
Vol:.(1234567890)

Journal of Medical and Biological Engineering (2018) 38:816–834
https://doi.org/10.1007/s40846-018-0378-x

1 3

ORIGINAL ARTICLE

Strength Analyses of Screws for Femoral Neck Fractures

Karel Frydrýšek1   · Milan Šír2 · Leopold Pleva2

Received: 6 October 2016 / Accepted: 5 December 2017 / Published online: 20 April 2018 
© The Author(s) 2018

Abstract
This article represents a multidisciplinary approach to biomechanics (engineering + medicine) in the field of “collum femo-
ris” fractures. One possible treatment method for femoral neck fractures, especially for young people, is the application of 
cancellous (i.e. lag or femoral) screws (with full or cannulated cross-section) made of Ti6Al4V or stainless steel. This paper 
therefore aims to offer our own numerical model of cancellous screws together with an assessment of them. The new, simple 
numerical model presented here is derived together with inputs and boundary conditions and is characterized by rapid solu-
tion. The model is based on the theory of beams on an elastic foundation and on 2nd order theory (set of three differential 
4th order equations, combination of pressure and bending stress-deformation states). It presents the process for calculating 
displacements, slopes, bending moments, stresses etc. Two examples (i.e. combinations of cancellous screws with full or 
cannulated cross-section made of stainless steel or Ti6Al4V material) are presented and evaluated (i.e. their displacement, 
slopes, bending moments, normal forces, shearing forces and stresses). Future developments and other applications are also 
proposed and mentioned.

Keywords  Biomechanics · Femoral neck fracture · Cancellous screws · Beams on elastic foundation · Strength analyses · 
Safe factor

List of Symbols
A	� Cross-sectional area of cancellous 

(femoral) screw /m2/
Ali,…,A4i,{A}	� Integral constants and vector 

of integral constants (output 
variables) /m/

a , b , c	� Parameters of matrix [�] /1/
{�}	� Vector of left side (input 

variables) /1/
D,d	� Outer (shank) and inner (can-

nulation) diameter of cancellous 
screw (input variables) /m/

E	� Elastic modulus of cancellous 
screw (input variable) /Pa/

e	� Euler’s number (i.e. base of the 
natural logarithm) /1/

F	� Quasi-dynamic force acting in 
one cancellous screw (input 
variable) /N/

Fm	� Total loading quasi-dynamic force 
acting in caput femoris /N/

F1, F2	� Tangential and axial force acting in 
one cancellous screw /N/

f 	� Parameter of matrix [�] /1/
g	� Gravitational acceleration (input 

variable) /ms−2/
h	� Parameter of matrix [�] /1/
i	� Index of section of cancellous 

screw (i.e. i = 1, 2 and 3)
JZT	� Principal quadratic moment of 

cross-sectional area of cancellous 
screw /m4/

j	� Parameter of matrix [�] /1/
k	� Elastic foundation stiffness (i.e. 

bone stiffness, input variable) /
Nm−2/

kdyn, km	� Dynamic force and mass reduction 
coefficients /1/
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L, L1 , L2	� Total length and local lengths 
of cancellous screws (input 
variables) /m/

[�],
[
�1

]
 , 
[
�2

]
 , 
[
�3

]
	� Matrix of equations and its subma-

trices (input variables) /1/
Moi , MoMAX	� Bending moments in sections 

of screw and maximal bend-
ing moment in screw in absolute 
value (output variables) /Nm/

N	� Normal force in cancellous 
screw /N/

m	� Entire mass of a patient (input 
variable) /kg/

m	� Distributed moment /N/
n	� Coefficient of inequality in the 

division of force F /1/
p	� Parameter of matrix [�] /1/
q	� distributed loading /Nm−1/
q	� Parameter of matrix [�] /1/
qR	� Reaction force in the elastic 

foundation /Nm−1/
r	� Parameter of matrix [�] /1/
ri	� Radius of curvature/m/
Re	� Yield stress of material of cancel-

lous screw /MPa/
RF	� Reliability function (output 

variable) /MPa/
s	� Parameter of matrix [�] /m−2/
SRe

	� Safety factor of cancellous 
screw (otput variable) /1/

t	� Parameter of matrix [�] /m−2/
Ti , TMAX	� Shearing forces in sections of can-

cellous screw and maximal shear-
ing force in absolute value (otput 
variables) /N/

t1 , t2	� Temperatures in the upper and bot-
tom line of beam/oC/or/K/

v1 , v2 , v3 , vi , vMAX	� Deflection (i.e. vertical displace-
ment) in sections of cancellous 
screw and its maximum (output 
variables) /m/

dvi

dxi
	� Slope of a screw (beam, output 

variable)/rad/
Wo	� Section modulus in bending /m3/
x1 , x2 , x3 , xi	� Cartesian coordinates in 

sections /m/
y	� Cartesian coordinate in 

sections /m/
∝	� Cancellous screw angle (input 

variables) /deg/
�	� Strain (output variable) /1/
�	� Stress (output variable) /MPa/

�MAX , �MAX1 , �MAX2	� Global maximal normal stress in 
cancellous screw and local maxi-
mal normal stresses in cancellous 
screw (in absolute values, output 
variables) /MPa/

�MAX	� Maximal shear stress in cancellous 
screw (in absolute values, output 
variable) /MPa/

� , �R , �I	� Parameters of the numerical 
solutions /m−1/

1  Introduction

Proximal femoral neck fractures (i.e. collum femoris frac-
tures), see Fig. 1, remain a vexing clinical problem in trau-
matology and orthopaedics and are one of the most com-
mon types of trauma, especially amongst elderly patients 
(women); see [1–14]. As a consequence, femoral fractures 
are a significant cause of morbidity and mortality in all age 
groups. One possible treatment method for femoral neck 
fractures, especially for young people, is the application of 
cancellous screws (i.e. lag or femoral screws) made from 
Ti6Al4V or stainless steel materials; see [15].

This article therefore aims to present numerical models 
(i.e. mostly strength and deformation analyses) of cancel-
lous screws together with a deterministic assessment and a 
proposal for future experiments and probabilistic reliability 
assessment (i.e. applications of the Simulation-Based Reli-
ability Assessment (SBRA) Method, Monte Carlo Method 
etc.); see [3, 4, 16, 17]. The SBRA Method is a modern 
and innovative approach applied to mechanical structures 
in engineering.

2 � Limitations

Although a complex 3D solution was also performed using 
the finite element method (i.e. CT images were used to cre-
ate a model of the femur into which cancellous screws were 
inserted; see [18, 19]), this study focused on a planar model 
based on a beam resting on an elastic foundation. This pla-
nar model is simpler, and above all its solution is quicker, 
enabling the future generation of random real inputs (load-
ing forces, material properties of screws, length of screws, 
cross-section and insertion angle of screws, and the stiffness 
characteristics of the femur substituted by the elastic (Win-
kler’s) foundation; see [16, 20–23]). For the planar beam 
model presented here, it is not a problem to conduct millions 
of random calculations (simulations) in real time using the 
Monte Carlo method (stochastic simulation of reality).
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In our model the cancellous screws are substituted by 
beams resting on an elastic foundation. Cancellous screws 
may have various lengths and various positions determined 
by cancellous screw angle ∝ and length L , as is the case due 
to patient anatomy (i.e. our model enables general configura-
tions and numbers of cancellous screws in femur).

In this article, the model only presents the results for cases 
of screws with full or cannulated cross-section inserted in par-
allel positions (i.e. the easiest mathematical case). However, 
the other (i.e. general) positions of cancellous screws in femur 
can be solved too. Changes of angles ∝ and length L can be 
reflected by simply changing the screw positions in the model, 
thus enabling us to evaluate appropriate, less appropriate or 
inappropriate cancellous screw positions for operations.

This article focuses primarily on biomechanics (meth-
odology for determining forces, stress and deformations in 
cancellous screws); it does not attempt to assess and evaluate 
traumatological/orthopaedic treatment methods.

The nature and simplicity of the elastic foundation used 
in this article makes it an attractive and significant simpli-
fication of the generally very complex interactions between 
screws/implants and bones or other human tissues. The 
choice of stiffness for the elastic foundation is directly 
influenced by the material properties of bone, which vary 
depending on each individual patient and are thus generally 
random (stochastic).

This is not a solution of a direct dynamic problem. Nev-
ertheless, the influence of dynamic effects is reflected in the 
dynamic coefficient which increases the static force based 
on the mass of the patient; this is a generally accepted engi-
neering approach.

The material of the cancellous screws is linear, isotropic 
and homogeneous.

The material properties of the femur, and thus the interac-
tion between the cancellous screw and the femur, are substi-
tuted by the elastic foundation.

In philosophy, it is our opinion that “strength lies in sim-
plicity”, and for this reason we have developed a planar and 
linear model (i.e. the generally complex spatial problem of 
positioning cancellous screws in the femur is simplified).

From the perspective of orthopaedics/traumatology there 
is a relatively large quantity of information and statistical 
evaluations of treatment methods. Nevertheless, from a bio-
mechanical perspective there is an absence of descriptions 
of numerical models which would enable us to evaluate the 
appropriateness of screw positions or the selection of oper-
ating techniques from an engineering/biomechanical point 
of view (mechanical stress, deformation of screws or bone). 
The article does not directly evaluate any specific operating 
technique; it merely presents a new, original model includ-
ing its mathematical/biomechanical basis and basic results.

3 � Materials and Methods

Beams on elastic foundations are frequently used in mechan-
ical, civil, mining, marine, soil, geotechnical and other types 
of engineering.

The elastic foundation (linear/nonlinear) can also be 
applied if a physical object (such as an implant or bone) is 
supported/embedded; see [16, 24, 25]. In general (engineer-
ing point of view), the mechanical behaviour of periosteum, 
compact and spongy bone or even soft and porous tissues 
can be approximated via elastic foundations with an appro-
priate definition of stiffnesses; see [4, 16, 18, 23, 25–30]; 
hence, the elastic foundation is a suitable approximation/

Fig. 1   Femoral neck fracture 
and femur bone (1—linia inter-
trochanterica, 2—trochanter 
major, 3—caput femoris, 4—
fovea capitis femoris, 5—col-
lum femoris, 6—tuberositas 
glutea, 7—trochanter minor, 
8—tuberculum adductorium, 
9—epicondylus medialis, 10—
condylus medialis, 11—facies 
patellaris, 12—condylus later-
alis, 13—epicondylus lateralis, 
14—proximal end, 15—diaphy-
sis, 16—distal end)
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simplification for mechanical contacts. Therefore, from the 
biomechanical perspective, the cancellous screw is described 
and solved here as a beam on an elastic foundation.

The numerical model is derived from and based on 
the theory of beams on an elastic (Winkler’s) foundation 
(i.e. a set of three differential 4th order equations with 
twelve boundary conditions, combined pressure and bend-
ing stress-deformation states), where the bone is approxi-
mated by the elastic foundation. Hence, the cancellous 
screw is resting along its whole length L on an elastic 
foundation prescribed by stiffness k (i.e. the elastic foun-
dation surrounds the whole screw); see [16, 18, 23–25].

The value of stiffness k depends on the mechanical 
properties of the femur. For example, if the cancellous 
screw is in contact with the cortical bone (generally 
accepted medical practice), stiffness k must be greater 
than if the screw is not in contact. In our case, the correct 
choice of stiffness k enables us to describe the general 
position of the screw in the proximal part of the femur.

Three screws of length L were applied in parallel posi-
tions on the elastic foundation (i.e. in the femur) and were 
loaded by total quasi-dynamical force Fm acting on the 
direction of the cancellous screw angle ∝; see Fig. 1.

For medical professionals it is important to emphasize 
the following points. The computational model presented 
here can also be applied for situations when the number of 
cancellous screws is lower or higher than 3. Also, angle 
∝ can be different for each cancellous screw (common 
medical practice); however, in view of the anatomy of 
the proximal femur, in such cases there is also a change 
in the length of the individual cancellous screws, as well 
as in the distribution of forces; our computational model 
also respects this fact. It is our opinion that “strength lies 
in simplicity”, and for this reason we have developed a 
planar and linear model (i.e. the generally complex spatial 
problem of positioning cancellous screws in the femur is 
simplified).

From a biomechanical perspective, our model can be 
used to perform a relatively simple assessment of the 
general position of cancellous screws in the femur (i.e. it 
can assess appropriate, less appropriate and inappropriate 
screw positions for purposes of osteosynthesis following 
collum femoris fractures). However, it is not our primary 
goal in this paper to assess or propose medical techniques.

Typical shapes and dimensions of the cancellous 
screws are presented in Table 1 (screws made by MEDIN 
a.s., Nové Město na Moravě, Czech Republic; see [19]).

The stainless (corrosion-resistant) steels (for example 
AISI 316 L, DIN 1.4441—316 L medical) used nowadays 
to produce implants are primarily high-alloy austenitic 
steels with high Cr, Ni and Mo content and low carbon 
content. This chemical composition gives good resistance 
against most types of corrosion, including intercrystalline 

and point corrosion. However, it is not resistant to fretting 
corrosion.

Titanium and its alloys (for example Ti6Al4V, see [31, 
32]) usually have excellent properties and inertness. They 
give a high degree of corrosion resistance—both when 
exposed to air and in the chemically aggressive environ-
ment of the human body. They also retain their positive 
properties at low and high temperatures.

4 � Medical Perspective

The anatomical area of the proximal femur, see Fig. 1, 
consists of the femoral head (caput femoris) and neck 
(collum femoris), together with the trochanteric area, tro-
chanter major and trochanter minor.

Proximal femoral fractures, see Figs. 1a and 2, are 
one of the most commonly observed fractures. Annually, 
approximately around 10,000 to 15,000 of these accidents 
occur in the Czech Republic; see [1]. The number reaches 
up to 900,000 cases in Europe every year. For more infor-
mation see [1, 6, 11–14].

Table 1   Cancellous screws (producer MEDIN a.s.; see [19])
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The treatment of proximal femoral fractures, see Fig. 2, 
is associated, apart from therapeutic problems, also with 
social and economic issues, taking into consideration the 
long period of treatment. In young patients, this type of 
fracture occurs especially due to high-energy mechanisms, 
such as traffic accidents, falls from height, and also adrena-
line sports. In older individuals, the fractures are most fre-
quently caused by low-energy injuries, e.g. falls at home. 
The first (and less frequently observed) group of fractures 
comprises fractures of the femoral head, which most fre-
quently occur during dislocation of the hip joint.

Femoral neck fractures may be divided into intracap-
sular fractures (i.e. fractures in the hip joint space) and 
extracapsular fractures (i.e. fractures located outside the 
articular capsule). Intracapsular fractures may be further 
divided into subcapital and mediocervical fractures. In 
the case of extracapsular fractures, we can differentiate 
between basicervical and trochanteric fractures. From the 
perspective of healing, extracapsular fractures are asso-
ciated with a better prognosis, because in intracapsular 
fractures the vascularization in the fracture area is usually 
also disrupted, which is associated with healing disorders.

The type of osteosynthesis in intracapsular fractures 
depends mainly on the age of the patients. In young indi-
viduals, procedures which preserve the femoral head are 
usually chosen; this is based on the assumption that a few 
patients may require a joint replacement at a later stage, 
following the development of avascular necrosis (AVN). 
There is a choice between osteosynthesis performed 
with lag cancellous screws and the DHS procedure, with 

placement of antirotation screws. Identical methods are 
also suitable for nondislocated and minimally dislocated 
fractures in patients of higher age; see Fig. 3.

Osteosynthesis with lag spongious screws is also clearly 
indicated in cases of proximal femur fractures in children, 
in combination with osteosynthesis using Kirschner wires 
introduced through the epiphyseal growth zone; see Fig. 4.

Replacements of the hip joint are indicated especially 
in older patients with dislocated intracapsular fractures, in 
the presence of advanced coxarthrosis of the affected joint.

At the Trauma Centre of the University Hospital in 
Ostrava (Ostrava, Czech Republic), approximately 300 
patients undergo surgery annually due to proximal femur 
fractures.

Osteosynthesis of femoral neck fractures with lag spon-
gious screws is usually performed on children and young 
patients with intracapsular fractures, but also on patients 
of a higher age with nondislocated intracapsular fractures; 
see Fig. 5. The use of lag spongious screws belongs among 
the mini-invasive techniques; the placement of two or 
more screws provides rotational stability. Length stabil-
ity is provided by the placement of the screw tips into the 
subchondral bone and by supporting the screw head with 
an underlay, see Fig. 6.

Hence, the treatment of collum femoris fractures is one 
of the most common procedures solved and performed 
by orthopaedists/traumatologist; see Table 2. This article 
therefore focuses on their biomechanical modelling (i.e. 
primarily strength/deformation analyses and their evalua-
tion via safety factor of cancellous screws).

Fig. 2   Treatment of proximal 
femoral fractures
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Fig. 3   Femoral intracapsular 
fracture a pelvic X-ray, b CT 
scan, c Osteosynthesis with 
three lag spongious screws, d 
Osteosynthesis with three lag 
spongious screws

Fig. 4   Child’s intracapsular femoral fracture a anteroposterior X-ray, 
b Osteosynthesis with two lag spongious screws and two Kirschner 
wires through the epiphyseal zone (anteroposterior X-ray), c Osteo-

synthesis with two lag spongious screws and two Kirschner wires 
through the epiphyseal zone (lateral X-ray)
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Note that the medical perspective (i.e. orthopaedics/
traumatology in this chapter) is not the main focus of our 
work. The goal is to present the model from a biomechani-
cal perspective, as described in the following chapters.

5 � Osteosynthesis Via Three Cancellous 
Screws (Beams)

Cancellous screws (i.e. lag spongious screws or femoral 
screws as mentioned previously; see Table 1) can be pro-
duced with full or cannulated cross-section, see Fig. 7. They 
are usually made of medical stainless steel (AISI 316 L, 
DIN 1.4441—316 L medical) or Ti6Al4V material; see 

Chap. 2. Materials are a key factor in ensuring the full func-
tionality of each implant.

This study uses screws made by MEDIN a.s. (Nové Město 
na Moravě, Czech Republic, see [19]), though the methods 
and results can also be applied for other types of screws. 
The aim is to perform strength and deformation analyses of 
cancellous screws and to evaluate the results.

Hence, the aim is the biomechanical solution of osteo-
synthesis via three cancellous screws loaded by total quasi-
dynamical force Fm acting on the direction of cancellous 
screw angle ∝ ; see Figs. 1 and 8 and references [12, 18, 
33, 34]. Force Fm is evoked by the movement of the human 
body. The cancellous screw angle ∝ (which is connected 
with force Fm and which is defined primarily by the limit-
ing angles of adduction and abduction and secondarily by 
the screw insertion angle in osteosynthesis) lies between 5 
and 80 deg. A typical value for angle ∝ is 50 deg. However, 
the real variability of angle ∝ is taken into account by the 
probabilistic approach (possible future development, i.e. 
∝∈ (5;80)  deg; see Fig. 9 and Ref. [18]).

Whole parts of screws can be considered as beams on 
elastic foundations, and in the bone they are in approxi-
mately parallel positions; see Fig. 9. However, in general, the 
screws do not need to be in parallel positions (i.e. our com-
putational model also takes this possibility into account).

Note that in references [20, 21] (i.e. the relevant medi-
cal point of view) the cancellous screws (i.e. beams) are 

Fig. 5   Intracapsular femoral fracture a anteroposterior X-ray, b Osteosynthesis with three lag screws (anteroposterior X-ray), c Osteosynthesis 
with three lag screws (lateral X-ray)

Fig. 6   Underlay for cancellous screw

Table 2   Treatment of collum femoris fracture

Femoral neck fracture screws
 Indications Nondisplaced femoral neck fracture. Displaced femoral neck fracture in young and active patients
 Contraindications Displaced femoral neck fracture in elderly, inactive patients. Rheumatoid arthritis, moderate 

osteoarthritis, poor bone density, limited life expectancy and pathologic fracture
 Alternatives Hemiarthroplasty, total hip arthroplasty (THA) and dynamic hip screw with derototation screws
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in different configuration (i.e. Biplane Double-Supported 
Screw Fixation Method) and are considered as beams with 
overhanging ends, and usually without elastic foundations 
(the simplest numerical model).

Applications of elastic foundations (i.e. Winkler’s 
foundations) offer a simple but fast and acceptable solu-
tion of the problem. Hence, the elastic foundation is a 
suitable approximation for the femur body. For more 

information about elastic foundations see references [16, 
23–25].

6 � Loading of Cancellous Screws (Beams)

The patient of total mass m is standing on one leg (i.e. maxi-
mal loading acting on the femur); see Fig. 10. The mass of 
a lower limb is 18–22% of the entire body (i.e. the mass of 
the body without one lower limb is 78–82% of the entire 
body); see [18, 34]. This fact is taken into consideration by 
the coefficient km ∈ (0.78; 0.82).

Total loading quasi-dynamic force Fm acting in the caput 
femoris can be written as

where kdyn ∈ (1;4) is the dynamic force coefficient (taking 
into account additional dynamic effects such as jumps, falls 
etc.) and g = 9.807  m/s2 is gravity acceleration. Upper force 
Fm is acting in the centre of the caput femoris and lower 
force Fm is acting in the femoral shaft axis; see Figs. 8 and 
10. Force Fm is divided into three screws (beams). Hence in 
one beam force F , see Fig. 11, is defined via the expressions

(1)Fm = m × km × kdyn × g,

(2)F = Fm∕n, F1 = F × cos (∝), F2 = F × sin (∝),

Fig. 7   Cancellous screws a with full cross-section b with cannulated 
cross-section (producer MEDIN a.s.; see [19])

Fig. 8   Three cancellous screws 
(X-ray image) and their approxi-
mation via parallel beams on an 
elastic foundation

Fig. 9   Main definition for limit-
ing values of cancellous screw 
angle ∝
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where n is the coefficient of inequality in the division of 
forces, F1 is tangential force and F2 is axial force; see Fig. 11.

Coefficient n respects possible variations of maximal 
and minimal values of force Fm . There are two limits. If 
n = 3 , then force Fm is uniformly distributed on all beams 
(minimal value, i.e. divided by 3), and if n = 2 , then force 
Fm is nonuniformly distributed and acting only in two 
beams (maximal value, unfavourable state). However, the 
reality of this can be taken into account by probabilistic 
inputs (possible future development, i.e. n ∈ (2;3) ; see 
[18].

Our numerical model presupposes that there is a pri-
mary axial pressure in the beam and no relative movement 
between both parts of a broken collum femoris. This is 
performed by axial forces F2 ; see Fig. 11.

The real interference between the femur and screws 
(beams) can be approximated according to the theory of 

beams on an elastic foundation by stiffness k ; see [16]. 
Thus, bone tissue surrounded the screw in a similar way 
as an elastic foundation surrounded the beam.

There has been extensive experience with approxi-
mations of bones via an elastic foundation; see Fig. 12 
(i.e. the solution of an external fixator for the treatment 
of combined pelvic and acetabular fractures, where the 
interaction between Schanz screws and the pelvis and its 
acetabulum is described via an elastic foundation) and e.g. 
references [4, 16, 20, 21, 26].

The typical diameter of the cancellous screw is the shank 
diameter D , which is used in the following solution. Note 
that if the bone has grown well around the screw (i.e. the 
normal situation after several weeks of complication-free 
treatment), the influence of the notch effect of the screw 
thread shape on mechanical stress and deformation (deflec-
tions and slopes) in the screw is small. The characteristic 
diameter of the screw (beam) can be considered as the screw 
shank diameter D, which approximately corresponds with 
the mean diameter of the threaded part.

However, the cannulated cancellous screws also have 
their inner diameter d ; see Fig. 7 and Table 1.

References [20, 21] (i.e. the medical perspective) are also 
focused on cancellous screws solved as beams on elastic 
foundations. However, the solution in these references is dif-
ferent, being performed for one loading force F , while the 
influence of axial forces is neglected and the elastic foun-
dation is only mentioned in passing. In our opinion, this 
is the simplest approach ([20, 21]) but it is not sufficiently 
accurate.

Fig. 10   Loading of cancellous screws—a man standing on one leg

Fig. 11   Loading of one cancellous screw and coordinate system

Fig. 12   Another application of an elastic foundation in biomechanics 
(external fixator for treatment of combined pelvic and acetabular frac-
tures); see [4]
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7 � Cancellous Screws as Beams on an Elastic 
Foundation

In mechanics/biomechanics, the analysis of bending of 
beams on an elastic foundation is developed on the assump-
tion that the strains are small and the distributed reaction 
forces qR in the foundation are proportional at every point 
to the deflection vi of the beam at that point etc.; see Fig. 13.

In the most situations, the influences of temperature t1 and 
t2 , distributed moment m and distributed loading q can be 
neglected (or the beam is not exposed to them).

According to [16] and Fig. 13 (i.e. 2nd order beam theory—
direct influence of tensile/compression and bending loading), 
the general formulas for beams on an elastic (Winkler’s) 

foundation (i.e. the solution of a 4th order linear differential 
equation)

can be derived; see Table 3. All parameters and variables in 
Table 3 are clarified in the List of Symbols of this article and 
the derivation of all expressions is presented in [16].

Note, the beams on elastic foundation often occur in many 
practical cases for example, solution of building frames and con-
structions, mining supports etc. too; for example see [16]. How-
ever, the applications in the branch of biomechanics are still new.

Let us solve one cancellous screw of length L (i.e. a beam 
on an elastic foundation) presented in Figs. 9b and 11. The ver-
tical displacement (deflection) vi = v

(
xi
)
 , for i = 1; 2; 3 , must 

be solved in three sections xi (i.e. x1 =
(
0; L1

)
 , x2 =

(
L1; L2

)
 

and x3 =
(
L2; L

)
 , see Fig. 11 and Table 3, i.e. solution of three 

differential equations).
Thus, there are twelve constants of integration A1i,… , A4i 

which must be solved via twelve boundary conditions at points 
x1 = 0  m, x1 = x2 = L1 , x2 = x3 = L2 and x3 = L , i.e.

(3)EJZT
d4vi

dx4
i

− N
d2vi

dx2
i

+ kvi = 0,

(4)Mo1

(
x1 = 0

)
= 0, T1

(
x1 = 0

)
= 0

(5)

v1
�
x1 = L1

�
− v2

�
x2 = L1

�
= 0,

dv1

dx1

�
x1 = L1

�
−

dv2

dx2

�
x2 = L1

�
= 0,

Mo1

�
x1 = L1

�
−Mo2

�
x2 = L1

�
= 0,

T1
�
x1 = L1

�
− T2

�
x2 = L1

�
= F1,

⎫⎪⎪⎬⎪⎪⎭

Fig. 13   Element of a beam on elastic foundation (general formula-
tion; see [16])

Table 3   General solutions for 
a beam rested on an elastic 
foundation
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For example, from the boundary condition Eq. (4) and 
Table  3 follows −EJZT

d2vi(x1=0)
dx2

1

= 0 (i.e. d
2vi(x1=0)

dx2
1

= 0 ). 

Hence,

and

Similarly, from the boundary conditions Eqs. (5)–(7), after 
substitution from Table 3, it is possible to derive a set of twelve 
linear equations which can be expressed in matrix form as

where sparse matrix [�] with dimension 12 × 12 is defined 
via submatrices 

[
�1

]
 , 
[
�2

]
 and 

[
�3

]
 with dimensions 12 × 4 

and column vectors {�} and {�} with dimensions 12 × 1 
are defined as

(6)

v2
�
x2 = L2

�
− v3

�
x3 = L2

�
= 0,

dv2

dx2

�
x2 = L2

�
−

dv3

dx3

�
x3 = L2

�
= 0,

Mo2

�
x2 = L2

�
−Mo3

�
x3 = L2

�
= 0,

T2
�
x2 = L2

�
− T2

�
x3 = L2

�
= −F1,

⎫
⎪⎪⎬⎪⎪⎭

(7)Mo3

(
x3 = L

)
= 0, T3

(
x3 = L

)
= 0,

A11e
0
[(
�
2
I
− �

2
R

)
cos 0 − 2�R�I sin 0

]
+

+A21e
0
[(
�
2
I
− �

2
R

)
sin 0 + 2�R�I cos 0

]
+

+A31e
0
[(
�
2
I
− �

2
R

)
cos 0 + 2�R�I sin 0

]
+

+A41e
0
[(
�
2
I
− �

2
R

)
sin 0 − 2�R�I cos 0

]
= 0

(8)
A11

(
�
2
I
− �

2
R

)
+ A212�R�I+

+A31

(
�
2
I
− �

2
R

)
− A412�R�I = 0.

}

(9)[�] × {�} = {�},

(10)[�] =
[ [
�1

] [
�2

] [
�3

] ]
,

(11)

�
�1

�
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�I −�R −�I −�R

s t s −t

af ah
f

a

h

a

a
�
�If − �Rh

�
a
�
�Rf + �Ih

� −�If−�Rh

a

�Rf−�Ih

a

a(fs − th) a(hs + tf )
fs+th

a

hs−tf

a

−a
�
�If + �Rh

�
a
�
�Rf − �Ih

�
�If−�Rh

a

�Rf+�Ih

a

0 0 0 0

⋮ ⋮ ⋮ ⋮

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

�
�2

�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

−af −ah −f∕a −h∕a

a(�Rh − �If ) −a(�Rf + �Ih)
�If+�Rh

a

�Ih−�Rf

a

a(th − fs) −a(hs + tf )
−fs−th

a

tf−hs

a

a(�If + �Rh) a(�Ih − �Rf )
�Rh−�If

a

−�Rf−�Ih

a

bj bq j∕b q∕b

b(�Ij − �Rq) b(�Rj + �Iq)
−�Ij−�Rq

b

�Rj−�Iq

b

b(sj − tq) b(sq + tj)
sj+tq

b

sq−tj

b

−b
�
�Rq + �Ij

�
b
�
�Rj − �Iq

�
�Ij−�Rq

b

�Rj+�Iq

b

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

[�3]=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

⋮ ⋮ ⋮ ⋮

0 0 0 0

−bj −bq −j∕b −q∕b

b(�Rq − �Ij) −b(�Rj + �Iq)
�Ij+�Rq

b

�Iq−�Rj

b

b(tq − sj) −b(sq + tj)
−sj−tq

b

tj−sq

b

b(�Rq + �Ij) b(�Iq − �Rj)
�Rq−�Ij

b

−�Rj−�Iq

b

c(sp − tr) c(sr + tp)
sp+tr

c

sr−tp

c

−c(�Rr + �Ip) c(�Rp − �Ir)
�Ip−�Rr

c

�Rp+�Ir

c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14){�} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A11

A21

A31

A41

A12

A22

A32

A42

A13

A23

A33

A43

⎫
⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

,
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where parameters

Note, the derived Eq. (8) is written in the 2nd row in 
the Eq. (11).

This analytical approach is easy to solve. It leads to 
the solution of twelve linear equations. As a further step, 
the application of nonlinearities in elastic foundations is 
also possible, for example see [16, 23, 25, 35], i.e. the 
application of the Central Finite Difference Method or the 
Finite Element Method in connection with the iterative 
Newton Method.

8 � Numerical Model and its Solution 
and Evaluation

By the solution of a set of linear Eq. (9), i.e.

the constants of integration A1i,… , A4i can be found; the 
general results are shown in Table 3.

(15)

{�} =
2F1s

F2
(
�
2
R
+ �

2
I

) ×
[
0 0 0 0 0 1 0 0 0 −1 0 0

]�
,

(16)

a = e�IL1 , b = e�IL2 , c = e�IL,

f = cos
�
�RL1

�
, h = sin

�
�RL1

�
,

j = cos
�
�RL2

�
, p = cos

�
�RL

�
,

q = sin
�
�RL2

�
, r = sin

�
�RL

�
,

s = �
2
I
− �

2
R
, t = 2�R�I

⎫
⎪⎪⎬⎪⎪⎭

(17){�} = [�]−1 × {�},

Hence, displacements, slopes, bending moments Mo , shear-
ing forces T  and normal forces N can be evaluated over the 
whole length of the cancellous screw (beam).

In mechanics, N , T  are internal forces and Mo is internal 
moment. These induce mechanical stresses in bodies. Stresses 
are important for the reliability assessment of bodies.

Because the normal stresses are constant over the whole 
length of the screw, maximal stresses (i.e. the influence of 
bending moments and normal forces) are prescribed by the 
expression

see Figs. 14 and 15. Parameter A is the cross-sectional area 
of a beam and Wo is the section modulus of a beam in bend-
ing; see List of Symbols. 

Maximal shear stress is prescribed by the expression

(18)�MAX1 =
N

A
−

MoMAX

Wo

, �MAX2 =
N

A
+

MoMAX

Wo

,

Fig. 14   Stress evaluation in the cancellous screw (beam, full cross-
section)

Fig. 15   Stress evaluation in the cancellous screw (beam, cannulated 
cross-section)

Fig. 16   Stress–strain diagram of material—definition of safe and 
unsafe structure
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for a full cross-section; see Fig. 14; and

for a cannulated cross-section of a cancellous screw; see 
Fig. 15.

Safety factor is a term describing the structural capac-
ity of a system beyond its expected loads or actual loads. 
Essentially it expresses how much stronger the system is 
than it usually needs to be for an intended load. Our defi-
nition of safety factor SRe

 is a ratio of Yield strength Re 
(i.e. material parameter) to the absolute value of maximal 
(bending + compression) stress ||�MAX

|| (i.e. load response 
parameter)

see Fig. 16, and

In general, SRe
 is of stochastic quality. In this article (i.e. 

the first part of our solution), the stochastic approach is not 
applied. However, in the future continuation of this work, 
the stochastic approach can be applied via the Simulation-
Based Reliability Assessment (SBRA) Method (i.e. Monte 
Carlo approach); see references [3, 4, 16–18, 35, 36] and 
Fig. 17.

(19)�MAX =
4TMAX

3A
,

(20)�MAX =
2TMAX

A
,

(21)SRe
=

Re

||�MAX
||
,

(22)||�MAX
|| = max

(||�MAX1
||, ||�MAX2

||
)

Fig. 17   2D histogram of reliability function RF (result of 5  ×  106 
Monte Carlo random simulations); see [18]—mentioned in this arti-
cle but not presented in full here

Table 4   Input parameters for a cancellous screw with full cross-sec-
tion made up from stainless steel

Fig. 18   Dependencies of displacement v
i
 and slope dvi

dx
i

 in one cancel-

lous screw (full cross-section, stainless steel)
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9 � Results

9.1 � Deterministic Results ‑ Cancellous Screw 
with Full Cross‑Section Made up from Stainless 
Steel (α = 50 deg, L = 0.09 m)

The solution of three cancellous screws with full cross-sec-
tion (shank diameter D = 4.5 mm) made of stainless steel, 
see Eq. (17), Table 1, Figs. 8, 10, 11 and 14, is performed 
for the input parameters prescribed in Table 4.

Hence dependencies of vi , 
dvi

dxi
 , Moi , Ti and N can be calcu-

lated; see diagrams in Figs. 18, 19 and 20.
From the presented results, the maximal values for verti-

cal displacement vMAX , shearing forces TMAX , and bending 
moments MoMAX can be evaluated. Finally, stresses �MAX1 , 
�MAX2 , �MAX and safety factor SRe

 , see Figs. 14, 18, 19 and 20 
Eqs. (18), (20), (21) and (22), can be evaluated; see Table 5.

The main results are discussed in the Discussion and 
Conclusions.

9.2 � Deterministic Results‑ Cancellous Screw 
with Cannulated Cross‑Section Made 
up from Ti6Al4V Material (α = 50 deg, 
L = 0.09 m)

The solution of three cancellous screws with cannulated 
cross-section (shank diameter D = 5 mm, cannulation 
diameter d = 1.8 mm) made of Ti6Al4V material, see 
Eq. (17), Table 1, Figs. 8, 10, 11 and 15, is performed for 
the input parameters prescribed in Table 6.

Hence, dependencies of vi , 
dvi

dxi
 , Moi , Ti and N  can be 

calculated; see Figs. 21, 22 and 23.
From the presented results, the maximal values for ver-

tical displacement vMAX , shearing forces TMAX , and bend-
ing moments MoMAX can be evaluated. Finally, stresses 
�MAX1 , �MAX2 , �MAX and safety factor SRe

 , see Fig. 15 and 
Eqs.  (18), (20), (21) and (22), can be evaluated; see 
Table 7.

The main results are discussed in the Discussion and 
Conclusions.

10 � Discussion

Proximal femoral neck “collum femoris” fractures remain a 
vexing clinical problem in traumatology and are one of the 
most common types of trauma. One possible treatment method 
for femoral neck fractures is the application of cancellous 
screws (i.e. lag spongious screws) made of Ti6Al4V or stain-
less steel material.

This paper therefore aims to present both a basic medical 
perspective (i.e. types and methods of treatment and possible 
complications/problems) and an engineering perspective (i.e. 
our original and simple numerical model for strength analyses 
and its evaluation) for cancellous screws (i.e. for one possible 
method of treatment).

Fig. 19   Dependence of bending moment M
oi

 in one cancellous screw 
(full cross-section, stainless steel)

Fig. 20   Dependencies of shearing force T
i
 and normal force N in one 

cancellous screw (full cross-section, stainless steel)

Table 5   Some important output 
parameters for a cancellous 
screw with full cross-section 
made up from stainless steel

Some output values v
MAX

= 0.617mm, T
MAX

= 174.66N,

�
MAX

= 14.64MPa,MoMAX
= −1978.44Nmm,

�
MAX1 = 199.62MPa, �

MAX
= �

MAX2 = −242.68MPa,

��
�
= �.��
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The presented analytical model of cancellous screws is 
based on the theory of beams on an elastic (Winkler’s) founda-
tion, where the bone is approximated by the elastic foundation 
(an acceptable and suitable simplification of the complicated 
reality of mechanical contact and interaction between the can-
cellous screw and bone tissue).

Table 6   Input parameters for a cancellous screw with cannulated 
cross-section made up from Ti6Al4V material

Fig. 21   Dependencies of displacement v
i
 and slope dvi

dx
i

 in one cancel-

lous screw (cannulated cross-section, Ti6Al4V material)

Fig. 22   Dependence of bending moment M
oi

 in one cancellous screw 
(cannulated cross-section, Ti6Al4V material)

Fig. 23   Dependencies of shearing force T
i
 and normal force N in one 

cancellous screw (cannulated cross-section, Ti6Al4V material)

Table 7   Some important output parameters for a cancellous screw 
with cannulated cross-section made up from Ti6Al4V material

Some output values v
MAX

= 0.556 mm, T
MAX

= 170.35 N,

�
MAX

= 19.94 MPa,MoMAX
= −1913.96 Nmm,

�
MAX1 = 138.59MPa,

�
MAX

= �
MAX2 = −176.66 MPa, S

�
�
= �.��
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Three screws of length 90 mm were applied in parallel posi-
tions on the elastic foundation (i.e. applied in femur bone). 
The value for quasi-dynamic forces (acting in one screw) were 
derived according to the parameters of the patient.

According to the 2nd order theory and the theory of beams 
on an elastic foundation, a set of three 4th order linear dif-
ferential equations is introduced together with 12 boundary 
conditions. Matrix notation is used for expressing the acquisi-
tion of constants of integration.

The solution (i.e. examples of two calculations) is per-
formed for cancellous screws with full cross-section or can-
nulated cross-section made of stainless steel or Ti6Al4V mate-
rial. Displacement, slopes, bending moments, normal forces, 
shearing forces and normal stresses are calculated and pre-
sented in diagrams. Maximal shear stresses and total maximal 
stresses are calculated and evaluated.

Finally, the safety factor (i.e. the ratio of yield limit to 
maximal stress) is determined for the given type of cancel-
lous screw. The values of the safety factor for two examples 
are found 4.12 (cancellous screw with full cross-section made 
of stainless steel) and 4.98 (cancellous screw with cannu-
lated cross-section made of Ti6Al4V material). Therefore the 
application of cancellous screws in the treatment of “collum 
femoris” fractures is suitable, safe and recommended (i.e. 
orthopaedists and traumatologists can use it for the treatment 
of patients).

The derivation and rapid solutions of our own sim-
ple numerical model open up a new avenue for further 

applications using a stochastic approach (i.e. millions of 
solutions with random inputs and outputs can be easily 
simulated and evaluated). The Simulation-Based Reliabil-
ity Assessment (SBRA) Method (i.e. the direct Monte Carlo 
approach etc.) can be applied. This method can respect the 
real variability of inputs and outputs via truncated histo-
grams. The application of the SBRA Method is a new and 
modern trend in mechanics/biomechanics. Therefore, the 
application of the SBRA method connected with the proba-
bilistic reliability assessment and laboratory experiments of 
cancellous screws is the main focus of the next part of this 
article (i.e. future continuation) of this work; see for example 
[3, 4, 16–18, 35, 36] and Figs. 17 and 24.

Figure 24 shows the screw being pulled out of spruce 
wood and a bovine femur (i.e. initial experiments in a study 
of force dependencies and the behaviour of bone as an elastic 
foundation). These experiments represent preparations for 
more demanding cadaver tests.

As a future extension of our work, see [18, 23, 25], the 
elastic foundation can also be approximated via nonlin-
ear functions. However, this leads to the solution of three 
nonlinear 4th order differential equations. This solution can 
apply the Central Difference Method with the iterative New-
ton Method; e.g. see work in [23, 25]. This also offers a good 
and desirable improvement.

The presented results (i.e. displacements and stresses) 
were compared (tested) with a simple 3D FE model (though 
not in this article) with adequate results; see Figs. 25 and 

Fig. 24   Experiments a testing 
machine, b cancellous screw 
in spruce wood, c cancellous 
screw in bovine femur (men-
tioned in this article but not 
presented in full here)
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Fig. 25   Simple 3D FE model 
of three cannulated cancellous 
screws in the femur for verifica-
tion of the presented results 
(mentioned in this article but 
not presented in full here)

Fig. 26   Simple 3D FE solution 
of three cannulated cancellous 
screws in the femur for verifica-
tion of the presented results 
(mentioned in (mentioned in 
this article but not presented in 
full here)
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26. The relative differences between the analytical and FE 
models for maximal stresses, strains and displacements are 
≤ 6.6%, which is sufficient. For more information see [18].

However, obtaining the results by FEM (ANSYS soft-
ware) takes a much longer time than when using our original 
2D beam solution as presented in this article. The mentioned 
application of 3D FE model will be published in future; see 
[18] and Figs. 25 and 26.

On the other hand, our model can also be used for calcu-
lating/assessing inappropriate or unacceptable positions of 
cancellous screws (changes of angles ∝ , length L , number 
of screws, parallel or nonparallel positions of screws, screws 
can or cannot be in contact with the femoral neck cortex, 
etc.).

11 � Conclusions

The article discusses a basic medical perspective on collum 
femoris fractures with the focus on their treatment via can-
cellous (i.e. femoral) screws.

The simple planar model of a cancellous screw in a femur 
as a beam on an elastic foundation is applied. 2nd order 
theory is applied, and materials, dimensions, loading, dif-
ferential equations etc. and their solutions are described. A 
biomechanical evaluation (i.e. evaluation of deformations 
and stresses) is carried out. The computational model as a 
whole is characterized by its quick solution and high vari-
ability of possible screw insertion positions.

According to the results (see Table 5 and 7), the safety 
factor ranges from 3 to 5 (i.e. 300% to 500% safety that 
undesirable plastic deformation will not occur). The cancel-
lous screws are safe, and they are recommended as suitable 
for treatment of collum femoris fractures.

Other possibilities for future research and developments 
are mentioned and discussed.

Hence, this article has presented new methods and ideas 
and demonstrated their applications in biomechanics, cen-
tred around a new, simple approach to the solution of can-
cellous screws with applications in the branch of traumatol-
ogy and orthopaedics.
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