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Abstract

Background

Tendon pathologies affect a large portion of people with diabetes. This high rate of tendon
pain, injury, and disease appears to manifest independent of well-controlled HbA1c and
fasting blood glucose. Advanced glycation end products (AGEs) are elevated in the serum
of those with diabetes. In vitro, AGEs severely impact tendon fibroblast proliferation and
mitochondrial function. However, the extent that AGEs impact the tendon cell transcriptome
has not been evaluated.

Objective

The purpose of this study was to investigate transcriptome-wide changes that occur to ten-
don-derived fibroblasts following treatment with AGEs. We propose to complete a descrip-
tive approach to pathway profiling to broaden our mechanistic understanding of cell
signaling events that may contribute to the development of tendon pathology.

Methods

Rat Achilles tendon fibroblasts were treated with glycolaldehyde-derived AGEs (200ug/ml)
for 48 hours in normal glucose (5.5mM) conditions. In addition, total RNA was isolated, and
the PolyA™ library was sequenced.

Results

We demonstrate that tendon fibroblasts treated with 200ug/ml of AGEs differentially express
2,159 gene targets compared to fibroblasts treated with an equal amount of BSA-Control. Addi-
tionally, we report in a descriptive and ranked fashion 21 implicated cell-signaling pathways.

Conclusion

Our findings suggest that AGEs disrupt the tendon fibroblast transcriptome on a large scale
and that these pathways may contribute to the development and progression of diabetic
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tendinopathy. Specifically, pathways related to cell cycle progression and extracellular
matrix remodeling were affected in our data set and may play a contributing role in the devel-
opment of diabetic tendon complications.

Introduction

Tendon degeneration and impaired biomechanical function result in significant reductions in
mobility and quality of life for the majority of the ~30 million Americans living with diabetes,
resulting in a substantial economic burden to individuals and society. Compounding the prob-
lem, human [1-3] and rodent [4] studies indicate that improving blood glucose levels does not
normalize tendon properties in individuals with diabetes. Any new approach to enhance ten-
don health in people with diabetes is hindered by a poor understanding of the underlying etiol-
ogy of tendon degeneration and impaired biomechanical properties [1, 2, 5-7].

Our previous cell culture work implicated advanced glycation end-products (AGEs) as a
potential mechanism driving tendon degeneration [8]. AGEs can form non-enzymatic cross-
links with collagen [9], a mechanism that has traditionally been the focus of tendon complica-
tions in persons with diabetes [10]. Yet, recent studies of tendons from humans with diabetes
have found no evidence of greater collagen crosslinking than those without diabetes [1, 11]
and no relationship between tendon AGE content and tensile mechanics [11]. A less explored
mechanism of AGE-mediated effects is the interaction of serum AGEs with AGE receptors
(RAGE). AGEs accumulate in the serum of patients with diabetes [12-14] and our cell culture
data suggest that AGEs can impact tendon cells. Specifically, treatment of cells with AGEs
dose-dependently reduced cell proliferation and mitochondrial ATP production.

A thorough understanding of the cell signaling events contributing to the development of
AGE-mediated diabetic tendinopathies will assist in exploring alternative areas of thought and
developing therapeutic options to target this large patient population. Therefore, to better
understand the effect of AGEs on tendon cells, we sought to characterize the alterations to the
tendon fibroblast transcriptome following exposure to AGEs. Although many of these path-
ways have already been implicated with AGEs from analysis of non-tendon tissues, the pri-
mary goal of this study was to establish a descriptive and ranked evaluation of pathway
disruptions that occur to tendon fibroblasts following an AGE insult.

Materials and methods

Animal protocol

Animals utilized in this study were from a previous investigation [8]. The study was approved by
the Purdue University Institutional Animal Care and Use Committee. All animals were cared
for per the recommendations in the Guide for the Care and Use of Laboratory Animals. Five
eight-week-old female Sprague-Dawley rats were purchased from Charles River Laboratories
(Wilmington, MA) and maintained for an additional eight weeks. Rats were housed on a
12-hour light-dark cycle and provided standard rat chow and water ad libitum. At sixteen weeks
(Final Weights: 256.43+5.19 g), rats were euthanized by decapitation after CO, inhalation.

Tendon fibroblast isolation and cell culture

Tendon-derived fibroblasts utilized in this study were from a previous investigation [8].
Briefly, Achilles tendons were rinsed with sterile PBS, minced, placed in DMEM containing
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0.2% type I collagenase, and incubated in a 37°C shaking water bath for four hours. After
digestion, the cell suspension was filtered through a 100um mesh filter, pelleted by centrifuga-
tion, and resuspended in 5.5mM glucose DMEM containing 10% FBS, 1% sodium pyruvate
(Sigma, St. Louis, MO), and 1% penicillin/streptomycin (Thermo Scientific, Waltham, MA).
Samples were then plated in 100mm collagen-coated dishes. After reaching confluency, tendon
fibroblasts were split and seeded (100,000 cells) in 100mm collagen-coated culture plates. Each
donor animal’s (n = 5) tendon fibroblasts were treated separately with 200pg/ml of BSA-Con-
trol or AGE-BSA for 48 hours for downstream paired DESeq?2 analysis. Tendon fibroblasts
treated at passages 2—-4 were used for RNA isolation and RNA-sequencing (RNAseq).

Age preparation

Details on the preparation of AGEs have been reported previously [8, 15]. Briefly, sterile fil-
tered 30% BSA solution (Sigma, St. Louis, MO) was incubated with 70mM glycolaldehyde
dimer (Sigma) in sterile PBS for three days at 37°C. After incubation, the AGE product was
dialyzed against sterile PBS for 24 hours at 4°C using gamma-irradiated 10kDa cut-off cas-
settes (Thermo Scientific, Waltham, MA) to remove unreacted glycolaldehyde. Unmodified
control BSA was prepared similarly, without the addition of glycolaldehyde dimer. Protein
concentration was determined by BCA assay (Thermo Scientific) and absence of endotoxin
(<0.25Eu/ml) was confirmed via the LAL gel-clot assay (GenScript, Piscataway, NJ).

O, T T n=1046
q<0.05 o, . q<0.05
FC>15| & . o FC>1.5¢

40 S : : a

-log,q

-5 -4 -3 2 | -1 0 1 2 | 3 4 5
log, Fold Change (AGE-BSA / Control-BSA)

Fig 1. Volcano plot overview of RNA sequencing results. Each point represents a single gene target. Red (n = 1046) indicates significant
increase in gene expression. Blue (n = 1113) indicates significant decrease in gene expression. Black (n = 10,648) indicates gene targets
that were either unaltered or did not meet our thresholds of <0.05 and fold change of greater that 1.5 or less than -1.5.

https://doi.org/10.1371/journal.pone.0271770.9001
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The extent of BSA modification was confirmed by fluorescence, absorbance, and loss of pri-
mary amines [15-18]. AGE-BSA and Control-BSA were diluted to 1mg/ml in PBS and fluores-
cent spectra and absorbance were recorded at 335nm excitation/420nm emission and 340nm,
respectively (Molecular Devices, San Jose, CA). For determination of loss of primary amines
AGE-BSA and Control-BSA were diluted to 0.2mg/ml in PBS. An equal volume of ortho-
phthalaldehyde solution (Sigma) was added and fluorescent spectrum was recorded at 340nm
excitation/455nm emission (Molecular Devices). Absorbance readings were completed to
determine the extent of glycation. AGE-BSA showed increased glycation with absorbance
readings of 0.682 AU compared to 0.01 AU for control BSA. AGE-BSA primary amine termi-
nals underwent complete modification (-0.03% accessible amine terminals remaining), while
control BSA retained 81.48% of accessible amine terminals. Negative values were interpreted
as zero, and extent of modification was similar to previous reports [15].

RNA sequencing

Total RNA was isolated as previously described [8]. Briefly, RNA was isolated after BSA-Con-
trol or AGE-BSA treatment using the Direct-zol RNA Miniprep kit (Zymo Research, Irvine,
CA). On-column DNase digestion was completed on all samples before elution of RNA. Total
RNA from BSA-Control (n = 5) and AGE-BSA (n = 5) treated tendon fibroblasts was submit-
ted to the Purdue University Genomics Core Facility (West Lafayette, IN) for PolyA™ library
construction. The integrity of input total RNA was assessed using a Bioanalyzer RNA Nano
chip (Agilent 2100, Santa Clara, CA). Libraries from 500ng of input total RNA were con-
structed as directed by the Nugen Universal Plus mRNA-Seq + UDI kit (PN#9144-96), but the
RNA fragmentation time was decreased from 8 minutes to 4 minutes. Final library products
were subjected to a 0.7 Ampure:1 Sample ratio purification to reduce lower molecular weight

Table 1. Most affected gene targets.

Gene log, Fold Change q Value
Cyplal 7.07 6.77E-07
Pipox 4.78 7.59E-04
Btc 4.70 1.87E-05
Slc22a14 4.66 2.49E-04
Tbxasl 4.08 1.46E-02
Itgb2 4.06 3.42E-02
Slc13a3 4.05 4.78E-03
Cldnl 4.03 3.80E-06
Ncfl 4.01 1.19E-03
Tnfrsfl7 3.94 9.65E-03
Pimreg -4.94 1.01E-12
Pmch -4.83 1.49E-33
E2f7 -4.45 8.80E-08
Pbk -4.29 3.99E-05
Parpbp -4.24 3.47E-23
Ube2c -4.19 7.41E-24
Troap -4.13 3.23E-07
Cenpf -4.12 8.15E-11
Cldn23 -4.10 4.98E-03
Ccnb2 -4.08 5.44E-25

https://doi.org/10.1371/journal.pone.0271770.t001
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amplicons. The resulting libraries were assessed with an Agilent DNA High Sensitivity Chip
for yield and quality and sequenced by Novogene (Sacramento, CA). Ten libraries were pooled
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Brca1 Mcm2
Brca2 Mcm3
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Ccnal Mdm2
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Ccnb1 Mre11a
Ccnb2 Msh2
Ccnc MybI2
Ccnd1 Nbn
Ccnd2 Nek2
Ccnd3 Nfatc1
Ccne1 Notch2
Cenf Pcna
Cdc6 Pkd1
Cdc7 Pmp22
Cdc20 Ppm1d
Cdc25a Rad17
Cdc25b Rad21
Cdc25¢ Rad51 [
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Cdk2 Rb1
Cdk4 RbI1
Cdk5rap1 Rbi2
Cdk6 Sesn2
cdkn1a [ Shet
Cdkn1b Skp2
Cdkn2a Smc1a
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cains [ Stont |
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Fig 2. Cell cycle heat map. Bold text indicates significantly altered gene targets.
https://doi.org/10.1371/journal.pone.0271770.g002
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and evenly distributed across a single HiSeq lane to generate ~40,000,000 2X150bp reads on
the HiSeq 4000 platform (Illumina, San Diego, CA).

Bioinformatics

RNAseq raw data set quality and analysis was completed using Basepair software (New York,

NY) pipelines. Reads were first aligned to the transcriptome derived from rn6é genome assem-
bly using STAR with default parameters [19]. Next, read counts for each transcript were mea-
sured using featureCounts, and differentially expressed genes were determined using DESeq2

using a paired analysis [20, 21]. An adjusted p-value cut-off of 0.05 (corrected for multiple

hypotheses testing) was used. Finally, GSEA was performed on normalized gene expression
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Fig 3. ECM and tenogenic markers heat map. Bold text indicates significantly altered gene targets.
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https://doi.org/10.1371/journal.pone.0271770.9003
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counts, using gene permutations for calculating p-value. A log, fold change cut-off of 1.5 was
enforced.

Descriptive pathway profiling

To preserve unbiased gene target selection and maintain a hypothesis-driven pathway selec-
tion, GeneGlobe (Qiagen, Hilden, Germany) pathway database was utilized to complete a

Abl1 Nthi1
Apex1 Ogg1
Atm Parp1
Bard1 _ Parp2
Bax Pcna
Bbc3 Pms1
Brca1 _ Pms2
Brca2 Pold3
Cdc25a Pole
Cdc25c Polh
Cdkn1a Poli
Chek1 Ppm1d
Chek2 Ppp1r15a
Csnk2a2 g1 [
Dclre1a Rad1
Ddb2 Rad17
Ddit3 Rad18
Ercc1 Rad21
Ercc2 Rad50
exo! [N Rad51
Fanca Radb1c
Fancc Rad52
Fancd2 _ Rev1
Fen1 Rnf8
Gadd45a Rpa1
Gadd45g Smc1a
Hus1 Smc3
Lig1 Sumo1
Mgmt Terf1
Mih1 Tp53
MIh3 Ung
Mpg Wrnip1
Mre11a Xpc _
Msh2 Xrce
Msh3 Xrcc2
Nbn Xrccb

-3 3

-1 0 1

Fig 4. DNA damage heat map. Bold text indicates significantly altered gene targets.
https://doi.org/10.1371/journal.pone.0271770.9004
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descriptive approach to pathway analysis. We generated heat maps based on GeneGlobe RT>
profiler arrays independent of whether those gene targets were significantly altered in our

Abl1 Igfop5 [
Akt1 Igfbp7
Aldh1a3 [ Ing1
Atm Irf3
Bmi1 Irf5
Calr Irf7
Ccna2 Map2k1
Ccnb1 Map2k3
Ccnd1 Map2k6
Ccne1 Mapk14
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Cdk6 Nfkb1
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Col1a1 Serpinb2

Col3a1 Serpine1 -
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E2f1 Sod2
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Ets2 Terf2
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Fig 5. Cellular senescence heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.9005
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dataset. Gene targets in the RT profilers but not in our dataset were excluded from heat maps.
The percentage of significantly altered genes, both increased and decreased, was calculated
based on the number of total genes included in each pathway’s respective heat map to rank the
most implicated pathways. This systematic approach was employed to maintain an objective

view of the global data.
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Fig 6. p53 signaling heat map. Bold text indicates significantly altered gene targets.
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Pathway analysis

RNAseq data were imported into Ingenuity Pathway Analysis (IPA, Qiagen) to determine

select pathways and biological functions that were altered in response to AGE-BSA

treatment.
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Fig 7. TGF-p signaling heat map. Bold text indicates significantly altered gene targets.
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Results and discussion

Overview

A total of 2,159 genes within our data set met the criteria of q<0.05 and fold change of greater
than or less than 1.5 (log, fold change greater than or less than 0.584). One thousand forty-six

genes were significantly increased, and 1,113 were significantly decreased (Fig 1).

Most affected gene targets

The top ten increased, and the top ten decreased gene targets within our data set were identi-
fied based on our log, fold change and adjusted p-value thresholds. The top ten increased gene
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Fig 8. Fibrosis heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.9008
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targets in order of highest to lowest positive log, fold change were Cyplal, Pipox, Btc,
Slc22al4, Tbxasl, Itgb2, Slc13a3, Cldnl, Ncfl, and Tnfrsf17 (Table 1). The top ten decreased
gene targets in order of highest to lowest negative log, fold change were Pimreg, Pmch, E2f7,
Pbk, Parpbp, Ube2c, Troap, Cenpf, Cldn23, and Ccnb2 (Table 1).

Descriptive pathway profiling

A total of 21 GeneGlobe (Qiagen) pathways were explored. Pathway selection was based on
the literature, hypotheses that we have explored previously, and hypotheses we plan to
explore in future studies. Select pathways strongly associated with AGE/RAGE biology were
also included. Pathways were ranked strictly based on the percentage of significantly altered
genes within that respective pathway. Pathways explored, in order from most to least
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Fig 9. Oxidative stress heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.9009
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implicated, were cell cycle (51.2%, Fig 2), extracellular matrix (ECM) and tenogenic mark-
ers (48.4%, Fig 3), DNA damage (40.3%, Fig 4), cellular senescence (39.2%, Fig 5), p53 sig-
naling (38.7%, Fig 6), TGF-p signaling (32.4%, Fig 7), fibrosis (29.2%, Fig 8), oxidative
stress (28.1%, Fig 9), wound healing (23.8%, Fig 10), growth factors (21.9%, Fig 11), tran-
scription factors (20.6%, Fig 12), cytoskeleton (16%, Fig 13), cytokines (14.9%, Fig 14),
innate and adaptive immunity (13.2%, Fig 15), NF-xB signaling (11.3%, Fig 16), cellular
stress responses (10%, Fig 17), mitochondria (9.5%, Fig 18), apoptosis (8.5%, Fig 19), glyco-
sylation (8.2%, Fig 20), inflammasomes (7.8%, Fig 21), and mitochondrial energy metabo-
lism (2.6%, Fig 22). Pathways, listed in order of most implicated and respective figure
numbers for heat maps, are summarized in Table 2.
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Fig 10. Wound healing heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g010
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Fig 11. Growth factors heat map. Bold text indicates significantly altered gene targets.
https://doi.org/10.1371/journal.pone.0271770.9011

Pathway analysis

Ten pathways or biological functions were selected using the IPA disease and function tool.
Apoptosis (Z Score: 4.70), morbidity and mortality (Z Score: 4.53), organismal death (Z Score:
4.47), DNA damage (Z Score: 3.36), and diabetes mellitus (Z Score: 2.24) were selected as acti-
vated pathways. Cell survival (Z Score: -4.91), cell viability (Z Score: -4.62), repair of DNA (Z
Score: -3.85), cell proliferation (Z Score: -3.67), and growth of connective tissue (Z Score:
-3.02) were selected as inhibited pathways. IPA pathways are summarized in Table 3 with
respective p-values and activation Z-scores.

Diabetes-related complications, such as those implicating connective tissue, create a large
healthcare burden and reduce quality of life. Our knowledge of diabetes-related tendon degen-
eration has primarily been limited to macroscopic and structural changes with minimal molec-
ular insight exists. Previous work from our laboratory has demonstrated that AGEs induce
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Fig 12. Transcription factors heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g012

severe limitations to tendon fibroblast proliferative capacity and mitochondrial function while
increasing mitochondrial DNA content [8]. We have followed up on these previous findings
by completing a descriptive transcriptome profile of Achilles tendon-derived fibroblasts fol-
lowing AGE exposure. The goal of this study was to identify and rank pathways that were most
implicated following AGE exposure, thus providing a more precise mechanistic exploration of
AGE-mediated effects on tendon-derived cells.

Using a clinically-relevant concentration of AGEs [12, 22], we have previously demon-
strated incorporation of synthetic nucleoside 5-ethynyl-2-deoxyuridine (EdU) in tendon-
derived fibroblasts to be ~3% following AGE-BSA (200ug/ml) exposure as compared to ~53%
in the BSA-Control exposed group, which proliferate normally [8]. Further, we noted a
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Fig 13. Cytoskeleton heat map. Bold text indicates significantly altered gene targets.
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Fig 14. Cytokines heat map. Bold text indicates significantly altered gene targets.
https://doi.org/10.1371/journal.pone.0271770.g014

reduction in proliferative gene markers, Mybl2 and Pcna, and reduced absorbance values of
cytostatic MTT with AGE-BSA treatment in tendon fibroblasts. Our RN Aseq data corrobo-
rated our previous findings of reduced Mybl2 and Pcna gene expression and revealed several
additional genes responsible for cell cycle progression to be significantly impacted (Fig 2). In
fact, our transcriptome analysis revealed that genes associated with the cell cycle are the most
impacted by AGE treatment (Fig 2 and Table 2). Tendon fibroblast proliferation is vital for
tendon development and adaptation [23, 24]. The inability of tenocytes to proliferate in the
presence of AGEs could precipitate the development of tendon degeneration by limiting adap-
tations to loading [25]. Tendon healing requires a phase of increased cellular proliferation [23,
24, 26], thus AGE-induced limitations in cell proliferation could contribute to delayed in heal-
ing noted in those with diabetes [27-29]. In fact, would healing was identified as one of the top
10 GeneGlobe Pathways impacted by AGE treatment (Table 2 and Fig 10).

Gene targets associated with ECM maintenance and remodeling were also dramatically
affected in our dataset (Fig 3). The ECM is vital to tendon tissue health and serves several vital
functions, including cell adhesion, communication, and differentiation. Additionally, the
ECM provides structural and biochemical support to the surrounding resident cell population.
The tendon ECM consists primarily of type I and type III collagen fibers surrounded by pro-
teoglycans that assist collagen fibrils’ assembly and stability [30]. A precise and linear
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Fig 15. Innate and adaptive immunity heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g015

arrangement of collagen fibrils is vital to tissue integrity and, therefore, mechanical function
[31]. The inclusion of multiple collagen isoforms allows the ECM to specialize and adapt to
specific mechanical loading and functional responses [32]. For instance, type I collagen
(Collal) is a stronger collagen isoform. In contrast, type III collagen (Col3al) is weaker and
generally upregulated in the early stages of tissue remodeling following exercise or during the
initial stages of healing [33, 34]. Col3al can provide temporary tensile strength to the tissue
assembly until it is later replaced by stronger Collal [35]. Although Collal mRNA was unaf-
fected in our RN Aseq data set, Col3al mRNA expression was increased (Fig 3). Similarly, our
previous report indicated Col3al mRNA expression increased with 50pg/ml and 100pg/ml
AGE exposure compared to an equal dose of BSA-Control [8]. This increase in Col3al mRNA
expression is likely in response to the AGE insult and an attempt to maintain the ECM
environment.

Further, the most abundant tendon proteoglycan gene expression of decorin (Dcn)
increased in our RNAseq data set (Fig 3). Dcn aids in the maintenance and regulation of colla-
gen fibril structure and resident fibroblast proliferation [31]. As a critical regulator in matrix
assembly, loss of Dcn would likely prove to be unfavorable to the strength of the tendon assem-
bly, which would decrease the tissue’s ability to withstand sudden strain [31]. Our observed
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Fig 16. NF-xB signaling heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g016

increase in Dcn gene expression may be a compensatory response that results in response to

the AGE insult. However, impacts to Dcn content and gene expression would need to be exter-
nally validated in a whole diabetic tendon.
Lysine and hydroxylysine are found within the collagen amino acid sequence and play

an essential role in cross-link formation. Oxidation of lysine and hydroxylysine by lysyl

oxidase (Lox) forms cross-links within collagen fibrils, contributing to tissue integrity by

increasing tensile strength and stabilizing the collagen fibril assembly. Strength and stabil-

ity of the tissue assembly are essential, especially given the high contractile forces tendons
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Fig 17. Cellular stress responses heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.9017

are responsible for transmitting from muscle to bone. Our dataset revealed Lox gene
expression to be significantly reduced following AGE exposure (Fig 3). If reduced mRNA
expression of Lox coincides with reduced enzymatic cross-link formation, AGEs may con-
tribute to a weakened tendon assembly due to loss of enzymatic cross-links between adja-
cent collagen fibrils. Tendons of diabetic animals generally have a reduced load to failure
capacity, which may be a result of greater tissue degeneration at the macroscopic level [4,
11,28, 36]. More work is needed to determine the impact of AGEs on the whole tendon
fibril assembly.
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Fig 18. Mitochondria heat map. Bold text indicates significantly altered gene targets.
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Remodeling of the ECM is primarily regulated by enzymes known as matrix metallopro-
teinases (MMPs), which are responsible for the degradation portion of ECM remodeling.
Collagenases such as MMP-1 and MMP-13 cleave type I collagen molecules in the ECM.
Similarly, gelatinases, such as MMP-2 and MMP-9, degrade collagen isoforms in the ECM.
MMPs are transcribed and translated as proenzymes and then secreted into the ECM,
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Fig 19. Apoptosis heat map. Bold text indicates significantly altered gene targets.
https://doi.org/10.1371/journal.pone.0271770.g019

where they are activated through proteolytic cleavage of the N-terminal. Although MMP
activity is degenerative, it facilitates ECM remodeling and tendon tissue adaptation. In turn,
MMP activity can be reversibly inhibited by a group of enzymes known as tissue inhibitors
of metalloproteinases (TIMPs). TIMPs play an essential role in ECM remodeling by limiting
MMP activity and preventing excessive degradation. Counter-regulation via TIMP activity
tightly regulates the breakdown and synthesis of collagen in response to external stresses,
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Fig 20. Glycosylation heat map. Bold text indicates significantly altered gene targets.
https://doi.org/10.1371/journal.pone.0271770.g020

such as mechanical loading. Loss of ECM regulation, such as favoring degradation over syn-
thesis, could alter the ECM responses to damage the tissue assembly. It is no surprise that
the dysregulation of degenerative enzymes, such as MMPs, has been thought to play an
essential role in developing tendon pathology in diabetes as overexpression of MMPs may
favor ECM degradation [37]. Similarly, if inhibitory TIMPs are less expressed, the
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Fig 21. Inflammasomes heat map. Bold text indicates significantly altered gene targets.
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environment may also favor degradation by allowing MMPs to act on the ECM for a more
extended period. Previous reports have indicated that AGEs increase MMP -2, -3, -9, and
-13 secretion and expression in chondrocytes with 100ug/ml of AGEs [38, 39]. Further,
mRNA expression of MMP -1, -3, and -13 in porcine chondrocytes was increased with
100pug/ml of AGE exposure [40]. Our previous work in Achilles tendon-derived fibroblasts
demonstrated an increase in MMP -2 and -3 but no significant changes to MMP-9 and -13
[8]. Our RNAseq analysis confirmed MMP -2 and -3 to be elevated, along with MMP -15
and -17. However, we did not observe any changes to TIMP -1, -2, -3, or -4 in our RNAseq
dataset, suggesting that MMPs may be exerting their function in an unorganized fashion
that would favor a degenerative ECM environment. MMP gene expression data is limited in
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Fig 22. Mitochondrial energy metabolism heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g022

1

scope as it does not account for ECM secretion and N-terminal cleavage. However, the large
impact that AGE exposure has on the dysregulation of ECM-related gene expression is fur-

ther evidence that elevated serum AGEs may be contributing to the development of connec-
tive tissue pathology in diabetic populations (Fig 3).
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Table 2. Descriptive pathway profiling.

Figure GeneGlobe Pathway Altered Genes in Pathway Total Genes in Pathway Percent of Affected Genes
2 Cell Cycle 42 82 51.2
3 ECM and Tenogenic Markers 31 64 48.4
4 DNA Damage 29 72 40.3
5 Cellular Senescence 31 79 39.2
6 p53 Signaling 29 75 38.7
7 TGF-B Signaling 24 74 32.4
8 Fibrosis 19 65 29.2
9 Oxidative Stress 18 64 28.1
10 Wound Healing 15 63 23.8
11 Growth Factors 14 64 21.9
12 Transcription Factors 14 68 20.6
13 Cytoskeleton 13 81 16
14 Cytokines 7 47 14.9
15 Innate and Adaptive Immunity 7 53 13.2
16 NEF-«B Signaling 8 71 11.3
17 Cellular Stress Responses 7 70 10
18 Mitochondria 7 74 9.5
19 Apoptosis 6 71 8.5

20 Glycosylation 6 73 8.2
21 Inflammasomes 5 64 7.8
22 Mitochondrial Energy Metabolism 2 77 2.6

https://doi.org/10.1371/journal.pone.0271770.t002

Delayed and abnormal healing is a common complication of types I and II diabetes [27,
41]. Not only does it appear that diabetic patients are at risk of developing tendon tears, but
healing post-repair is also impaired [42-44]. Interestingly, transforming growth factor (TGF)
B1 expression was significantly reduced in our RNAseq data (Fig 7). In addition to TGFB1
being one of the affected genes in the wound-healing pathway (Fig 10), the GeneGlobe TGFp
signaling pathway was also strongly influenced by AGE treatment (Table 2 and Fig 7). TGF is
a critical factor in fibrosis and modulation of ECM homeostasis [45]. It has previously been
demonstrated that TGF levels are significantly reduced in diseased human rotator cuff ten-
don samples [45]. In addition, TGFp is known to modulate inflammatory responses by influ-
encing fibroblast recruitment and stimulating collagen production [46, 47].

Table 3. Select IPA pathway analysis.

Pathway p Value Activation Z Score
Apoptosis 1.45E-33 4.70
Morbidity or Mortality 4.62E-34 4.53
Organismal Death 2.06E-33 4.47
DNA Damage 7.32E-09 3.36
Diabetes Mellitus 1.27E-13 2.24
Cell Survival 4.74E-25 -4.91
Cell Viability 5.59E-23 -4.62
Repair of DNA 7.15E-15 -3.85
Cell Proliferation (Fibroblast) 7.59E-12 -3.67
Growth of Connective Tissue 5.10E-23 -3.02

https://doi.org/10.1371/journal.pone.0271770.t003
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Inconsistent with known effect of TGFp on collagen production [46, 47], Collal was
unchanged in our RNAseq dataset, and Col3al was increased (Fig 3). However, mRNA expres-
sion of Col5al, Col5a2, and Col5a3 expression was significantly reduced in our RNAseq data-
set. Type V is a fibrillar collagen isoform found less abundantly in a tendon but exists to
provide support to tissues that do contain high levels of type V collagen isoforms [48]. While
the wound healing GeneGlobe pathway was not as affected as other pathways, it is still likely
that these gene targets contribute in some manner to the delayed healing response that is com-
monly observed following tendon injury in diabetic patients.

Conclusions

Several studies have shown that the risk of developing tendinopathy is greater in those with
diabetes mellitus [42-44, 49]. Our new data highlights cell-signaling pathways that may assist
with expanding our understanding of diabetic tendon pathology and failed healing responses.
While our discussion is limited in scope, and we provide only transcriptome data, the purpose
of this study was to complete a descriptive profile of the AGE insult to tendon fibroblasts. This
work is the first data set to utilize RNAseq methodology to study the tendon fibroblast tran-
scriptome following AGE exposure. These data will be helpful for further elucidation of the
diabetic tendon disease process.
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