family D DNAPs were initially discovered in P. furio-
sus by the Ishino laboratory, with the discovery changing the
classification system for DNA polymerases [161,173,174].
Family D polymerases form heterotetramers, encoded by
subunits DP1 and DP2. DP1 is a small subunit with 30–50

proofreading activity and is structurally similar to the exonu-
clease domain of eukaryotic family B polymerases, while DP2
is the catalytic subunit [175,176]. It has been shown that
interaction between DP1 and DP2 is required for PolD to
achieve the maximum polymerase and exonuclease activities
[173,177]. DP1 is made up of a ssDNA-binding OB fold and
30–50 exonuclease domain (from the metallophosphatase
MPP family), which functions in the proofreading and
removal of erroneously incorporated nucleotides during
DNA synthesis [105,178]. The catalytic fold of this calci-
neurin-like phosphodiesterase family subunit has recently
been shown to be specific to family D polymerases [179,180].

Structurally, family D polymerases display a close
resemblance to RNA polymerases (RNAPs) [181,182]. The
recent publication of a crystal structure of PolD elucidated
this link in further detail [175]. While DP1 shows similarity
to non-catalytic subunits of eukaryotic family B polymerases,
DP2 shows homology to the two-DPBB (double-psi beta bar-
rels) ‘two-barrel’ superfamily of polymerases [175]. Members
of the two-barrel superfamily include both DNA- and RNA-
dependent transcriptases, along with RNA silencing RNAPs
and atypical viral RNAPs [179,181–183]. PolD is the first
DNAP to be placed within this superfamily, extending the
repertoire of known catalytic folds able to perform DNA syn-
thesis [151,184]. The evolutionary history of replication posits
that RNAwas used as a genetic material prior to DNA [143],
leading to the suggestion that PolD may be the ancestral
replicative DNA polymerase of the last universal common
ancestor (LUCA) [184].

Early studies in Pyrococcus showed that archaea-specific
family D polymerase PolD can efficiently extend both RNA
and DNA primers [173]. More recently, it has been shown
that PolD can extend RNA primers with a greater efficiency
than PolB [166]. Given this information, it has been theorized
that in species encoding both PolB and PolD, PolD carries out
preliminary synthesis from the RNA : DNA primer before
handing over to PolB for the bulk of synthesis, akin to the
mechanism seen in bacteria with Pol-I and Pol-III. However,
questions remain regarding this mechanism. If PolD is the
lagging strand polymerase, strand displacement activity
would be required to remove the primers associated with
Okazaki fragments on the lagging strand. Currently, this
has only been shown in P. abyssi [185]. PolB has been
shown to have strand displacement activity, implicating it
in Okazaki fragment processing [166].

The RNA extension activity of PolD, and its processivity,
requires stimulation from PCNA [175,185]. Interaction of
PolD and PCNA occurs at multiple sites throughout both
DP1 and DP2 subunits, including a conserved PIP motif
encoded at the C-terminus of DP2. Studies on Thermococcus
species have implicated a role for PolD at the replication
fork; the DP1 exonuclease subunit associates with the GINS-
GAN complex via interaction with GINS51. However, this
interaction inhibits the exonuclease activity of PolD. This
exonuclease activity may have a function elsewhere or may
be used in the removal of replication components [114].
Recently, the three-dimensional structure of the PolD-PCNA-
DNA complex in Thermococcus kodakarensis was determined
using single-particle cryo-electron microscopy (EM). It was
shown that a glutamate residue at position 171 of PCNAmed-
iates the interaction with the DP1 and DP2 subunits, locking
the PolD structure into a conformation that is competent for
enzymatic activity [186].

As a euryarchaeon,H. volcanii contains homologues of both
family B and family D DNA polymerases. Two PolB homol-
ogues are found; one is an active polymerase and one is
predicted to be inactive. The active PolB, PolB1 (HVO_0858),
is amember of the PolB3 family of polymerases common to eur-
yarchaea, while the predicted-inactive PolB2 (HVO_A0065) is a
member of the PolB2 group associated with often inactivated
polymerases [87,156]. Littlework has been carried out onH. vol-
canii PolB1 thus far; a structural analysis of the role of intein
present in the C-terminus of PolB1 and its associated homing
endonuclease (HEN) showed the loss of the intein sequence
from the polB1 gene resulted in no growth defects, indicating
this sequence has no active role in H. volcanii [187]. An associ-
ation between a RadA recombinase-like gene and PolB2 has
been observed in Sulfolobales [47]. The polB2 gene of H. volcanii
is located near a radA-like gene, indicating a possible link
between PolB2 group polymerases and DNA repair; however,
the deletion of the polB2 gene (but not the polB1 gene) is possible
in H. volcanii (T.A. 2020, unpublished).

H. volcanii encodes a family D polymerase PolD, consisting
of subunits DP1 and DP2. The gene encoding the small exonu-
clease subunit DP1 (HVO_0003) is located in close proximity
to oriC1 and the gene encoding Orc1, while the gene for the
large catalytic subunit DP2 (HVO_0065) is located distal to
the origin. Both DP1 and DP2 are essential for PolD activity;
the two subunits stimulate the activity of one another, as
seen for Pyrococcus species [177]. Sequence and domain
analyses show that DP1 andDP2 are similar to other euryarch-
aeal family D polymerase subunits, and DP2 contains a
C-terminal PIP domain for interaction with PCNA [87]. Thus
far, little work has been carried out into the function of PolD
in H. volcanii, apart from establishing that PolD is essential
for cell viability (T.A. 2020, unpublished).

2.2.2.5. Single-stranded DNA-binding proteins
ssDNA-binding proteins (SSBs) play a central role in DNA
replication, recombination and repair across all domains of
life but share limited sequence conservation [188–193]. They
function to coat ssDNA exposed during DNA replication, pro-
tecting it from degradation or chemical modification. In
addition, SSBs can assist in homologous recombination by inhi-
biting secondary structure formation on ssDNA [194,195] or by
interacting with RadA recombinase to promote strand
exchange, as has been observed in the euryarchaeon P. furiosus
[196]. Consistent with their role in DNA replication, SSBs are
generally essential for viability in bacteria [197,198], eukaryotes
[199,200] and archaea [201,202].
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Bacteria use homotetrameric SSB, which forms nucleopro-
tein filaments along ssDNA. Eukaryotes bind ssDNA with
hetero-trimeric replication protein A (RPA), which is structu-
rally and functionally analogous to bacterial SSB [203].
Depending on species, the ssDNA-binding protein in archaea
can be bacterial-like (SSB) or eukaryotic-like (RPA). For
example, S. solfataricus uses a protein structurally akin to SSB
[204], while P. abyssi encodes a heterotrimer showing hom-
ology to eukaryotic RPA [196]. A group of 10 species of
Crenarchaea, belonging to the clade Thermoproteales, lack a
canonical SSB; instead they encode a protein termed Ther-
moDBP that supplies the essential ssDNA-binding activity in
the absence of SSB [205].

H. volcanii encodes three homologues of a eukaryotic-like
SSB: RPA1 (HVO_1338), RPA2 (HVO_0519) and RPA3
(HVO_0292) [201]. All three RPA homologues contain OB
folds that facilitate DNA binding, with each OB-fold consist-
ing of five ß-sheet strands folded into a barrel-like structure.
The binding of this barrel around ssDNA stabilizes the
DNA and prevents attack by nucleases. Although structurally
similar, each RPA protein has a unique function and they do
not form a hetero-trimeric complex as seen in P. abyssi
[196,206]. RPA2 is the only homologue essential for cellular
survival, while RPA1 and RPA3 are both non-essential
[201]. Formation of RPA2 foci has been seen in cells treated
with aphidicolin, an inhibitor for PolB, indicating an essential
role for RPA2 in overcoming replication stress [207,208].
RPA2 foci formation has also been observed in cells treated
with ultraviolet (UV) light, suggesting an additional role
for RPA2 in DNA repair.

Deletion of the gene encoding RPA1 results in no increase
in sensitivity of cells to DNA damaging agents, indicating no
major role in DNA repair [201]. RPA1 has been genetically
linked with RPAP1 (RPA-associated protein 1; HVO_1337),
an OB-fold protein predicted to assist RPA and facilitate
ssDNA binding. RPA1 and RPAP1 are both located in the
same operon with co-purification studies indicating an in
vivo association between the proteins [209]. By contrast,
cells deleted for RPA3 are sensitive to DNA damaging
agents including UV radiation, phleomycin and methyl
methane sulfonate (MMS). This indicates a role for RPA3 in
DNA repair, in particular double-strand break (DSB) repair,
as the aforementioned agents promote DSB formation [201].
Akin to RPA1, RPA3 is also encoded within an operon along-
side an RPA-associated OB-fold protein, RPAP3 (HVO_0291).
A similar increased sensitivity to multiple DNA damaging
agents was seen upon the deletion of RPAP3 [209]. Whether
this role in DNA repair also extrapolates to DNA replication
is yet to be investigated; given that RPA3 is not essential, any
role in DNA replication is likely to be minor.

RPA homologues present in the closely related species
Halobacterium have also been implicated in DNA repair and
deletion mutants show increased sensitivity to various DNA
damaging agents [202]. Halobacterium salinarium possesses 5
SSB homologues (2 eukaryotic-like, 2 bacterial and one eur-
yarchaea-specific). Upon deletion of these homologues, cells
display increased sensitivity to infrared (IR) and UV radiation,
andmitomycin C (MMC) treatment, with the strain deleted for
the euryarchaeal-specific RPA homologue beingmost sensitive
[202]. Despite the high degree of homology between these two
halophiles, there are functional differences regarding DNA
replication and repair mechanisms; H. volcanii RPA proteins
are implicated only in DSB repair, while Halobacterium
homologues appear to be playing a role in multiple DNA
repair pathways [201,202,209].
2.2.2.6. Other replisome components
Lagging strand maturation requires the removal of RNA pri-
mers on Okazaki fragments; the resulting gap is filled, and
nicks are ligated to give a continuous DNA strand. RNase H
proteins act to remove RNA primers associated with Okazaki
fragments, flap endonucleases remove any flap structures gen-
erated in displacing primers, and DNA ligase seals any
remaining nicks to give a complete product. In eukaryotes,
gap filling is an early event, occurring prior to removal of the
CMG complex from dsDNA [210].

The RNase H family of proteins acts to remove RNA pri-
mers from fully replicated Okazaki fragments; they also
degrade R-loops (RNA-DNA hybrids) in a sequence-indepen-
dent manner. RNase H enzymes are evolutionarily conserved
and although not essential for cell survival, their deletion
leads to strong sensitivity to DNA damaging agents in eukar-
yotes [211,212]. They can be categorized into three groups:
RNase H1 proteins are present in bacteria, archaea and eukar-
yotes, and in reverse transcriptases from retroviruses and
retroelements; RNase H2 proteins are present in all domains
of life, usually together with a RNase H1 [213]; RNase H3 pro-
teins are found in some bacteria and archaea, and show
structural similarities to RNase H2 [213]. RNase H proteins
generally share low sequence similarity, but both RNase H1
and RNase H2 group proteins use a highly conserved two
metal ion catalytic mechanism [214,215]. All archaea encode
an RNase H2 similar to the eukaryotic enzyme [213], together
with an RNase H1 or RNase H3 [216].

H. volcanii possesses encodes five RNase H homologues,
three of type 1 (RNase H-E, HVO_0732; RNase H-A,
HVO_2438; RNase H-C, HVO_A0463) and a single type 2
protein (RNase H-B HVO_1978). RNase H-D (HVO_A0277)
does not fit clearly into either group and its function remains
unknown. Type 2 RNase H-B is non-essential in H. volcanii.
It encodes a C-terminal PIP domain, implicating this RNase
H at the replication fork. In vitro reconstitution of RNA
primer removal in P. abyssi has implicated RNase H in cutting
the RNA : DNA hybrid at Okazaki fragments as an early step,
allowing subsequent strand displacement by PolB/PolD
[217]. The roles of the three type 1 RNase H genes in
H. volcanii remain unknown and warrant further study.

Fen1 (Flap endonuclease 1) is a structure-specific endonu-
clease that acts to remove 50 overhangs generated during
Okazaki fragment maturation as a result of strand displace-
ment. Replicative DNA polymerases will then act on the
newly generated 30 end to fill the gap and DNA ligase will
seal the nick. The eukaryotic polymerase responsible for
final synthesis (gap filling) still remains a controversial
topic. In both Caenorhabditis elegans and Xenopus laevis,
Pol-ε, but not Pol-δ, has been shown to interact with the
post-replication CMG complex [218]. DNA incorporation
studies in P. abyssi have shown a reduced incorporation of
nucleotides in the absence of Fen1, indicating a possible
role for Fen1 in archaeal DNA replication [137].

H. volcanii encodes a single Fen1 homologue (HVO_2873),
with deletion of this nuclease being viable [219]. This is in
contrast with Halobacterium sp. NRC-1 where its single Fen1
homologue, rad2, is essential [172]. Rad2 has been implicated
as a key player in UV damage repair in Halobacterium [220];
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similarly, H. volcanii strains lacking Fen1 display increased
sensitivity to UV and DNA cross-linking agents [219].
The fact that fen1 can be deleted from H. volcanii suggests
redundant systems are in place to deal with DNA damage
in this species.

2.3. Termination of replication
Termination of DNA replication involves the convergence of
two replication forks, either at randomorat a defined location(s)
depending on the organism, followed by dissociation of the
replisomeanddecatenationof the chromosomes toallowcorrect
segregation into daughter cells [221].

2.3.1. Sites of termination

In bacteria, specific regions on the chromosome called ter-
mination (Ter) sites dictate where replication is halted, they
are generally located at the furthest point from the origin.
Ter sites act as a polar block to the DNA replication machin-
ery, causing the replication fork(s) to stall within the defined
termination region. Up to 10 ter, sites (named TerA-J) are
bound by the DNA replication terminus-binding protein
Tus in a specific orientation [222]. The replication fork is
able to bypass 5 Tus-bound Ter sites with the ter sites termi-
nating the replisome. Unlike bacteria, eukaryotes do not have
sequence-defined termination sites. Termination events occur
midway between two origins, with more active origins dis-
playing more defined regions of termination [223–225].
Some studies have indicated the convergence of CMG com-
plexes is a key step in the initiation of termination in
eukaryotes [226].

While archaea share a circular genome architecture with
bacteria, their chromosomes lack defined termination sites
[60,227]. Instead, the termination of replication appears to
occur in ‘zones’ where replication forks meet randomly, as
in eukaryotes. This is visible on replication profiles (MFA
plots), where termination zones map as broad valleys; this
contrasts with the sharp ‘canyons’ seen for bacteria, which
represent defined termination sites. Work carried out on
Sulfolobus species has shown replication to be asynchronous,
suggesting both number of origins and rate of initiation may
affect where termination occurs [228].

Little is known about the details of termination of DNA
replication in H. volcanii. The broad termination zones seen
equidistant to origins of replication on MFA plots suggest
that H. volcanii does not encode defined ter sites, and the relo-
cation of such termination zones upon deletion of origins
confirms there is no sequence specificity to termination in
this species [60].

2.3.2. Dissociation of the replisome

Prior to completion of replication, components of the replisome
must be removed to prevent over-replication and to allow
segregation of the newly synthesized DNA. During DNA syn-
thesis in eukaryotes, the CMG replicative helicase complex
encircles ssDNA, opening the helix to allow processive
elongation. When converging with another fork, the CMG
complex will bypass the CMG complex of the oncoming repli-
some and switch from binding ssDNA to binding dsDNA; the
location of the CMG complex on the leading strand of both
replisomes ensures there is no steric clash, and no decrease in
synthesis rate is observed at termination sites in Xenopus
[210]. The switching of binding of the CMG complex from
ssDNA to dsDNA acts as a marker for downstream events.
Polyubiquitylation of MCM subunit MCM7 by specific E3
ligases leads to unloading of the CMG complex by the activity
of ATPase Cdc48/p97 [229,230]. Dissociation ofMCM from the
heart of the replisome is hypothesized to cause dissociation of
the entire replisome. However, some predictions have been
made that it is the unloading of PCNA, and its numerous
associated proteins, which results in an unloading of further
replicative factors. Such a model for coordinating termination
of replication has been proposed in archaea for S. solfataricus,
whereby PCNA coordinates the termination activity of PolB1,
flap endonuclease 1 (Fen1) and DNA ligases, due to the
presence of PIP domains on these proteins [231].

Re-replication events are not seen in eukaryotes, indicating
the presence of strict regulatory mechanisms in termination;
the use of ubiquitylation adds a layer of complexity to eukary-
otic termination, which is not seen for bacteria [232]. Little is
understood regarding the removal of replication components
in archaeal species, including H. volcanii, but preliminary evi-
dence suggests a system more complex than that of bacteria.
It remains to be elucidated if post-translational modifications
play a role in archaeal termination and replisome unloading,
but given that homologues of Cdc48/p97 and ubiquitin-like
proteins are both found in H. volcanii [233], this remains a
distinct possibility.

2.3.3. Decatenation and resolution

Unwinding of DNA during replication will lead to overwind-
ing of the duplex ahead of the replication fork, forming
supercoils. If left unresolved during replication, this increased
torsional stress would prevent the replication fork from pro-
ceeding along with the duplex and at termination would
prevent equal segregation of DNA to daughter cells.

In bacteria, topoisomerases act to control the level of tor-
sion in DNA during replication [234]. Type II topoisomerases
are important in termination: DNA gyrase acts to relieve posi-
tive supercoils formed as a product of DNA unwinding while
TopoIV resolves pre-catenanes, allowing fork convergence to
occur and to be resolved successfully [235,236]. Following the
resolution of torsional stress, RecG translocase and RecBCD
helicase-nuclease resolve overlapping sequences at the termi-
nus, giving a product suitable for dissolution and segregation
[237,238]. Should an odd number of crossover events occur,
chromosome dimers can be created [239]. Such structures
must be separated prior to segregation to ensure each daugh-
ter cell receives a full genome complement. In bacteria, Xer
site-specific recombinases act at specific loci named Dif
(differential induced filamentation) sites, which are in close
proximity to ter sites, and resolve chromosome dimers into
monomers [240].

Argonaute family proteins (AGO) are found across all
domains of life. In eukaryotes, short RNA guides act to
target AGO proteins against transposons and viruses while
in bacteria, AGO proteins have been shown to defend against
transformation by DNA plasmids. Recent work has implicated
Argonaute protein in termination and decatenation of DNA
replication in the bacterium T. thermophilus [241]. When
DNA gyrase is inhibited, Argonaute is capable of complet-
ing DNA synthesis and ensuring correct decatenation of the
chromosome [241]. In the absence of both DNA gyrase and
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Argonaute activities, chromosome resolution does not occur
[241]. Such a critical function for AGO proteins in DNA repli-
cation has not previously been observed, and further work is
warranted to see if AGOproteins act in chromosome resolution
in archaea.

For eukaryotes, the completion of DNA replication will
lead to daughter molecules that are catenated to one another.
Any pre-catenanes present would also be converted to full
catenanes for processing [242]. The specific details of resol-
ution in eukaryotes remain unknown; however it is
believed that topoisomerase II (TopoII; type II topoisomerase)
is essential for the process [243,244]—inactivation of TopoII
leads to stalling in G2 phase, resulting in a build-up of
catenanes and failure to complete replication [245].

Although no Ter sites or Tus homologues have been
identified in archaea, homologues of Dif and Xer have been
identified [68,227,246]. Some archaeal species (e.g. Thermococ-
cus) possess Dif sequences at zones of termination, suggesting
coordination of chromosome monomerization and replication
termination [246]. However, in Sulfolobales, Dif sites are situ-
ated far away from termination zones, suggesting that these
two processes may be less tightly coupled [227].

H. volcanii possesses multiple XerC/D-like homologues,
suggesting the possibility of Dif sites. Of the 12 xerC/D genes,
four have been deleted without impacting viability
(HVO_1422, deleted by Uri Gophna, HVO_2259, HVO_2273
and HVO_2290 deleted by T.A.; T.A. 2020, unpublished).
Whether these XerC/D-like enzymes have a role in the termin-
ation of replication remains to be determined. The presence of
broad zones of termination coupled with the presence of Dif
sites hints at archaea carrying both bacterial- and eukaryotic-
like mechanisms of chromosome resolution and termination.

Topological stress inH. volcanii can be imagined to be a large
problem. There are approximately 20 genome copies within
each cell, which are replicated asynchronously due to the lack
of a defined cell cycle. Relieving superhelical torsion is carried
out by the action of three topoisomerases: DNA topoisomerase
IA (TopoIA; HVO_0681), DNA topoisomerase VI comprising
subunit A (HVO_1570) and B (HVO_1571), and DNA gyrase
comprising subunit A (HVO_1572) and B (HVO_1573). The lab-
oratory strain of H. volcanii displays sensitivity towards
novobiocin, an inhibitor of DNA gyrase, indicating that DNA
gyrase is essential for viability [247,248]. Both subunits of
DNATopoVI have also been shown to be essential (T.A. 2020,
unpublished). Further work is needed to assess the interplay
of the different topoisomerases in H. volcanii and how they act
together to resolve chromosome structures for segregation.

Following decatenation, RNA primers on Okazaki frag-
ments are removed; the resulting gap is filled by replicative
DNA polymerases, and nicks are ligated to give a continuous
DNA strand. RNase H proteins act to remove RNA primers
associated with Okazaki fragments; flap endonucleases
remove any flap structures generated in displacing primers,
and ATP-dependent (and in some species, NAD-dependent)
DNA ligases (to be discussed in detail later) seals any remain-
ing nicks to give a complete product. In eukaryotes, gap
filling is an early event, occurring prior to removal of the
CMG complex from dsDNA [210].

2.4. DNA repair
Environmental and endogenous factors threaten the genome
integrity of all living organisms. Damage to DNA can lead to
mutagenesis, genome instability, senescence and cell death
[249]. The majority of DNA damage lesions arise from
endogenous sources during normal cellular metabolic pro-
cesses, generating oxidation, hydrolysis and alkylation
damage, along with the insertion of mismatched DNA bases.
Environmental agents such as UV light, ionizing radiation
and various chemical agents generate base lesions including
the deamination of cytosines, adenines and guanines,
depurination of bases, oxidative damage, as well as DNA
double-strand breaks (DSBs) [249–253].

While evolution is driven by rare advantageous mutations,
efficient DNA repair is a requirement of all forms of life as large
amounts of unrepaired damage cannot be tolerated. This is
especially true for many archaeal species, which inhabit
demanding environments. Extremes of salinity, temperature
and pH can increase the load of DNA damage faced by these
organisms and thus they require robust methods of repair. A
recent study has estimated the genome-wide mutation rate
and spectrum in H. volcanii; the base substitution rate of
3.15 × 10−10 per site per generation is similar to that seen in
mesophilic species [254].

CellshavedevelopedaplethoraofDNArepairmechanisms,
and generally, these repair mechanisms differ depending on the
type of DNA damage incurred [255]. While a small number of
specific chemical modifications can be repaired by a single
proteinwithout a requirement for cuttingof theDNAbackbone,
a process known as direct repair, mismatched and damaged
bases are more commonly repaired by one of four excision
pathways: MMR, BER, nucleotide excision repair (NER) and
ribonucleotide excision repair (RER) (table 1).

One of the most harmful DNA lesions is the DSB, since it
affects both strands of the duplex. If unrepaired, DSBs can
give rise to large-scale genome rearrangements, chromosomal
translocations, significant mutagenesis and cell death. Due to
the potential danger of DSBs, the most complex DNA repair
mechanisms are responsible for repairing this type of DNA
damage. The major DSB repair pathways are HR, non-hom-
ologous end joining (NHEJ) and microhomology-mediated
end joining (MMEJ). HR is a high-fidelity mechanism that
generates error-free products, while NHEJ and MMEJ path-
ways are quicker but error-prone processes, which can
result in deletions, insertions and translocations [256–260].

Generally, DNA repair processes are highly conserved
throughout evolution. Archaea share many components of
their DNA repair machinery with eukaryotes [253,261], but
halophilic archaea also carry numerous enzymes that have
been acquired by LGT from bacteria. Furthermore, halophilic
archaea, which inhabit UV-intense hypersaline environments,
have gained further strategies to prevent damage. Polyploidy
provides an evolutionary strategy for DNA damage resistance
[65,262], an option that is not usually available in organisms
like Saccharomyces cerevisiae [263], and many halophiles use
photoprotective membrane-associated pigments such as
carotenoids [264].

2.5. Direct repair

2.5.1. Photolyases

Halophilic archaea experience a significant dose of UV light in
their natural environments and need efficient mechanisms to
repair UV-induced DNA damage. Photoreactivation is a light-
dependent direct repair mechanism catalysed by photolyase.
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In a single step, photolyase is able to reverse cyclobutene
pyrimidine dimer (CPD) and 6–4 pyrimidine-pyrimidine
photoproduct (6–4PP) lesions formed as a consequence of
solar UV radiation [265,266]. Photoreactivation is the most
important repair mechanism for surviving high doses of UV
light in nature [267].

Photolyases are present in several archaea and share
homology with those present in bacteria and eukaryotes,
suggesting that this mechanism arose early during evolution
[255,268,269]. Few archaeal species encode more than one
photolyase homologue; Halobacterium species are known to
encode two as a result of a gene duplication event, encoded
by genes phr1 and phr2 [267]. H. volcanii also encodes two
photolyase homologues, phr1 and phr2 (HVO_2911 and
HVO_2843 respectively), alongside an uncharacterized
photolyase-related gene phr3 (HVO_1234). The requirement
for more than one photolyase in these halophiles may be a
consequence of the high amounts of UV damage experienced
in their environment. However, genetic studies have shown
not all phr homologues within a species are active, suggesting
some redundancy [270].

2.5.2. Methyltransferases

Restriction-modification (RM) systems have evolved to pro-
tect cells from invading DNA; RM systems comprise
restriction endonucleases (RE) and DNA methyltransferases
(MTases). RM systems are present in bacteria and archaea
and allow the cell to differentiate between its own methylated
DNA and foreign unmethylated DNA, which can be recog-
nized and digested by the RE [271,272]. H. volcanii encodes
a putative type IV Mrr RE (HVO_0682), which cleaves
DNA that is methylated at GAm6TC sites; this includes
Dam-methylated plasmid DNA extracted from Escherichia
coli, hindering transformation protocols. Gene deletions of
Mrr RE have been carried out to resolve such limitations [36].

MTases encoded in the absence of a cognate RE, known as
orphans MTases, play essential roles in cellular processes such
as DNA replication, DNA repair and gene expression [273].
These defence mechanisms have been extensively character-
ized in bacteria but are only poorly defined in archaea. The
use of deletion mutants of genes predicted to be methyltrans-
ferases in combination with single-molecule real-time (SMRT)
sequencing has allowed the detection and mapping of methyl-
ated bases throughout the genome [274]. Two methylated
motifs were detected in the H. volcanii genome: Cm4TAG and
GCAm6BN6VTGC (where B stands for C, G or T, V stands for
A, C or G, and N stands for any base). Genes responsible for
DNA methylation in H. volcanii include HVO_A0006,
HVO_0794 and HVO_A0237 that methylate cytosine at
Cm4TAG, and the type I RM operon rmeRMS (HVO_2269–
2271) that methylate adenine at GCAm6BN6VTGCmotifs [275].

2.6. Excision repair

2.6.1. Base excision repair

Base excision repair is conserved across all domains of life
(figure 2 and table 1). The canonical pathway involves the
action of a DNA glycosylase specific for a damaged base,
which cleaves the N-glycosyl bond between the damaged base
and the sugar, generating an apurinic or apyrimidinic (AP)
site. Most DNA glycosylases are mono-functional but some are
bi-functional with a coupled β-lyase activity that cleaves 30 of
the AP site by β-elimination. Alternatively, the AP site is cleaved
on the 50 side byanAPendonuclease that acts byhydrolysis. The
AP product is then degraded by a 30 or 50 phosphodiesterase,
respectively, leaving a single-nucleotide gap with a 30 hydroxyl
and either a 50 deoxyribose phosphate (50dRP) or a 50 phosphate.
The generation of the 50 end allows a family XDNA repair poly-
merase (Pol-β in eukaryotes) to begin synthesis, filling the gap.
While 50 phosphate can only be repaired by short-patch repair,
50dRP can be repaired by both short- and long-patch repair
[276]. Short-patch repair is where the family X polymerase,
Pol-β, synthesizes the single nucleotide, removing the 50dRP
with its inherent lyase activity. Long-patch repair is more com-
plex and involves the insertion of a further 4–6 nucleotides to
generate a flap structure that displaces oncoming DNA, which
is subsequently removed by flap endonuclease (FEN-1 in eukar-
yotes) [277,278].While long-patch repair still uses Pol-β, familyB
DNA polymerases Pol-δ and Pol-ε have also been implicated in
this mechanism of BER.

In some archaea, evidence supports the family B polymer-
ase PolB as the candidate for BER synthesis [276]. Among
replicative DNA polymerases, PolB has been described to
be involved in DNA repair, but not the archaea-specific
family D polymerase PolD [167,170]. In contrast with eukar-
yotes, few family X DNA polymerases have been identified in
archaea thus far, suggesting an alternative method of BER
[279]. In archaea, Fen1 is implicated in the removal of RNA
primers from Okazaki fragments during lagging strand
DNA replication and Fen1 orthologues have been described
in both Euryarchaeota and Crenarchaeota [280–284]. To
date, only Fen1 from M. thermautrophicus has been shown
to be actively involved in BER [285]. The Rad2-family flap
endonuclease is essential in Halobacterium sp. NRC-1 [172],
potentially offering an alternate flap endonuclease used by
archaea for resolution of long-patch repair.

Both long- and short-patch BER result in a nick that is tar-
geted for ligation by a DNA ligase. Bacterial and eukaryotic
ligases show no homology. While bacterial ligases are NAD
dependent, eukaryotic ligases areATPdependent.Most archaea
possess eukaryotic-like ATP-dependent DNA ligases [286] but
haloarchaeal species can encode more than one type of DNA
ligase, including bacterial-like NAD-dependent ligases.

In H. volcanii, in addition to the ATP-dependent ligase LigA
(HVO_1565), an NAD-dependent ligase LigN (HVO_3000) is
present.Halophilic species are known to undergo large amounts
of gene transfer, thus it is likely this NAD-dependent ligase has
been acquired by LGT from bacteria [287,288]. Neither DNA
ligase alone is essential, but a double mutant is inviable, indicat-
ing that the two ligases are redundant for their essential function;
most likely the ligation of Okazaki fragments during lagging
strand DNA synthesis. H. volcanii strains lacking eukaryotic-
like ligase ligA show higher UV sensitivity compared with
wild type, indicating that this enzyme could play a role in
DNA damage resolution in BER and/or NER [288,289].

An alternative excision repair (AER) pathway has been
described which is initiated by an endonuclease rather than a
glycosylase [290]. Two endonucleases able to nick damage-
containing DNA have been characterized: Endonuclease V
(EndoV) and Endonuclease Q (EndoQ). EndoQ cuts 50 of
uracil, hypoxanthine and abasic sites [291,292], while EndoV
shows a preference for cutting 30 of lesions [293]. EndoV is
widely conserved in bacteria, eukarya and archaea [294],
while EndoQ has a much narrower distribution throughout
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Figure 2. Base excision repair. The damaged base (red) is recognized and removed by DNA glycosylases, which cleave the N-glycosyl bond between the damaged
base and the sugar to generate an apurinic or apyrimidinic (AP) site. AP endonucleases cleave 50 of the abasic site or ß lyase cleaves 30 of the site, and the backbone
is removed by phosphodiesterases. Short-patch BER uses DNA polymerases (PolB1; HVO_0858 in H. volcanii) to insert the missing nucleotide (purple) with DNA
ligases (LigA; HVO_1565 or LigN; HVO_3000) linking the newly synthesized nucleotide to the sugar backbone. In long-patch BER, DNA polymerases insert 2–6
nucleotides at the gap to generate a flap structure. Flap endonuclease Fen1 (HVO_2873) cleaves the displaced strand and DNA ligases seal the DNA backbone.
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the three domains [292]. Within archaea, EndoQ is found
within a subset of the phylum Euryarchaeota, including Ther-
mococcales and numerous methanogenic orders, and is often
found in combination with EndoV. This is in contrast with
the majority of crenarchaeal and halophilic species, including
H. volcanii, which encode only EndoV (HVO_0726). EndoQ
from T. kodakarensis and P. furiosus has been shown to be stimu-
lated by interaction with PCNA in vitro [295], which may
coordinate its action at the replication fork.

2.6.2. Nucleotide excision repair

Nucleotide excision repair is a DNA repair mechanism
that recognizes and removes a large number of different
helix-distorting lesions [296,297]. Examples of NER substrates
are CPDs and 6–4PPs generated by UV radiation, reactive
oxygen species (ROS)-induced base modifications or base
adducts created by exogenous chemical agents. NER is the pri-
mary mechanism to repair UV-induced DNA lesions in the
absence of photoreactivation; because NER is light-indepen-
dent, it is often referred to as ‘dark repair’ [298]. The basic
steps of the process are conserved in all domains of life, but bac-
terial and eukaryotic NER proteins show very little homology.

The NER pathway in bacteria is catalysed by the UvrABC
excision repair machinery: UvrA is responsible for damage
recognition, UvrB helicase separates the two DNA strands
and UvrC nuclease cuts at both sides of the lesion. Primarily,
UvrA : UvrB will scan DNA, with the UvrA subunit
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recognizing bulky lesions in the template. Upon recognition,
UvrA dissociates and UvrC binds UvrB (giving UvrBC).
UvrBC will act to cleave up- and downstream of the lesion.
UvrD is a superfamily I helicase member and moves in a
30–50 direction [296], acting to peel away the excised segment
containing the damaged DNA. This permits access to family
A polymerase DNA Pol I and DNA ligase, which act to fill
and seal the gap, respectively. A small number of archaeal
species carry homologues of the bacterial NER proteins;
they are primarily found in mesophilic methanogens and
halophiles [219,299].

Alongside global genomic NER (GG-NER), transcription-
coupled NER (also known as transcription-coupled repair,
TCR) forms a sub-pathway of NER. TCR functions to
remove RNA polymerase-arresting DNA lesions from the
template of actively transcribed genes [300]. Usually, repair
by TCR is quicker than that of canonical NER, thus favouring
correction of lesions within the transcribed strand of DNA
[301]. TCR is initiated when RNA polymerase stalls at a
lesion in the transcribed strand of DNA. In bacteria, RNA
polymerase is displaced by NER proteins, which are recruited
to the site of damage by a transcription-repair coupling factor
(TRCF), otherwise known as Mfd protein [300,302].

Eukaryotes use a more complex pathway encoded by 9 pro-
teins (named XPA to XPG). While differing in complexity,
eukaryotic NER follows the same general principle as bacterial
NER. Akin to bacteria, eukaryotic NER can be split into two
sub-pathways: GG-NER and TCR. GG-NER can occur through-
out the genome, while TCR is responsible for timely repair of
lesions in the transcribed strand of active genes. In eukaryotic
GG-NER, damage recognition is carried out by XPC-Rad23B
(or by DDB1/2 in heterochromatin) and the DNA is opened
by transcription factor IIH (TFIIH), a multi-protein complex
containing helicase subunits XPB and XPD [303]. Following
opening, binding of XPA and SSB protein RPA results in the
recruitment of nucleases ERCC1-XPF and XPG to cleave
either side of the lesion (dual incision). Canonical family B repli-
cative DNA polymerases Pol-δ and Pol-ε, along with error-
prone family Y translesion synthesis polymerase Pol-κ, have
been implicated in gap filling [304], with requirements having
been shown to change depending on cell cycle stage [305].
The same applies to the type of DNA ligase used for sealing
the nick; DNA ligase IIIα and DNA ligase I have both been
linked to NER in eukaryotes [305,306]. In eukaryotic TCR,
the stalled RNA polymerase itself acts as the signal for recruit-
ment ofNERproteins; the stalled polymeraseworks in the place
of XPC-Rad23B, leading to recruitment of downstream
components as previously described.

H. volcanii carries homologues of UvrABC proteins,
encoded by genes uvrA (HVO_0393), uvrB (HVO_0029) and
uvrC (HVO_3006) (figure 3 and table 1) [35]. The bacterial
NER genes are non-essential in H. volcanii and deletion
mutants in uvrABC show enhanced sensitivity to UV damage
in the absence of photo-reactivating light [219], implicating
UvrA, UvrB and UvrC in ‘dark repair’ of UV lesions in H. vol-
canii. Cells deficient in UvrD (HVO_0415) show no such
sensitivity phenotype and it has been proposed that a redun-
dant helicase may substitute for UvrD [219]. Furthermore,
uvrABC mutants, but not uvrD, exhibit increased sensitivity
to the DNA inter-strand cross-linking agent MMC [307]. Simi-
lar results have been shown for other haloarchaeal species,
including Halobacterium sp. NRC-1 [265] where deletion of
uvrABC genes results in UV sensitivity, indicating that the
bacterial Uvr system is required for the repair of UV-induced
DNA damage. Intriguingly, Halobacterium also encodes
homologues of eukaryotic-like NER proteins XPB and XPD
(helicases), as well as XPF (endonuclease).

Genetic experiments in H. volcanii have revealed a link
between the bacterial NER protein UvrA and NreA
(HVO_0734), a member of the archaea-specific Nre family
of proteins [307]. Most archaea encode at least one Nre hom-
ologue with a C-terminal PIP motif, while some species
encode a second protein, NreB, with a less well-defined PIP
motif [308]. H. volcanii encodes only NreA, which is not
essential but cells lacking NreA are sensitive to MMC treat-
ment. Double deletion mutants of nreA and uvrA are no
more sensitive than single mutants, suggesting NreA and
UvrABC act in the same pathway in H. volcanii [307]. NreA
has been proposed to be involved in the repair of MMC-
induced DSBs, acting in combination with the UvrABC
NER system, and the interaction of NreA and PCNA has
been shown to be essential for this role [307].

The majority of archaeal species, including hyperthermo-
philes, carry homologues of eukaryotic-like NER proteins,
including endonucleases XPF/XPG and helicases XPB/XPD
[253,289,309–313]. S. islandicus and T. kodakarensis mutants
lacking XPB and XPD helicases are only slightly sensitive to
UV radiation, MMC and MMS treatments, indicating that
these enzymes do not play an essential role in NER [111,314].
Some archaea carry both bacterial UvrABC-like proteins and
an incomplete eukaryotic XP system, for example Methanosar-
cina mazei [289] and various halophilic species [255]. As
previously discussed, H. volcanii encodes homologues of the
bacterial Uvr system. However, it also encodes homologues
of endonucleases XPF (Hef, HVO_3010) and XPG (Fen1,
HVO_2873) [35]. Unlike XPF in eukaryotes, Hef in H. volcanii
has been shown to play no role in NER, instead being
implicated in the restart of stalled replication forks [219].

TCR, while observed in some archaeal species, does not
seem to be universally conserved throughout the domain. The
crenarchaeon S. solfataricus does not favour repair of transcribed
strands suggesting that the system for TCR in this species (if pre-
sent) is no faster than that of GG-NER [315,316]. However, the
RNAP of euryarchaeon T. kodakarensis has been shown to
pause at a variety of DNA lesions suggesting damage recog-
nition by the RNAP itself, akin to mechanisms of TCR in
other domains of life [317]. To date, no homologues of bacterial
TRCF have been identified in archaea [255]. While TCR is
known to occur in halophilic species, the specifics of the mech-
anism remain unknown. In H. volcanii, TCR has been shown to
occur in the absence of UvrA, unlike Halobacterium sp. NRC-1,
which is unable to efficiently repair UV damage without
UvrA [318]. In the latter species, UvrA protein seems essential
for the initial recognition of the DNA damage in both GG-
NER and TCR. By contrast, the initial recognition event for
TCR in H. volcanii is UvrA independent; this could be per-
formed by the RNA polymerase itself (as seen in eukaryotes
and T. kodakarensis) or by an as yet unidentified coupling
factor [318,319].

2.6.3. Mismatch repair

The MMR machinery is conserved across bacteria and eukar-
yotes, but most archaea lack key components of the canonical
pathway [255]. In bacteria and eukaryotes, the canonical
MutS-MutL MMR pathway is able to detect and repair
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mismatched nucleotides that arise as a consequence of
misincorporation by DNA polymerases [320]. MutS or
MutL homologues are absent from many archaeal species
[313,321], but are found in halophiles, methanogens and a
few other euryarchaea; these species are all subject to LGT
and their mutSL genes are thought to have been acquired
from bacteria [322–325]. Archaea lacking MutSL proteins
show a rate of spontaneous mutation similar to organisms
that possess MutSL [321,326], indicating the presence of an
alternative MMR mechanism. Furthermore, the deletion of
mutS and mutL genes in Halobacterium sp. NRC-1 does not
increase the mutation rate [327], suggesting that some
archaea may carry more than one active MMR system.

EndoMS (also named NucS) is an endonuclease first
characterized in vitro in P. abyssi, where it acts on branched
DNA structures containing flapped and splayed DNA
[328–331]. EndoMS is present in bacteria of the phylumActino-
bacteria and in most members of archaea that lack functional
MutSL homologues. EndoMS was initially proposed as a
potential NER endonuclease due to its ability to cleave flapped
and splayed structures, akin to XPF [312]. Both S. solfataricus
XPF and P. abyssi and T. kodakarensis EndoMS/NucS are able
to interact with PCNA, and this interaction is required for
their specificity and endonuclease activity [329,330,332,333].
PCNA may also assist EndoMS and XPF to access the site of
damage and facilitate the following steps of the repair by
enabling interactions with other repair proteins.

Ishino et al. [333] have demonstrated that T. kodakarensis
EndoMS has the ability to specifically cleave dsDNA contain-
ing a base pair mismatch in vitro, indicating a role for
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EndoMS in a novel MMR pathway. Other structural studies
have supported the hypothesis of EndoMS specifically recog-
nizing and binding mismatched bases by a unique dual base
flipping mechanism [334,335]. In T. kodakarensis, the endoMS
gene is in an operon with the radA recombinase gene
[329], but this genetic link is only conserved within the
genus Thermococcus. Nevertheless, a functional link between
EndoMS and HR has been observed in Sulfolobus acidocaldar-
ius, where EndoMS has been shown to act in HR-mediated
stalled fork repair to remove helix-distorting DNA lesions,
overlapping with the role of XPF and suggesting a potential
role for EndoMS in NER [336]. A new function for NucS
was recently described in T. gammatolerans, where NucS is
capable of cleaving uracil- and hypoxanthine-containing
dsDNA, indicating an alternative to BER for the repair of
deaminated bases in this species [337].

Interestingly, some haloarchaeal species encode both NucS
and MutSL homologues, including H. volcanii; it encodes four
MutS (mutS1a HVO_1940; mutS1b HVO_0552; mutS5a
HVO_0191; mutS5b HVO_1354), two MutL (mutLa HVO_1939;
mutLbHVO_0551) and one NucS protein (HVO_0486). NucS is
not essential and no phenotype is observed in cells lacking
nucS [330]. Two of the four mutS genes (namely mutS1a and
mutS1b) are located in operons with amutL partner and are pre-
dicted to function in MMR [35]; deletion of these canonical
mutSL genes leads to an increase in the spontaneous mutation
rate of H. volcanii (T.A. 2020, unpublished). The other two
MutS proteins belong to a subfamily that does not seem to be
involved in DNA repair in other organisms [255,338]. The poss-
ible interplay between MutS-MutL and NucS pathways in H.
volcanii remains to be elucidated.

2.6.4. Ribonucleotide excision repair

Ribonucleotides (rNMPs) that are misincorporated into geno-
mic DNA are recognized and removed by the RER pathway.
Archaeal D family DNA polymerases have been shown to
incorporate 1 rNTP every approximately 1000 bases, and
archaeal B family DNA polymerases every approximately
2500 bases [339,340]. RNase H2 creates a nick 50 to the misin-
corporated rNMP. The 30 end of this gap is displaced by DNA
polymerases and cleaved by Fen1. The remaining gap is then
sealed by the activity of DNA ligases, mirroring the mechan-
ism for Okazaki fragment maturation. In T. kodakarensis,
this pathway has been identified using computational
methodology [340]. The activity of RNase H2 proteins, Fen1
and DNA polymerases in RER in H. volcanii remains to
be demonstrated.

2.7. Translesion synthesis
Family Y DNA polymerases have a specialized function,
whereby they are able to bypass various forms of DNA
damage that blockDNAsynthesis by canonical replicative poly-
merases; this process is known as translesion synthesis (TLS)
[341]. Family Y DNA polymerases are conserved across the
three domains of life [342]. They have a larger andmore accom-
modating active site with smaller thumb and fingers domains,
whichmake little ornoclose or specific contactswith thenascent
base pair [343]. The closed conformation of the fingers domain
suggests that the canonical ‘induced-fit’ mechanism to ensure
correct Watson–Crick base pairing does not take place [344].
Moreover, TLS polymerases do not have an exonuclease
domain or any proofreading activity. Instead, these error-
prone enzymes carry out low-fidelity DNA synthesis, with the
aim of bypassing the lesion without halting the replication
fork. On undamaged DNA, TLS polymerases incorporate an
incorrect nucleotide once every 10−1–10−3 bases [341,345,346].
Some translesion polymerases are better than others at incor-
porating the correct base opposite particular DNA lesions,
suggesting an element of specificity depending on the
species [347]. Thus, the product of TLS can be error-free or
error-prone, depending of the type of lesion encountered.

Most eukaryotes encode four-family Y DNA polymerases,
each with specificity for different types of the lesion [348,349].
Meanwhile, bacteria and archaea generally only encode one or
two TLS polymerases, each with a broader lesion specificity
than their eukaryotic counterpart. Due to the error-prone
nature of TLS, this pathway is a potential source of genome
instability and thus requires tight regulation. In eukaryotes,
this is controlled by post-translational modification of both
PCNA and family Y DNA polymerases [350]. All eukaryotic
family YDNApolymerases contain PIPmotifs, which facilitate
the interaction with PCNA [349].

The properties, roles and functions of archaeal family Y
DNAPs are not well understood, since most have been tested
in vitro under non-physiological temperatures. The TLS poly-
merases found in archaea belong to the DinB subfamily of
family Y DNAPs. This subfamily is the most diverse and is
found throughout all domains of life. DinB polymerases are
prone to making single-nucleotide deletions in vivo and
in vitro, caused by template slippage where repetitive
sequences are present [343,351,352].

Hyperthermophilic archaea encode only one family Y
DNA polymerase. Depending on strain, S. solfataricus encodes
either Dpo4 (polymerase IV) or Dbh (DinB homologue)
[343,344,353–355]. All archaeal DinB-like polymerases studied
to date are capable of replicating past abasic sites, and in the
case of Dbh, incorporating dATP [344,356]. Dpo4 can bypass
a UV-induced cis-syn cyclobutene thymine dimer and 8-oxo
guanines with relative efficiency, compared with other family
Y DNA polymerases, since it can accommodate two adjacent
template bases into its active site [355,357]; similar observations
have beenmade in yeast [358] and humans [359]. This feature is
not observed for other DinB-like polymerases [360–363]. Simi-
lar to human family Y DNA polymerases, Dpo4 shows limited
activity on G4 structures [364,365].

Until now, only family Y polymerases were believed to act
in TLS, but recent work in S. islandicus has implicated a family
B enzyme, Dpo2, in TLS repair of helix-distorting lesions [366].
The potential TLS activity ofDpo2may compensate for the lack
of a canonical NER pathway in this crenarchaeal lineage [253].
In S. solfataricus, a complex has been described where both
family Y and family B polymerases are bound to PCNA and
DNA [367]. This is consistent with the ‘tool-belt’ model pro-
posed for bacteria [368] and eukaryotes [369]. Tethering to
PCNA allows for the coordination of DNA synthesis and
TLS activities at the replication fork, with rapid switching
from the canonical polymerase to TLS enzyme at the site of
damage, and vice versa upon bypass.

H. volcanii encodes one family Y polymerase, PolY
(HVO_1302), which shares homology with bacterial DinB.
As in eukaryotic family Y polymerases, H. volcanii PolY
encodes a C-terminal PIP motif, but it has diverged some-
what from the canonical sequence [136]. Degeneracy of the
PIP motif has been observed in other family Y polymerases,
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including eukaryotic proteins [370]. Deletion of polY is possible
in H. volcanii (T.A. 2020, unpublished), suggesting that other
pathways are available for the repair or bypass of bulky lesions
that block DNA synthesis by canonical polymerases.
2.8. Double-strand break repair
DSBs are considered to be one of the most critical forms of
DNA damage that cells can suffer. A break in both strands
of the DNA double helix can lead to inhibition of key pro-
cesses including DNA replication, transcription and cell
division, alongside major genome rearrangements. Therefore,
the major pathways of double-strand break repair (DSBR) are
crucial for maintaining genome stability. The most accurate
form of DSBR is homologous recombination (HR), but this
is a complex and energetically costly process, and therefore
less-demanding pathways of DSBR operate alongside HR
(figure 4 and table 1).
2.8.1. Non-homologous end joining

Classical non-homologous end joining (NHEJ) repairs DSBs
by ligating DNA ends using little or no complementary
base pairing. The first step is recognition of the DSB by Ku
protein, comprising a Ku homodimer in bacteria and a
Ku70/Ku80 heterodimer in eukaryotes. Ku acts as a scaffold
protein to recruit other proteins involved in DSB repair,
including nucleases to resect the damaged DNA, family B
and family X DNAPs to fill the gap, and DNA ligase to
ligate the DNA strands [251]. NHEJ is common in eukaryotes;
the lack of requirement for a homologous partner means this
is an effective method of DSB repair during the G1 phase of
the cell cycle, when only a single genome copy is present.

Ku proteins are conserved in bacteria, yeast and higher
eukaryotes, but to date only a few archaeal species have been
shown to encode Ku proteins, which have most likely been
acquired from bacteria by LGT [258,371]. To date, a complete
NHEJ system has only been identified in a single archaeon,
Methanocella paludicola [371]. Homologues of Ku are not
found in H. volcanii [372,373]; instead an alternative mechan-
ism of microhomology-mediated end joining (MMEJ)
operates to repair DSBs [374,375].
2.8.2. Microhomology-mediated end joining

While NHEJ does not require any homology, microhomol-
ogy-mediated end joining (MMEJ) involves the annealing
of short homologous sequences at broken DNA ends. The
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products of MMEJ are always associated with gene deletions
and contribute to chromosome translocations and genome
rearrangements. The basic mechanism for MMEJ involves
resection of DNA ends, annealing of the micro-homologous
region, the removal of the DNA flaps by the structure-specific
nuclease Fen1, filling of the gap by DNA polymerases and
ligation by DNA ligase [376–378] (figure 4a and table 1).

MMEJ has been observed directly in a small number of
archaeal species, including H. volcanii and S. islandicus
[374,375,379]. However, the detailed enzymology of MMEJ
in archaea remains unknown. Due to the lack of signature
proteins dedicated to MMEJ (in contrast with the requirement
for Ku protein in NHEJ), the prevalence of MMEJ is unknown
but likely to be widespread. H. volcanii uses MMEJ to repair
DSBs; this process is stimulated (directly or indirectly) by
the Rad50-Mre11 complex, which restrains HR and instead
promotes MMEJ as the immediate pathway of DSB repair
[374]. HR is later used to restore the repaired allele.

2.8.3. Homologous recombination

The mechanism of HR is conserved throughout the three
domains of life. HR is an essential process in archaea that pro-
vides a high-fidelity DSB repair mechanism, compared with
other error-prone end-joining processes. This high fidelity is
due to the use of homologous DNA duplex as the template
for repair. Regulation of HR is essential to maintain genome
integrity and avoid DNA rearrangements [380,381]. When a
DSB occurs, it must be processed to generate ssDNA tails
(pre-synapsis). This ssDNA tail then invades nearby duplex
DNA with sequence homology, creating a D-loop (displace-
ment loop) (synapsis). The final step of HR is post-synapsis,
in which resolution of HR structures occurs, generating a cross-
over (where genetic exchange takes place) or a non-crossover
(no genetic exchange) product (figure 4b and table 1).

HR is the best-studied DSB pathway in archaea [382].
Alongside its role in DSB repair, HR has been implicated in
recombination-dependent replication (RDR), the restart of
stalled DNA replication forks and in increasing genetic diver-
sity [60,383,384]. The H. volcanii genome is highly polyploid
with a genome copy number of approximately 20 copies
per cell [12]; having multiple copies of DNA can be advan-
tageous for efficient repair by HR as this increases the
chances of having a non-damaged homologous template for
DNA repair.

2.8.4. Pre-synapsis

2.8.4.1. Rad50-Mre11 complex
The Rad50-Mre11 complex is present in all domains of life
[385,386]. In eukaryotes, Rad50-Mre11 is involved in the early
steps of DSB repair, being one of the primary protein complexes
recruited to the site of damage. Mre11 is an ATP-independent
dsDNA exonuclease and ssDNA endonuclease, while Rad50
has ATP-dependent DNA-binding activity [387–391].

Rad50-Mre11 processes DSB ends by resecting the 50

strand, generating a short single-stranded 30 overhang. This
overhang is then coated by a recombinase protein (RadA in
archaea) to facilitate strand invasion [392,393]. In thermophi-
lic archaea (e.g. S. islandicus and T. kodakarensis), Rad50 and
Mre11 are essential for cell viability [111]. By contrast, in
the halophile Halobacterium sp. NRC-1, Mre11 is essential
while Rad50 is dispensable, indicating a Rad50-independent
function of Mre11 [394]. In H. volcanii, deletions of rad50
(HVO_0854) and mre11 (HVO_0853) are viable and mutants
show increased resistance to various types of DNA damage,
including UV, ionizing radiation and MMS. However, these
mutants recover slowly and exhibit higher rates of HR at
DSBs than the wild type [374]. In a polyploid organism like
H. volcanii, the action of Rad50-Mre11 in temporarily restrain-
ing HR may help prevent DNA ends from engaging with
multiple homologous partners; after the number of available
DNA ends has been reduced by MMEJ, DSBs are ultimately
repaired by HR [374].

In addition, the H. volcanii Rad50-Mre11 complex has
been shown to be involved in nucleoid compaction following
genomic stress. Such nucleoid compaction is another mech-
anism to ensure DSB ends remain within close proximity
[395], which may aid the search for intact DNA partners
during HR and faster recruitment of DNA repair proteins
to the sites of damage; similar mechanisms are seen in eukar-
yotes [391,396,397]. This compaction process is independent
of the recombinase protein RadA (HVO_0104) [395], unlike
in bacteria [398,399].
2.8.4.2. HerA-NurA
In thermophilic archaea, herA and nurA are encoded in the
same operon as rad50 and mre11 [400]. HerA and NurA have
been shown to interact with each other both in vitro and in
vivo [401]. The HerA-NurA ATP-dependent helicase-nuclease
complex cooperates with Rad50-Mre11 to coordinate the
repair of DSBs, although the mechanism has not yet been
described in detail [400,402–404]. The ATPase activity of
HerA, the nuclease activity of NurA and their interaction are
essential for Sulfolobus viability [405]. HerA andNurA proteins
are not present in H. volcanii. Bacterial homologues of HerA
and NurA have been identified and were initially thought to
be essential for cell viability [111]. Genetic studies have
shown this is not the case in bacterial speciesDeinococcus radio-
durans and Thermus thermophilus [406]; in the latter, deletion of
nurA and herA has no effect on cell growth. Unexpectedly,
T. thermophilus cells lacking nurA and herA show increased
resistance to UV irradiation and MMC treatment [401].
2.8.5. Synapsis

2.8.5.1. Rada
The 30 ssDNA tail generated during pre-synapsis acts to invade
a homologous duplex; this is facilitated by coating of the
ssDNA with a recombinase protein. The strand exchange
protein, or recombinase, promotes homology search and cata-
lyses strand invasion, giving rise to a D-loop (displacement
loop) [381,407]. Archaea contain homologues of eukaryotic
HR proteins, including the evolutionarily conserved RecA-
family strand exchange protein, called RadA in archaea,
RecA in bacteria and Rad51 in eukaryotes.

Archaeal RadA is more similar to eukaryotic Rad51 than
to bacterial RecA [408]. Like bacterial cells lacking RecA,
RadA-deficient H. volcanii cells show growth defects, a lack
of homologous recombination, and increased sensitivity to
DNA damage agents [409–412], indicating an important
role for HR in archaea. In thermophilic archaea, RadA is
essential [111], suggesting these organisms are critically
reliant on HR for repair and/or replication.
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2.8.5.2. RadB
Paralogues of RecA-family proteins are present in many
organisms where they generally function as recombination
mediators [413–418]. Eukaryotic recombination mediators,
such as BRCA2 in humans, and Rad52 and Rad55–Rad57
in yeast, act to displace RPA and facilitate the loading of
recombinase Rad51 onto DNA [419,420]. Rad55–Rad57 are
paralogues of Rad51 and have been shown to stabilize
Rad51 filament formation [421]; BRCA2 and Rad52, while
recombination mediators, are not paralogues of Rad51.

In archaea, RadB is a paralogue of RadA that is present only
in Euryarchaea [422]. InH. volcanii, RadB (HVO_2383) acts as a
recombination mediator that interacts with RadA and pro-
motes its polymerization on ssDNA [412]. Strains in which
radB has been deleted showa phenotype similar to cells lacking
radA; defects include growth retardation, low levels of
recombination and DNA damage sensitivity [411,412]. Two
suppressor mutations that alleviate the ΔradB phenotype
have been identified in H. volcanii RadA, S101P and A196 V,
which suggest that RadB induces a conformational change in
RadA, promoting its polymerization on ssDNA [412].
2.8.6. Post-synapsis

2.8.6.1. Hjc
During HR, four-way DNA intermediates (Holliday junctions;
HJs) are formed by strand exchange between homologous
DNA molecules. Resolvases, a group of highly specialized
structure-specific metal-dependent endonucleases catalyse
the cleavage of HJs into two DNA duplexes [423]. Resolvases
are ubiquitous and are found in bacteria, eukaryotes, archaea
and even in some viruses, although they are not directly related
[424,425].

In E. coli, HJs are resolved by the RuvABC complex. The
initial RuvAB complex, comprising a RuvA tetramer and two
RuvB hexamers, specifically binds the HJ and promotes
branch migration, following which RuvC cleaves the junction
[426]. Eukaryotic HJ resolution is more complex than the bac-
terial counterpart and multiple endonucleases have been
implicated in the resolution of HJs, including Yen1 (GEN1),
Mus81-Mms4 (Eme1), Slx1-Slx4 and XPF-ERCC1 [427,428].

In archaea, theHjc resolvase has been implicated in the clea-
vage of HJs. Hjc is present in all archaeal species and has been
shown to interact with various proteins involved in DNA repli-
cation and repair, including the helicase Hel308 [429], clamp
protein PCNA [430] and ATPase HerA [431]. Some Sulfolobus
species contain an additional resolvase Hje, which shows
higher DNA cleavage activity than Hjc [431,432]. H. volcanii
Hjc (HVO_0170) is non-essential, has been shown to act in the
same pathway as RadA and is necessary for efficient growth
in the presence of cross-linking agent MMC [219].

In S. islandicus, Hjc is regulated by phosphorylation, which
acts to inhibit its catalytic activity [433]. Interestingly, Hjc
phosphomimetic mutants of S. islandicus exhibit increased
resistance to DNA damaging agents, suggesting that phos-
phorylation acts to redirect repair to avoid HR that is
dependent on Hjc [433]. While the serine residues targeted
for phosphorylation in S. islandicus Hjc are not conserved in
other archaeal species, modification of Hjc and other HR
proteins by phosphorylation in S. acidocaldarius is well
documented [434]. This regulatory mechanism could have
evolved early during evolution, as the activity of several HJ
resolvases is also regulated by phosphorylation in eukaryotes
[435–437]. However, it remains unknown whether such
post-translational modifications are used to regulate Hjc in
H. volcanii.

2.8.6.2. Hef
Hef (helicase-associated endonuclease fork-structureDNA) is a
member of the XPF family of structure-specific endonucleases
known to act on branched, flapped and forked DNA structures
[438]. Hef features two distinct domains: an N-terminal heli-
case domain and C-terminal endonuclease domain [438–441].
All archaea encode an XPF family endonuclease, but Hef is
specific to euryarchaeal species.

In H. volcanii, Hef (HVO_3010) is not involved in NER
and instead a bacterial Uvr system is used [219]. However,
Hef has been implicated in NER in other species [111]. Both
H. volcanii and T. kodakarensis mutants deleted for hef show
sensitivity to MMC [111,307]. In H. volcanii, Hef is non-essen-
tial but cannot be deleted from cells lacking Hjc, suggesting
these two proteins participate in alternative mechanisms for
the resolution of recombination intermediates [219]. Redun-
dancy of proteins involved in HJ resolution has also been
described for other species of archaea; for example, HJ resol-
vases Hje and Hjc in S. islandicus are redundant [431]. In
H. volcanii, Hef is required for cell viability in the absence
of HR and is recruited to sites of DNA replication fork
arrest [219,442]. This indicates a key role for Hef in the restart
of stalled replication forks by RDR. Accordingly, Hef has
been shown to interact with PCNA in T. kodakarensis [443],
P. abysii [444] and T. acidophilum [445]. This interaction
likely ensures availability of Hef at the replication fork, facil-
itating its role in RDR. While an interaction with PCNA has
not yet been shown in H. volcanii, Hef in this species features
a PIP box, indicating that Hef : PCNA interactions are
common to most euryarchaea.

Alongside Hef, archaea from the phylum Euryarchaea
encode a conserved protein HAN (Hef-associated nuclease),
a RecJ-like protein displaying 30–50 exonuclease activity [443].
Hef and HAN interact with PCNA in T. kodakarensis, although
Hef cannot bind both PCNA and HAN simultaneously [443].
Deletion of han in H. volcanii (HVO_1018; also called recJ3)
results in increased sensitivity to DNA damage agent MMS,
but not to other genotoxic agents such as H2O2, 4NQO or
MMC [446]. It has been proposed that HAN acts to coordinate
the helicase and nuclease activities of Hef during the
processing of stalled replication forks [110,442].

2.8.6.3. Hel308
Hel308 is a Ski2 family 30–50 helicase found in archaea and
metazoans (where it is named HelQ/PolQ) [447–450]; how-
ever, Hel308 is absent from fungi and bacteria. Hel308 is able
to unwind various dsDNA structures in vitro, showing the pre-
ference for forked DNA and D-loops, and can remove bound
proteins during translocation; these activities suggest a role
in HR and the restart of stalled replication forks [411]. Hel308
has been shown to interact with other proteins involved in
HR, including the BCDX2-Rad51 paralogue complex in
humans [450,451], Hjc resolvase in S. tokodaii [429] and RPA
in M. thermautotrophicus [452]. Hel308 has been proposed to
act at blocked DNA replication forks, whereby it unwinds
the parental strands and facilitates the loading of other factors
required for the restart of the stalled replication fork.
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Hel308 is not essential in the majority of archaeal
species that encode it, with the exception of S. tokodaii and
S. islandicus [429,453]. Mutants of Hel308 in H. volcanii
(HVO_0014) are viable but slow-growing and show sensitivity
to DNA cross-linking agents such as MMC (T.A. 2020, unpub-
lished data); a similar phenotype has been seen in human
ΔhelQ mutants [450]. This implicates H. volcanii Hel308 in the
processing and repair of inter-strand cross-linkedDNA lesions.

2.9. Recombination-dependent DNA replication
Replication origins were originally thought to be indispensable
for cellular life, and deletion of origins was found to lead to
impaired growth or cell death [454]. Work in bacterial model
species E. coli showed that in the absence of origins, DNA
replication can be primed from D-loops or R-loops (RNA
displacement loops); these structures undergo remodelling to
form a canonical replication fork [455]. For utilization of an
R-loop, the invading RNA strand must remain intact and
since RNase H proteins usually act to degrade RNA :DNA
hybrids, RNase H gene(s) must be inactivated to allow R-
loop-mediated replication to occur [454,455]. Both DNA- and
RNA-dependent mechanisms of originless replication have
been shown to be reliant on bacterial recombinase, RecA, indi-
cating that the process usesHR; hence, it is known asRDR [456].

Surprisingly, it is possible to delete all chromosomal origins
of replication in H. volcanii without affecting viability; in fact,
strains deleted for origins grow 7.5% faster than wild type
[60]. As in E. coli, cells deleted for replication origins become
dependent upon the recombinase protein (here RadA), indicat-
ing that originless strains use RDR and hence HR becomes
essential [60]. Marker frequency analysis (MFA) in originless
H. volcanii shows a flat replication profile, indicating a lack of
specific initiation and termination sites [60]. Similarly, the eur-
yarchaeonT. kodakarensishas been shown tobe capable ofDNA
replication in the absence of origins, again using a mechanism
dependent on HR [457]. As in H. volcanii, MFA analysis of T.
kodakarensis shows a flat replication profile in originless strains.
But unlike H. volcanii, a flat replication profile is also seen in
wild-type T. kodakarensis, suggesting that the origin, while pre-
sent, is not used under laboratory conditions [457].

Both H. volcanii and T. kodakarensis are highly polyploid
species. Having a large number of genome copies increases
the chance of finding a homologous DNA duplex to invade
and carry out HR; this may explain why RDR can occur in
these organisms with relative ease. Similar findings have
been made with polyploid species of cyanobacteria, which
are able to carry out efficient DNA replication in the absence
of the initiator protein DnaA [458]. Such a link between high
ploidy and a capacity for RDR may explain why organisms
with low ploidy, including E. coli and higher eukaryotes,
are reliant upon origins to replicate their DNA; the lack of
homologous DNA sequences would restrict the potential
for RDR. Within archaea, members of the crenarchaea have
been shown to contain only 1–2 genome copies and, unlike
polyploid euryarchaea, have a defined cell cycle [459,460].
When ploidy is reduced to a single copy at the G1 stage of
the cell cycle, RDR is no longer possible. This has been
shown for S. islandicus, where one of its three replication ori-
gins must be maintained for cell viability [56].

However, not all polyploid Euryarchaea are capable of
originless replication, including two close relatives of H. vol-
canii: Haloarcula hispanica and Haloferax mediterranei. The
two replication origins of H. hispanica cannot be deleted at
the same time, indicating that at least one origin is essential
for viability [461]. In H. mediterranei, deletion of all three chro-
mosomal origins is possible but this leads to the activation of
a dormant origin [462]; the dormant origin appears to have
been acquired by LGT and is not found in H. volcanii. The
variety of responses to origin deletion in archaea hints at
complex differences between species in their capacity for
RDR, and further work is needed to elucidate the specific
mechanisms involved.
3. Conclusion
Over the past three decades, the development and appli-
cation of genetic and biochemical tools for H. volcanii have
accelerated. These tools have, in turn, increased our under-
standing of the mechanisms of DNA replication and repair,
both in this organism, in halophiles and in archaea generally.
The increasing number of model archaeal species has pro-
vided additional insights into diversity across the domain,
where species within a phylum may use radically different
mechanisms for basic processes such as DNA replication.

The identification and study of archaeal DNA repair and
replication enzymes has provided invaluable information on
their eukaryotic counterparts. On the other hand, the develop-
ment of tools specific for archaea has shed light on adaptations
and proteins specific to this domain. Such a two-pronged
approach—to determine what is common with eukaryotes
and what is unique to archaea—is needed to uncover the
evolutionary history of DNA replication and repair.

The ease of genetics and availability of DNA damaging
agents have allowed the identification of key DNA repair
enzymes in H. volcanii. The pathways used are counterparts
of either entire eukaryotic or bacterial systems, with limited
substitution within a pathway. Such preservation of pathway
integrity is explained by the complexity hypothesis [463],
which states that genes encoding proteins that function in
complexes (e.g. DNA repair) are less frequently transferred
via LGT and then only as entire operons. By contrast, the
genes encoding proteins that do not form complexes (e.g.
those that act in central metabolism) can be transferred suc-
cessfully by LGT. In the case of H. volcanii, LGT has led to
wholesale displacements (e.g. bacterial UvrABC has dis-
placed the archaeal NER pathway), alternative activities
that are used interchangeably (e.g. archaeal LigA and bac-
terial LigN are both active as DNA ligases) or acquisitions
that are not used (e.g. bacterial DnaG is not used as primase,
instead archaeal PriS/L plays that role). These three scenarios
illustrate how H. volcanii is not just a good model organism
for the study of DNA replication and repair mechanisms,
but is also invaluable for the study of LGT and evolution.

While our understanding of DNA replication and repair
in H. volcanii has undoubtedly increased, numerous questions
remain. The ever-increased repertoire of genetic and bio-
chemical tools for H. volcanii cements its place as a bona fide
archaeal model organism. These tools will prove invaluable
to answer open questions and thereby increase our
understanding of DNA replication and repair in archaea.
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