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Abstract

Background: Several methods have been developed for the accurate reconstruction of gene trees. Some of them
use reconciliation with a species tree to correct, a posteriori, errors in gene trees inferred from multiple sequence
alignments. Unfortunately the best fit to sequence information can be lost during this process.

Results: We describe GATC, a new algorithm for reconstructing a binary gene tree with branch length. GATC returns
optimal solutions according to a measure combining both tree likelihood (according to sequence evolution) and a
reconciliation score under the Duplication-Transfer-Loss (DTL) model. It can either be used to construct a gene tree
from scratch or to correct trees infered by existing reconstruction method, making it highly flexible to various input
data types. The method is based on a genetic algorithm acting on a population of trees at each step. It substantially
increases the efficiency of the phylogeny space exploration, reducing the risk of falling into local minima, at a
reasonable computational time. We have applied GATC to a dataset of simulated cyanobacterial phylogenies, as well
as to an empirical dataset of three reference gene families, and showed that it is able to improve gene tree
reconstructions compared with current state-of-the-art algorithms.

Conclusion: The proposed algorithm is able to accurately reconstruct gene trees and is highly suitable for the
construction of reference trees. Our results also highlight the efficiency of multi-objective optimization algorithms for
the gene tree reconstruction problem. GATC is available on Github at: https://github.com/UdeM-LBIT/GATC.
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Background
Most biological discoveries can only be made in the
light of evolution. In particular, functional annotation of
genes is usually deduced from the orthology and paral-
ogy relation between genes, which is inferred from the
comparison of a gene tree with a species tree. Therefore,
phylogenetic tree reconstruction is an important compo-
nent of most bioinformatic pipelines. In this paper, we
focus on the reconstruction of gene trees.
Standard phylogenetic tools are based on maximum

likelihood (ML) or bayesian methods reconstructing a
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tree from gene sequences (e.g. PhyML [1], RAxML [2],
MrBayes [3], PhyloBayes [4]). However, for a variety of
reasons due, not only to technical limitations but also
to the data itself (sequences too close to each other or
conversely too divergent), sequence-only methods often
do not allow to confidently discriminate one tree from
another.
To address this limitation, more recent gene tree

reconstruction methods, designated here as integrative
methods, include information from the species tree. The
idea is to consider, in addition to a maximum likelihood
value measuring the fitness of a tree to a sequence align-
ment (according to a model of sequence evolution), a
measure reflecting the evolution of a whole gene family

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-018-4455-x&domain=pdf
https://github.com/UdeM-LBIT/GATC
mailto: fmr.noutahi@umontreal.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Noutahi and El-Mabrouk BMCGenomics 2018, 19(Suppl 2):102 Page 98 of 180

through gene gain and loss. A standard measure of fit-
ness between a gene tree and a species tree is computed
in terms of a “reconciliation” score. In a probabilistic
framework, the reconciliation score corresponds to the
probability density of the gene tree given some parameters
(rates of events and branch lengths) under a birth-death
and gain model of evolution. For the Most Parsimonious
Reconciliationmodel (MPR), this score corresponds to the
optimal number of gene gain and loss events, weighted by
their costs, explaining the incongruence between a gene
tree and a species tree.
Most integrative methods for gene tree reconstruc-

tion assume a simplified model of gene family evo-
lution where gene gain events are reduced to gene
duplication (e.g. TreeBeST [5], TreeFix [6], ProfileNJ
[7], NOTUNG [8], SPIMAP [9], Giga [10]). In fact,
the MPR problem for the Duplication-Loss (hereafter
denoted DL) model of gene family evolution is linear-
time solvable [11]. By introducing horizontal gene trans-
fer (HGT) events, the Duplication-Transfer-Loss (DTL)
model becomes NP-hard in general if time consis-
tency is required for inferred events (unless the species
tree is fully dated) [12–14]. However the MPR prob-
lem for the DTL model, with an undated species
tree, can still be computed in polynomial time if
the time consistency requirement is relaxed [15–17].
Due to this reasonable time-complexity, some recent phy-
logenetic softwares have extended the gene family evolu-
tion model to transfers (MowgliNNI [18], ecceTERA [19],
TreeFix-DTL [20]). Continuous effort is also made for
developing fast probabilistic frameworks capturing HGT
events (see [21] for a review of these models).
Integrative methods report gene trees with bet-

ter accuracy compared with sequence-only methods
[18, 20, 22, 23], but they still leave space for improve-
ment, both on tree quality and on computation time.
In fact, most of them rely on a two-steps approach, first
computing a tree with the best fit to the sequences, and
then exploring a tree space surrounding the initial tree
to select one minimizing the considered reconciliation
distance. From an accuracy point of view, this two step
methodology does not guarantee that the output tree
optimizes both the likelihood given the sequence align-
ment, and the reconciliation measure, as the best fit to
the sequences may be lost at the second step. In addition,
by considering a single tree at a time, the risk of ignoring
a large part of the tree space and falling into a local min-
imum is high. Other integrative methods (see for example
PhylDog [24] and PrIME-DLTRS [23]) compute the joint
likelihood associated with a substitution model and DTL
event rates, given a fixed, dated and utrametric species
tree and a gene family alignment. They use tree explo-
ration heuristics similar to those found in sequence-only
programs for phylogenetic tree reconstruction to explore

the solution space, often in a bayesian-MCMC frame-
work. These methods come at a high computational cost,
especially when HGT events are considered, and they are
still subject to the risk of being stuck in a local optimum.
In this paper, we present GATC (Genetic Algorithm for

gene Tree Construction), a new software for gene tree
reconstruction under the DTL model that can take as
input completely unresolved, partially unresolved or fully
resolved trees, and outputs a tree minimizing a measure
combining both tree likelihood (according to sequence
evolution) and a reconciliation score. In other words, it
can either be used as a two-step correction method, when
input trees are the output of other phylogenetic methods,
or as a one-step method resolving a full polytomy (star
tree) in a way optimizing fit to both the species tree and
the sequences.
With GATC, we explore a new methodological frame-

work based on a Genetic Algorithm (GA), a global search
metaheuristic that mimics biological evolution [25]. The
ability of GAs to find near-optimal solutions quickly, even
for complex models and data makes them suitable for
the problem of phylogenetic inference. In fact, the GA
methodology has been previously applied to the phyloge-
netic inference problem, starting with Matsuda in 1996
[26] using a maximum likelihood criterion, Lewis [27]
who introduced a subtree swap crossover operator, and
other more recent algorithms (e.g. self-adaptive GA [28],
Ga-mt [29], METAPIGA [30], GARLI [31]). However, all
these algorithms are solely based on sequence informa-
tion and, as discussed above, are often error-prone in the
case of gene tree reconstruction. To our best knowledge,
GAs have never been applied to species tree-aware gene
tree reconstruction, although the technique is suitable to
the resolution of Multi-Objective Optimization Problems
(MOOP).
To measure the performance of GATC, we compared

it to current state-of-the-art softwares on a dataset of
simulated cyanobacterial phylogenies. Our results show
that GATC is more accurate than existing methods,
suggesting that it substantially increases the efficiency
of the phylogeny space exploration. We also evalu-
ated GATC’s ability to infer accurate homology rela-
tionships between genes on a standardized, manually
curated, dataset of real trees. The predicted relation-
ships were mostly in agreement with the ones inferred
from a reference tree, highlighting the efficiency of the
framework.

Methods
Notation on trees
All considered trees are rooted unless explicitely stated. A
tree is binary if all its internal nodes have exactly two chil-
dren, and non-binary otherwise. Unless stated differently,
all trees are considered binary.
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We denote by V (T) the nodeset, by E(T) the edgeset,
by L(T) the leafset and by r(T) the root of a tree T. An
edge e of E(T) is written as a pair (x, y) of two adjacent
nodes where e is an outgoing edge of x. For e = (x, y), x
is the parent p(y) of y, while y is a child of x. A node x
is an ancestor of y, which is denoted x <T y, if it is on
the path from y to the root (excluding y). In this case, y
is called a descendant of x. Similarly, an edge e′ = (x′, y′)
is an ancestor of an edge e = (x, y) if it is on the path
from y to the root. Given a node x, T [x] is the sub-
tree of T rooted at x and L(x) the leafset of T [x]. Two
subtrees T [x] and T

[
y
]
are separated in T if x �= y,

x ≮T y and x ≯T y. In this case, L(x) ∩ L(y) = ∅,
if the leaves of T are uniquely labeled by the elements
of L(T).
A species tree is a tree S with leaves uniquely labeled and

L(S) being a set of species. Likewise, a gene tree is a tree
G with leaves uniquely labeled and L(G) corresponding
to a set of genes where each gene g belong to a genome
s(g). We denote by G the tree obtained from G by replac-
ing each leaf label gi by its genome s(gi). Notice that the
mapping s : L(G) → L(S) does not have to be injective
nor surjective. In particular, G may have several equally
labeled leaves.
A reconciliation of G (or similarly G) with S (see Fig. 1)

is an extension of s from V (G) to V (S) with additional
labels on each internal node x of G, describing the type
of evolutionary event that has led to G [x] (duplication,
speciation or transfer). G can be expanded to include
lost genes.

Finally, we refer to the process of removing a leaf l and
its associated edge

(
p(l), l

)
from a tree T as the deletion

of l from T .

Vocabulary of Genetic Algorithms
A Genetic Algorithm (GA) is an algorithmic framework
mimicking biological evolution. The vocabulary of a GA is
filled with biological metaphors. It begins with a popula-
tion of individualswhose chromosomes or genomes encode
specific solutions to the problem of interest. Performance
of theses individuals in solving the problem is measured
by their fitness score. To avoid confusion, throughout this
paper the word “chromosome” will be used solely to des-
ignate the data structure of a genetic algorithm, and the
word “genome” will be used in its biological meaning to
designate the macromolecules containing the genes under
study.
At each step, starting from an initial population, a new

population is generated using three operators: selection,
crossover and mutation [25], which are defined according
to the nature of the problem and the encoding of the solu-
tion. During selection, the fitness score is used to select
individuals for reproduction. Selected candidates are
combined using the crossover operator to create new indi-
viduals that are then modified by the mutation operator in
order to introduce diversity and avoid local optima. With
elitism, the less fit individuals of the newly obtained pop-
ulation are replaced by the best fit of the previous genera-
tion, in order to conserve the best solutions found so far.
The process described above is repeated through multiple

Fig. 1 A reconciliation between a gene tree G and a species tree. The reconciliation represents a history of the gene family evolution through
speciation, gene duplication, gene loss and HGT, in a way that is consistent with the species tree. Both G and G are shown on the figure
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generations, until an optimal solution (chromosome
of the best individual) is obtained or a stop criterion is
reached.
This natural selection process generally leads to the

improvement of the average population fitness over gen-
erations. While GAs often converge to an optimal or near
optimal solution, their performance mainly depends on
the mechanism for balancing two potentially contradic-
tory objectives: keeping the best solutions found so far,
and at the same time efficiently exploring the search space
for promising solutions.

The GATC algorithm description
In the rest of the manuscript, we will loosely refer to the
tree likelihood given a multiple sequence alignment as
sequence likelihood.
Given a sequence alignment D and a species tree S, our

objective is to find the gene tree G or a set G of gene
trees, with branch length, that are (near) optimal for both
the sequence likelihood and the reconciliation score. To
solve this problem, our fitness function should reflect both
objectives. We will present different ways for computing
the fitness score, either by a linear combination of the two
scores, or by trying to reach a pareto optimality. We start
by presenting the general framework of the GA.

Solution encoding
A chromosome σ is defined as (G, θ) where G is a
rooted binary gene tree and θ is the set of hyperpa-
rameters underlying the evolutionary model. Namely,
θ = (λ, δ, τ , e, l,m), representing respectively the duplica-
tion rate, the loss rate, the transfer rate, the substitution
rates across the gene tree edges, branch lengths and the
substitution model. Some of these parameters might be
kept fixed during the evolutionary process. For example,
the substitution model m is usually fixed for all gener-
ations, whereas duplication, loss and transfer rates can
vary when a probabilistic model is used to compute the
reconciliation score. When parsimony is preferred, they
correspond to fixed event cost. Branch lengths and edge
substitution rates are usually optimized during sequence
likelihood computation.
For the probabilistic model of reconciliation, the initial

values of the hyperparameters λ, δ, τ and e are randomly
drawn from a uniform distribution, unless explicitely pro-
vided. The default substitution model used for nucleotide
sequences is the GTR model [32] with a gamma distribu-
tion to account for rate variation [33], whereas for pro-
teins, the JTT model [34] with gamma-distributed rates is
used.

Gene trees in the initial population
When starting trees are available (from any other tree
construction method, integrative or not), they can be

used as the population of the first generation in our
GA. Otherwise the trees of the initial population are
generated, either randomly or according to a predefined
procedure. GATC implementation allows generating
the initial trees from a star tree, using PolytomySolver
[35] which outputs the most parsimonious trees for the
DL-reconciliation score (but not necessary optimal for
the DTL-reconciliation score or the sequence likelihood),
or using bootstrapped trees obtained with RAxML [2].
These two methods should be prefered to the initializa-
tion with random trees, which can affect the algorithm’s
convergence.
Notice that two trees G1,G2 such that G1 = G2 have

the same reconciliation score, and thus if G1 is a solu-
tion of PolytomySolver, minimizing the DL-reconciliation
score, then G2 is also a solution. Therefore, in this case, to
increase the initial population of the GA, additional trees
can be obtained by permutation of the genes at the leaves
of G1 in a way respecting the mapping function s.

Computing the sequence likelihood and reconciliation score
To evaluate the fitness of each chromosome σi , 1 < i < n,
in a population of size n, we first compute a vector �zi
of two components, called the raw score vector, contain-
ing the sequence likelihood and the reconciliation score.
Note that when the objective is to optimize only sequence
likelihood, the second component corresponding to the
reconciliation score is set to zero.
The sequence likelihood scores p(D|G, l,m) can be com-

puted using the Felsenstein algorithm [36] and the further
computationnal enhancement described by Stamatakis
et al. (2004) [37]. In fact, GATC use subroutines from
RAxML to compute the sequence likelihood, thus benefit-
ing from both its high computational speed and its large
set of substitution models.
As for the reconciliation score, it can be computed

under either the probabilistic or MPR model. For the
MPR scoring model, we implemented the Bansal algo-
rithm [15] which computes the DTL reconciliation cost
between a binary gene tree G and a binary species tree
S in time O(|G||S|). Notice that, as explicit transfer path-
ways are not specified, a DTL scenario is not necessarily
possible as it may violate temporal constraints [14]. In
fact, a donating and a receiving species must have co-
existed at the time of the transfer. Moreover, in contrast
to duplications and losses, HGT are inter-dependent, and
can induce contradictory temporal constraints on ances-
tral species. However, as the reconciliation problem for
DTL using undated species tree with the constraint of
respecting temporal constraints is NP-hard, the Bansal
algorithm remains a good alternative for computing a rea-
sonable DTL reconciliation score. In absence of HGTs, we
compute the DL reconciliation score using a linear-time
algorithm [11], to speed up calculations.
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For the probabilistic scoring model, we have imple-
mented the DTL model first described by Tofigh [38, 39]
and used by PrIME-DLRS [23]. It is based on a birth-death
model of evolution including rates for gene duplication,
transfer and loss that requires discretization of a dated
species tree and numerical resolution of ordinary differen-
tial equations. We refer the readers to the Supplementary
Material of [23] for a thorough description of how the
probability density of the reconciliation is computed.
Rather than minimizing the reconciliation score and

maximizing likelihood, it is easier to simultaneously mini-
mize both measures. For this reason, we take the negative
log value when likelihood is used for any of the two scores.
Therefore, it has to be understood that the best adapted
individuals will be those with the lowest fitness.

Computing the fitness score
Given a raw score vector �zi for a chromosome σi, a weight
vector �w and a scaling function φ, we define the fitness
score fi of σi as fi = �w · φ(�zi). In other words, fi corre-
sponds to the weighted sum of the two components of the
raw score vector, scaled by a function φ. The simplest defi-
nition of φ is the identity function φ(�z) = �z. An alternative
is to standardize each score to a zero-minimum resulting
in the following formulation : φ

(
zki

)
= zki − mini(zi)k for

1 ≤ k ≤ 2 and 1 ≤ i ≤ n. However, for this latter scaling
function, fitness is not comparable between individuals of
different generations.
Using the method described above for computing fi

transforms our problem into a single objective minimiza-
tion problem and is suitable when both components of
zi are log likelihood values, since it is related to the
joint weighted probability density for sequences data and
reconciliation to the species tree.
When the reconciliation score is computed using par-

simony, combining the two scores this way might not
be optimal. Instead, we compute a set of pareto opti-
mal solutions for this multi-objective optimization prob-
lem (MOOP). Several evolutionary based techniques have
been developed for MOOP [40]. Here we will use a
technique similar to the widely known NSGA (Non-
dominated Sorting Genetic Algorithm) [41].
A raw score vector �zi = (

z1i , z2i
)
is said to dominate

another vector �zj =
(
z1j , z2j

)
, denoted as �zi ≺ �zj, iff �zi �= �zj

and z1i < z1j , z2i < z2j . We are interested in finding the
set of non-dominated solutions called pareto set (PS) and
denoted as :

PS = {σi | � σj, �zj ≺ �zi}

At the end of the GA’s evolutionary process, the pareto
set represents the set of pareto optimal solutions. In
contrast with classical genetic algorithms, computing the

pareto set requires to consider simultaneously a parent
population Pi and its offspring P′

i, as optimal solutions
from Pi can be lost if we use P′

i as the population Pi+1 of
the next generation.
Algorithm 1 illustrates the way fitness is computed for

all individuals of a generation. It proceeds in a wave fash-
ion, selecting the non-dominated individuals from the
population P∗ = Pi ∪ P′

i, assigning them a shared fitness
score, and then removing them from P∗. This process is
repeated while increasing the fitness score for the indi-
viduals in the new waves, until the expected population
size per generation is met or there is no non-dominated
individuals anymore. In the latter case, the fitness of the
remaining individuals is computed as the sum of their
dominance rank (number of individuals that dominates an
individual) and the fitness of the last wave. This process
ensures that individuals belonging to the same wave have
the same fitness and as such the same probability to repro-
duce. The n individuals with the best fitness constitutes
Pi+1. Selection, crossover and mutation operators can be
applied to Pi+1 resulting in offspring P′

i+1.

Algorithm 1 Compute next generation population Pk+1
from Pk
1: procedure COMPUTENEXTPOP(Pk)
2: Compute P′

k , the offspring population of Pk
3: P∗

k ← Pk ∪ P′
k

4: Evaluate zi for all σi ∈ P∗
k

5: Compute the dominance rank di for each σi ∈ P∗
k

6: w ← 1
7: while ∃ σi ∈ P∗

k | di = 0 do
8: Wavew ← {σi | di = 0}
9: Set a shared fitness for all σi ∈ Wavew as w

10: P∗
k ← P∗

k \ Wavew
11: Compute the dominance rank di for each σi∈P∗

k
12: w ← w + 1
13: end while
14: for σi ∈ P∗

k do
15: set the fitness of σi as w + di
16: end for
17: Pk+1 ← ⋃

w
Wavew ∪ P∗

k

18: return the first |Pk| of Pk+1 according to fitness
19: end procedure

Selection
GATC implements multiple classical selection methods.
Individuals can either be selected for crossover using the
tournament selector [42] or using the roulette wheel selec-
tor which chooses individuals with probability inversely
proportionnal to their fitness values (recall that the best
indivuals have the smallest fitness value). Alternatively,
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the random uniform selector can be used, which gives
equal reproduction probability to all individuals regard-
less of their fitness. Selected indivuals are used in the
crossover operator to produce the individuals of the next
generation.

Crossover
In the crossover operators implemented in GATC, two
offsprings are created from two parent chromosomes.
Each offspring inherits its hyperparameter θ from one
of its parents, while its gene tree is obtained from the
combination of the two parental trees.
Given trees Gi and Gj respectively from parent σi and

σj, the first offspring is obtained with the subtree swap
crossover operator [27], achieved by the following actions:

1 Select a subtree Gi [x] from Gi (the root is excluded)
2 Delete all leaves from Gj that are also in L(x);
3 Regraft Gi [x] to a random edge of Gj to obtain the

offspring tree G′
j.

The second offspring treeG′
i, is obtained in a similar way

by selecting a subtree from Gj and regrafting it in Gi. The
crossover operator is illustrated on Fig. 2a.
In the special case where the objective is to only opti-

mize the sequence likelihood, under the hypothesis that
the reconciliation score is already optimal, this crossover
operator is not applicable as it does not preserve the rec-
onciliation score. Instead, the offspring trees are created
by exchanging two subtrees G1[ x] and G2[ y] such that
G1[ x] and G2[ y] are isomorphic with respect to the labels
at their leaves (see Fig. 2b).

Mutation
For a chromosome σi = (Gi, θi), a mutation is per-
formed either on the treeGi or on the rates λ, δ, τ , e unless
their values are fixed. Mutations on the rate parameters

consist in drawing a new value from their distribution.
On the other hand, a mutation operates on Gi by apply-
ing a topological modification. GATC uses SPR (Subtree
Pruning and Regrafting) and re-rooting operations (see
Fig. 3a-b) to generate a new tree topology. As with the
crossover operator, when only sequence likelihood has to
be optimized, reconciliation score should be preserved
after mutations. For this purpose, mutation are performed
by permuting the genes assignment to the leaves of Gi in
such a way that only genes belonging to the same species
are allowed to switch places (see Fig. 3c).

Stop criteria
We proposed several criteria to stop the GA evolution.
The simplest ones are to terminate when a maximum
number of generations or a time limit are met, or when all
individuals converge to a single fitness value. Aside from
these criteria, we propose another simple termination cri-
terion called population-AU criterion that is based on the
use of a reference ML tree. Under this criterion, evolution
is stopped when all the individuals in the current popu-
lation are statistically equivalent to the known ML tree,
according to the AU test [43]. This stop criterion allows
for a good performance when the objective is restricted to
the optimization of sequence likelihood.

Results and discussion
To measure the efficiency of GATC in reconstructing
accurate gene trees, we compared its performance, on
a simulated dataset, to four different gene tree recon-
struction methods: ecceTERA [19], TreeFix-DTL [20],
ProfileNJ [7], MowgliNNI [18] and RAxML [2]. In con-
trast to RAxML which is a sequence-only method, the
former four methods use both sequences and species tree
information. We also used GATC to reconstruct the gene
trees of three gene families for which reference trees have
been proposed [44]. We will entirely focus on evaluating

a b

Fig. 2 Crossover operator. a Subtree swap. A subtree G1[x] (in red) is pruned from G1 then regrafted to a random branch of G2 after deleting from G2
its leaves that also appear in G1[x] (shown in dotted lines). To obtain the second child, a similar operation is performed from G2 to G1 b Subtree
swap preserving reconciliation. Two subtrees G1[x] and G2[y], respectively from G1 and G2, such that G1[x] = G2[y] are swapped and the remaining
leaves are corrected to conserve the same leafset as the parent
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a

b

c

Fig. 3Mutation operator. a Re-rooting. The tree is rerooted at a random edge. b SPR move. A subtree is pruned from the tree and regrafted to
another edge. cMutation preserving reconciliation cost. Two leaves l1 and l2 such that s(l1) = s(l2) are swapped. This mutation only alter the
sequence likelihood

GATC’s performance under the MPR model, as it is our
main contribution and also because DTL-reconciliation
scores can be computed significantly faster under this
model.

Evaluation on a simulated Cyanobacteria histories dataset
We used the simulated cynobacteria dataset of Szöllosi
et al. (2013) [22] publicly available at http://datadryad.
org/resource/doi:10.5061/dryad.pv6df. This dataset con-
sists of 1099 gene families from 39 cyanobacteria species
along with a well-resolved dated species tree. To con-
struct the dataset, the gene families were retrieved from
HOGENOM [45] and multiple alignments were per-
formed on these families with Muscle [46]. For each
alignment, an MCMC sample of at least 3000 trees was
obtained with PhyloBayes [47] and used to reconstruct an
amalgamated tree with ALE [22]. These trees were used
to simulate newmultiple alignments of artifical sequences
under the LG model with a gamma distribution. We refer
to [22] for a more detailed description on the construction
of the dataset.
From each of the 1099 simulated artificial sequence

alignments, we reconstructed an inital tree using RAxML
(LG + Gamma, 100 bootstraps). The RAxML trees (with
bootstrap values) were used as input for all programs
being compared against GATC.
For all programs, we used fixed DTL rates (λ = 2, τ = 3,

δ = 1) except for ProfileNJ which supports only a DL
model of reconciliation and for which we took τ = ∞.
We ran TreeFix-DTL with default parameters and LG
+ Gamma as model of evolution. As it requires rooted
trees, the input RAxML trees were rooted using the mid-
point rooting method [48]. MowgliNNI, ecceTERA and

ProfileNJ were run with a threshold of 0.7 for the contrac-
tion of for weak edges. Note that ProfileNJ and ecceTERA
can output several solutions from which users can later
select a tree according to some other measure (sequence
likelihood for example). In our comparison, we only con-
sider the first solution returned by both methods, as this
selection process is not part of the methods, and also
removes their running time advantage. We ran GATC
with the following parameters : a maximum of 50 gen-
erations, a time limit of 90 minutes per gene family, LG
+ Gamma as the model of evolution and parsimony for
DTL-reconciliation. We used the tournament selector as
the selection operator and set the crossover and mutation
rates to 0.8 and 0.5 respectively (see Additional file 1:
Section 1 and Figure S1, for a discussion on the effect of
crossover and mutation rates on accuracy). To construct
the initial population of the GA, we used PolytomySolver’s
resolutions of RAxML trees after contraction of edges
with support less than 0.7. In order to keep the GA popu-
lation size fixed at 30, we randomly removed or duplicated
chromosomes from the initial population until its size
became 30. We also used the population-AU as additional
stopping criterion with the RAxML tree being the known
bestML tree and a significance level α = 0.05.When there
were more than one tree in the pareto optimal set, the tree
with the lowest DTL-reconciliation score was returned as
GATC final solution.
We measured the accuracy, defined as the normalized

Robinson-Foulds distance between each reconstructed
tree and the true tree. As shown in Fig. 4, trees recon-
structed with species tree-aware algorithms were more
accurate than RAxML’s trees. This result was expected,
since it has been shown several times that integration

http://datadryad.org/resource/doi:10.5061/dryad.pv6df
http://datadryad.org/resource/doi:10.5061/dryad.pv6df
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Fig. 4 Accuracy of RAxML, ProfileNJ, ecceTERA, TreeFix-DTL, Mowgli and GATC on a dataset of simulated Cyanobacteria histories: we measure the
normalized Robinson-Foulds distance of the reconstructed trees to the true gene trees for all 1099 gene families. GATC achieves the best accuracy
on the simulated dataset, followed by TreeFix-DTL

of species tree information usually improves gene trees
reconstruction. GATC, in particular, achieves a better
accuracy than other methods, due to its improved tree
space search efficiency. The algorithm also appears to
be robust, in some extent, to errors in the species tree
topology (see Additional file 1: Section 2 and Figure S2).
However, it should be noted that in order to obtain accu-
rate results, there is a need to allocate a considerable time
for the evolution of the GA. As such, the algorithm is
much slower, in comparison to ProfileNJ and ecceTERA
which can output solutions in a few seconds. To our sur-
prise, ProfileNJ was almost as accurate as the second best
method (TreeFix-DTL), although it only supports a DL
model of reconciliation and HGT were present in the
dataset. It is possible that most edges with weak support
were not involved in HGT events, which can explain the
observed performance of ProfileNJ.

Evaluation on an empirical dataset
In an attempt to establish a benchmark for compar-
ing orthology prediction methods, Boeckmann et al.
(2011) [44] proposed manually curated “gold standard”
gene trees for three well-conserved gene families : the
Popeye-domain containing family (POP), the NOX
‘ancestral-type’ subfamily of NADPH oxidases (NOX)
and the V-type ATPase beta subunit (VATP).
These gene families have been re-analyzed here to assess

the performance of GATC on an empirical dataset. The
reference species tree used was obtained from SwissTree

[49]. Protein sequences from genomes not found in the
species tree were removed and the remaining sequences
aligned with Muscle [46]. GATC was used to recon-
struct the corresponding trees for each gene family
with initial population of trees obtained from boot-
strap replicates. We used the same parameters as above
except for the DTL events cost, which was changed
to: (λ = 1, τ = ∞, δ = 1). Here, we prohibit
HGT events since they are not expected in the dataset.
We also set the maximum number of generations to 300
and the maximum time of evolution to 3h per gene fam-
ily. For comparison, the average time needed by RAxML
to obtain the best ML trees is 2.4h.
In order to measure the accuracy of GATC, we inves-

tigated how close the reference trees were to the set of
pareto optimal trees. Figure 5 shows the distribution of
individuals’ scores, over generations, during the GA evo-
lution for each gene family. We were able to retrieve
the reference tree for the NOX and VATP gene families,
whereas the reference tree for the POP family was located
close to a cluster of pareto optimal trees. From the same
figure, it can also be seen that even though the ML and
MPR trees theoretically belong to the pareto optimal set
of the complete tree space, they are often located far from
the desired optimal result.
Since the reference gene tree was not obtained for the

POP family, we report the precision and recall of orthol-
ogous and parologous genes inference from the solutions
returned by GATC, compared to the proposed reference
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Fig. 5 Distribution of individuals’ raw scores during evolution on three “gold standard” gene families. The scores of the ML tree obtained with
RAxML, the MPR tree for the DL score, and the reference gene tree of [44] are also shown. Note that for fair compairson, the RAxML tree
reconciliation score correspond to the best rooting score, whereas the MPR tree sequence likelihood correspond to the tree with the minimum
negative log likelihood in the set of equivalent MPR trees. For the sake of visibility, we increased the size of each data point. The “best tree” is
expected to be located in the lower left corner. For the ATPase and Nox families, the reference tree was present in the set of pareto optimal trees
returned by GATC. For the Popeye gene families, the reference tree was located in the proximity of a cluster of pareto optimal solutions

tree (Table 1). Note that GATC only outputs ten trees
from the 30 individuals of the final population resulting in
four unique trees (see Additional file 1: Figures S4-S7). We
computed precision and recall for the two types of gene
relationships as follows:

Precision = TP
TP + FP

, Recall = TP
TP + FN

where TP corresponds to the number of shared
pairs of orthologs/paralogs with the reference tree,
FP corresponds to the number of predicted pairs of
orthologs/paralogs not present in the reference tree, and
FN to the number ofmissed orthologs/paralogs. As shown
on Table 1, the precision and recall for the inferred gene
relationships were high for all four solutions. Difference
between GATC’s solutions and the reference POP gene
family tree (Additional file 1: Figure S3) can mostly be
explained by the fact that duplication nodes were often

placed lower in the solutions, resulting in fewer number
of losses and consequently lower reconciliation scores.
It is hard to argue whether the proposed reference tree

represents the true evolutionary history of the gene fam-
ily over our pareto optimal solutions. In fact, from Fig. 5,
it can be seen that some pareto optimal solutions were
better than the reference POP gene tree for both scores,
suggesting that they could be of higher quality. As the
true evolutionary histories of gene families are hardly
known, relying on high-quality phylogenetic gene trees for
biological analyses is preferable.
In summary, our results on the empirical dataset

demonstrate how a GA framework can be used for the
inference of gene trees with high accuracy.

Conclusion
Algorithms for constructing gene trees from multiple
sequence alignments are widely used. However when a

Table 1 Comparison between the reference tree of the Popeye family and the pareto optimal trees returned by GATC

NormRF distance
Orthologs Paralogs

Prec. Rec. Prec. Rec.

Tree 1 0.260 0.763 0.942 0.971 0.871

Tree 2 0.260 0.765 0.941 0.971 0.873

Tree 3 0.087 0.902 0.983 0.992 0.894

Tree 4 0.109 0.829 0.866 0.940 0.922



Noutahi and El-Mabrouk BMCGenomics 2018, 19(Suppl 2):102 Page 106 of 180

reliable species tree is available, it is preferable to use
species tree-aware methods which are often more accu-
rate. In this work, we have presented a GA framework
for the reconstruction of gene trees using both sequences
and species tree information. From the comparison with
existing methods, we have shown that this framework,
implemented in a software called GATC, outputs more
accurate gene trees.
As the true evolutionary history of a gene family does

not always correspond to the most parsimonious one,
GATC assumes instead that the true gene tree can most
likely be found in the pareto optimal set of the search
space. Therefore, given enough time, the algorithm will
converge to a set of candidates containing that tree.
Although this hypothesis was supported by our results on
the empirical dataset, it does not necessary hold for all
gene families. For example, since our reconciliation model
does not consider Incomplete Lineage Sorting (ILS), the
efficiency of GATC is expected to decrease in presence
of ILS. Indeed, signals of deep coalescence leading to
incongruence between species and gene tree would be
explained by DTL events, possibly resulting in incorrect
trees. Moreover, another problem still persists when there
are several trees in the final pareto set, as alternative crite-
ria for discriminating between these equivalent candidates
are required. In its current implementation, GATC out-
puts solutions sorted by either the sequence likelihood or
the reconciliation score.
Despite the good results we obtained by using GATC,

one fundamental aspect that should be adressed in order
to improve efficiency is the required evolution time.
Indeed, running time cannot be accurately estimated
especially when the starting trees have poor quality.When
ML or bayesian trees have been inferred beforehand, it
may be appropriate to set the maximum evolution time to
the time required to find the best ML tree. As the under-
lying idea behind GAs allows for easy parallelism, running
time can be dramatically reduced. Balance between scal-
ability to large datasets and search efficiency would likely
be achieved by carefully selecting the different genetic
operators and the stopping criteria. Finally, to avoid being
trapped in local optima, multiple replicate searches, using
different settings (such as DTL, crossover and mutations
rates, population size and initialization) can be performed
in parallel with exchange of information through a migra-
tion operator.

Additional file

Additional file 1: Contains supplementary information on the effect of
operator rates (Figure S1) and errors in the species tree (Figure S2) on
reconstruction accuracy. It also contains the original reference tree of the
Poyeye family (Figure S3) and the four alternative trees obtained by GATC
(Figure S4-S7). (PDF 315 kb)
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