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A prominent air pollutant, 
Indeno[1,2,3-cd]pyrene, enhances 
allergic lung inflammation via aryl 
hydrocarbon receptor
Tzu-Hsuan Wong1, Chon-Lin Lee2,3, Hsiang-Han Su1, Chin-Lai Lee1, Chao-Chien Wu4,  
Chin-Chou Wang4,5, Chau-Chyun Sheu3,6,7, Ruay-Sheng Lai8, Sum-Yee Leung4, Chi-Cheng Lin9, 
Yu-Feng Wei10, Chien-Jen Wang11, Yu-Chun Lin11, Hua-Ling Chen11, Ming-Shyan Huang6,7, 
Jeng-Hsien Yen1,12, Shau-Ku Huang1,3,11,13,14 & Jau-Ling Suen  1,3,15

Chronic exposure to ambient polycyclic aromatic hydrocarbons (PAHs) is associated with asthma, but 
its regulatory mechanisms remain incompletely defined. We report herein that elevated levels of urinary 
1-hydroxypyrene, a biomarker of PAH exposure, were found in asthmatic subjects (n = 39) as compared 
to those in healthy subjects (n = 43) living in an industrial city of Taiwan, where indeno[1,2,3-cd]pyrene 
(IP) was found to be a prominent PAH associated with ambient PM2.5. In a mouse model, intranasal 
exposure of mice with varying doses of IP significantly enhanced antigen-induced allergic inflammation, 
including increased airway eosinophilia, Th2 cytokines, including IL-4 and IL-5, as well as antigen-
specific IgE level, which was absent in dendritic cell (DC)-specific aryl hydrocarbon receptor (AhR)-null 
mice. Mechanistically, IP treatment significantly altered DC’s function, including increased level of pro-
inflammatory IL-6 and decreased generation of anti-inflammatory IL-10. The IP’s effect was lost in DCs 
from mice carrying an AhR-mutant allele. Taken together, these results suggest that chronic exposure 
to environmental PAHs may pose a significant risk for asthma, in which IP, a prominent ambient PAH 
in Taiwan, was shown to enhance the severity of allergic lung inflammation in mice through, at least in 
part, its ability in modulating DC’s function in an AhR-dependent manner.

Asthma is a common chronic airway inflammatory disease characterized by airway obstruction, bronchial 
hyper-responsiveness and airway inflammation1. The increasing prevalence of asthma in last decades is an impor-
tant public health issue in the developed countries2. Particularly in Taiwan, a recent survey of 24,999 first-grade 
elementary school students showed a significant high prevalence of physician-diagnosed atopic eczema, allergic 
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rhinitis, and asthma, with 29.8%, 33.7% and 13%, respectively3. This alarming increase in prevalence highlights 
an urgent need for better understanding of the etiology and its causative mechanisms.

According to WHO estimates, more than 300 million people are suffered from asthma and air pollution has 
been considered as one important environmental risk for asthma4,5. Polycyclic aromatic hydrocarbons (PAHs), pri-
marily associated with ambient particulate matters (PMs), are a group of chemicals that can induce oxidative stress 
and cytotoxicity6. They are usually generated by incomplete combustion of organic materials, such as coal, gas, 
and oil as well as garbage7. PAHs may enter human body through inhalation with fine PMs in air or ingestion with 
over-roasted foods8. Due to their lipophilic property, PAHs are easily absorbed by all routes of exposure and then 
metabolized into hydroxylated and glucuronide metabolites9. The most widely used urinary PAH metabolites as 
biomarkers for recent exposure are 1-hydroxypyrene (OH-Py) and 1-hydroxypyrene-O-glucuronide10. Exposure to 
PAHs has been associated with pulmonary diseases, such as allergic asthma, particularly in children11.

Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor from the Per-Arnt-Sim superfamily, 
acts as a cellular chemical sensor linking environmental pollutants and immunity. AhR is originally discovered as 
a high affinity receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD); however, it also has been recognized as a 
receptor for many environmental pollutants, including benzo[a]pyrene (BaP). They can directly bind to AhR and 
trigger its translocation into nucleus to mediate the downstream effects, including detoxification and other cellular 
responses12. Some studies also reveal the role of AhR signaling in carcinogenesis13,14. Accumulated evidence sug-
gests that while the experimental outcomes appear to vary depending, in part, on the dosage used, the AhR-ligand 
axis is now considered to play a role in the regulation of both innate and adaptive immune response. For exam-
ple, our recent evidence suggests an important role of the AhR-ligand axis in controlling cellular homeostasis, 
maturation and optimal activation of several regulatory cell types, including macrophages and mast cells15–17.  
Notably, the ligand-AhR axis is shown to be critical in controlling the growth and function of mast cells in a cal-
cium (Ca2+)- and reactive oxygen species (ROS)-dependent fashion15,16.

Dendritic cells (DCs) are the key antigen-presenting cell type for instructing T cell-mediated inflammation. 
Bone marrow-derived dendritic cells (BM-DCs) and T helper 17 (Th17) cells express high levels of AhR18,19. One 
previous study showed that BaP, a well-studied PAH, is able to inhibit the maturation, endocytic activity, IL-12 
secretion, and T-cell stimulatory activity of human monocyte-derived DC in vitro20. Also, it has been shown that 
AhR promotes IL-22 production of Th17 cells18 and controls Foxp3 expression of regulatory T cells21. Further, 
AhR activation by prototypical ligands, TCDD and formylindolo[3,2-b]carbazole (FICZ), was shown to modu-
late DCs to display tolerogenic phenotypes which may facilitate Foxp3+ regulatory T cell differentiation22. AhR 
signaling also crosstalks with NF-κB and estrogen receptor signaling pathways, which are known to be important 
in regulating immune system23. A recent study shows AhR deficiency in DC leads to the perturbation of intestinal 
epithelium development and intestinal immunity24. However, the causal relationship between individual PAH 
and allergic asthma and the detailed mechanism still need to be elucidated.

Due to the alarming high prevalence of childhood allergic diseases in Taiwan3, we aimed to identify the main 
component of ambient PAHs and explored its pathogenic role in the development of allergic asthma. In this study, 
we demonstrated that indeno[1,2,3-cd]pyrene (IP) was the major component of ambient PAHs in Kaohsiung City 
in Taiwan, and that IP exposure exacerbated antigen-induced pulmonary inflammation in a mouse model of asthma 
and the IP’s effect was, at least in part, mediated by its impact on DC’s function in an AhR-dependent manner.

Results
IP was a prominent PAH associated with ambient PM2.5. After monthly samplings of atmospheric 
PM2.5 in 4 monitoring stations in a subtropical industrial city Kaohsiung, 16 PAHs (USEPA priority) were ana-
lyzed. Results showed that among the 16 PAHs analyzed, IP was a prominent PAH associated with ambient PM2.5 
in all sites (Fig. 1A) and all seasons (data not shown). The concentrations of PAHs were higher in winter and 
autumn than in summer (Fig. 1B). It is also noted that the average concentrations of IP was around four times 
higher than that of BaP in all sites and all seasons (Fig. 1C). In a case-control design, the urinary concentration of 
OH-Py, a major metabolite of pyrene and widely used as a marker of exposure to PAHs, was significantly higher 
in subjects with asthma than those in control subjects (mean ± SEM, 0.092 ± 0.011 μg/g creatinine (CRN) versus 
0.043 ± 0.003 μg/g CRN, P < 0.0001).

IP exposure potentiated antigen-induced pulmonary allergic inflammation. To determine 
whether IP was able to modulate airway allergic inflammation, a murine model was designed to mimic human 
exposure. The results showed that intranasal exposure of IP at concentrations ranging between 0.4 – 2 μM signif-
icantly enhanced the severity of pulmonary allergic inflammation, including increased infiltration of eosinophils, 
lymphocytes, and neutrophils (Fig. 2A), as well as enhanced IL-4 and IL-5 levels in bronchoalveolar lavage fluids 
(BALFs) (Fig. 2B). In addition, the levels of serum ovalbumin (OVA)-specific IgE were significantly enhanced in 
mice exposed to IP in a dose-dependent manner (Fig. 2C). These data suggest that IP may act as an adjuvant to 
modulate the allergic inflammation.

In order to ensure the adjuvant role of IP in allergic responses, we tested the response induced by IP alone 
without antigen immunization. As shown in Fig. 3, IP exposure alone did not induce any allergic response, which 
was similar to vehicle control group (no OVA and no IP treatment). However, in the presence of OVA, IP expo-
sure significantly enhanced OVA-induced allergic responses, including the levels of immune cell infiltration 
(Fig. 3A), Th2 cytokines (Fig. 3B) and OVA-specific IgE Abs (Fig. 3C). Further, immunocytochemistry analysis 
showed that while IP exposure alone did not induce apparent airway inflammation, prominent inflammatory 
lesions were noted in IP-treated, OVA-sensitized and challenged mice (Fig. 3D). These data suggest that airway IP 
exposure may act as an adjuvant to modulate immune responses towards Th2 responses, leading to the enhanced 
severity of allergic asthma.
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IP exposure modulated DC’s function in an AhR-dependent manner. IP has similar structure 
as BaP, which is a well-known ligand for AhR. Thus, we examined whether AhR was involved in IP-mediated 
effect on allergic lung inflammation. As shown in Fig. 4, administration of a commonly used AhR antago-
nist, CH223191, significantly inhibited the IP’s effect on OVA-induced influx of eosinophils and lymphocytes, 
Th2 cytokines, and OVA-specific IgE levels. Because DC plays an essential role in the pathogenesis of allergic 
asthma, we then asked whether IP modulated DC’s function through AhR by the use of C57BL/6 mice carrying a 
high-responder allele (AhRb-1) and a congenic strain carrying a low-responder allele of AhR (AhRd). The affinity 
of AhRd for its ligand is 10–100 times lower than of AhRb-1 allele25. As shown in Fig. 5A and B, IP treatment at 
relatively low doses starting from 0.1 to 100 nM significantly inhibited LPS-induced expression of CD40, CD80 
and IL-10 production, but enhanced LPS-stimulated IL-6 secretion in BM-DCs. However, IP exposure lost its 
effect on BM-DCs from AhRd mice; also, IP exposure did not affect the allergic parameters in OVA-immunized 
DC-specific AhR-null (DC-AhR−/−) mice compared to those in wild type mice (Fig. 5C–F). Taken together, these 
data suggest that IP exposure may disturb DC’s function in an AhR-dependent manner, leading to the enhanced 
allergic lung inflammation.

It has been demonstrated that ultrafine particles associated with PAHs can induce oxidative stress and cyto-
toxicity in macrophages and epithelial cells6. Thus, we analyzed whether IP treatment promoted the production 
of 4-HNE, a sensitive oxidative stress marker, in the asthmatic murine model. As shown in Fig. 6, IP treatment 
in conjunction with OVA did enhance the 4-HNE generation in lung tissues as compared to those seen with IP 
or OVA treatment alone. Interesting, IP treatment alone without antigen challenge in mice also showed more 
4-HNE-positive staining in lung tissues as compared to those in vehicle control group (no IP, no OVA treatment). 
Further, the level of 4-HNE in serum from OVA immunized mice was significantly increased upon IP exposure 
in a dose-dependent manner.

Figure 1. Analysis of ambient PAHs in southern Taiwan and of a surrogate uninary metabolite in a case-control 
study. (A) Normalized PAH composition distributions (mean ± SD) in PM2.5 in air from the four sampling sites. 
The description of the sampling sites and the full name of each PAH were summarized in Methods. (B) The 
seasonal variations of 16 PAHs (mean ± SD) in ambient PM2.5 in each site. (C) The difference of PM2.5 bound 
BaP and IP concentrations (mean ± SD) in each site and each season. (D) Analysis of urinary PAH metabolite, 
1-hydroxypyrene (OH-Py), in asthma patients and controls. The levels of normalized urinary OH-Py by the 
levels of urinary creatinine (CRN) were measured in those with current asthma versus normal subjects, all of 
whom were non-smokers. Each circle represents each individual result. The line within the vertical points marks 
the mean for each group. ***P = 0.0001 by Mann-Whitney U test.
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Discussion
PAHs associated with air pollution have been considered as an important environmental risk for asthma26; how-
ever, the responsible component(s) of PAHs and the involved mechanism have not been well defined. In the 
present study, we identified IP as the main component of ambient PAHs in southern Taiwan, and showed its 
potential ability to enhance the severity of allergic lung inflammation through modulating DC’s function in an 
AhR-dependent manner. Further, biomonitoring analysis of a case-control study population showed that the 
urinary levels of OH-Py, a surrogate marker for PAH exposure, were significantly higher in patients with asthma 
than those seen in controls. This is the first study, to our knowledge, in providing evidence supporting a causal 
relationship between airborne IP exposure and lung inflammation using a mouse model of asthma.

The sources of IP were identified mainly from traffic27. However, as Kaohsiung City is an industrial city with 
steel plants, coal and coke combustion should also be considered as a source of the presence of IP in PM2.5

7. Other 
atmospheric exposure of IP could include cooking related activities. For example, the concentration of IP in kitchen 
indoor air was found to be above the permissible Occupational Safety and Health Administration (OSHA) norms 
for indoor air28. Even though IP was found present in relatively higher amounts in many environmental matrices, 
the study of its toxicity has been scarce. While the toxic equivalent factor (TEF) with respect to BaP of IP has been 
assessed as 0.129, the functional effect of IP on DCs appears to be more potent than that of BaP. BaP has been shown 
to inhibit DC maturation and IL-12 secretion in murine BM-DCs30 and in human monocyte-derived DCs20 at the 
concentrations of 1 and 10 μM, respectively. However, in our study, IP significantly suppressed IL-10 production and 
maturation in murine BM-DCs at the concentration of 0.1 nM and 100 nM, respectively (Fig. 5A,B). In addition, at 
least during the period between 2012 and 2013 in southern Taiwan, the amount of IP was around 4-fold higher than 
BaP in ambient air PAHs (Fig. 1C). It suggests, therefore, that IP, in addition to BaP, among PAHs associated with 
PM2.5, may contribute to the impact of air pollution on human health.

It has been noted that two prototypical AhR ligands, TCDD and FICZ, were shown to be able to modu-
late DCs with tolerogenic phenotypes and facilitate Foxp3+ regulatory T cell differentiation at relatively higher 
doses22. However, in our study, chronic exposure of IP at human exposure dosages in mice showed enhanced lev-
els of pulmonary allergic inflammation. While it is currently unclear as to the reason why AhR’s ligands mediate 
these seemingly dichotomized immune responses, it may be due, in part, to a potential ligand-specific effect or, 
more than likely, different doses used in various studies. Consistent with our findings, Zhou et al. used relatively 
low-doses of AhR ligands, TCDD and FICZ, and showed enhanced mast cell response, including degranulation 
and cytokine generation31, while at higher doses following repetitive administration, FICZ (100 μg/kg/mouse) 
may have an inhibitory effect on mast cell’s response32, It is likely, therefore, that low doses of AhR’s ligand expo-
sure may mediate immune activation, rather than tolerance. In fact, it is known that AhR ligand’s effect does not 
conform to the monotonic response curve. Nevertheless, further studies are needed to define the molecular basis 
of the AhR-ligand axis and its impact on immune system.

Figure 2. Indeno[1,2,3-cd]pyrene (IP) exposure enhances the severity of allergic lung inflammation in a mild 
asthmatic murine model. C57BL/6 mice were intranasally exposed to vehicle or various concentrations of IP 
as indicated and then all immunized and challenged with OVA. Cell subsets (A) and cytokine levels (B) in 
BALFs were both determined by flow cytometry. The line within the vertical points marks the mean for each 
group. (C) Serum levels of OVA-specific IgE Abs (mean ± SEM) were measured by ELISA. Data show one of 
three independent experiments. Eosinophil number, IL-5 and IgE levels showed group differences by one-way 
ANOVA. *P < 0.05 vs. vehicle-treated group (Mann-Whitney U test).
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4-HNE is a reactive lipid mediator, which is generated from lipid peroxidation. Due to its electrophilic property, 
4-HNE can form protein as well as lipid adducts and then modulate a number of signaling processes and impact cellu-
lar functions (reviewed in reference33). In the present study, 4-HNE was observed in the lung tissue of intranasally IP 
treated alone mice, suggesting exposure to PAHs may result in oxidative stress in the lungs. Although IP alone treated 
mice did not show obvious local allergic inflammation, pre-exposure to IP through airway significantly enhanced the 
severity of OVA-induced lung inflammation. These data suggest that exposure to environmental PAHs at human rele-
vant exposure ways and doses is not expected to generate a dramatic “toxic” effect, but rather it may persistently modify 
the level of the host response. As a corollary, a recent study by Perzanowski et al. showed that prenatal exposure to 
cockroach allergen was associated with a greater risk of allergic sensitization in children and this risk was enhanced by 
exposure to PAHs34. These data support the link between air pollution and the severity of asthma in humans35.

Our study demonstrated that IP may act through AhR to alter DC function, and lead to enhanced allergic inflam-
mation. As shown in Fig. 4, AhR antagonist CH223191 could reverse the IP effect on allergic lung inflammation, 
including inflammatory cell infiltration in BALFs and tissue, Th2 cytokine production and OVA-specific IgE lev-
els. In addition to conventional DCs, several AhR-expressing cell types may also contribute to the development of 
IP-enhanced allergic inflammation in airway, such as epithelial cells36, fibroblast37, innate lymphoid cells38, mast cells15,31 
as well as pDCs39. However, conventional DCs seem to play the major role in the IP’s effect because chronic airway 
exposure to IP in DC-AhR−/− mice did not enhance the allergic lung inflammation in the OVA-induced asthma model. 
As IL-10 is a well-characterized immune suppressive cytokine, decreased expression of IL-10 in DCs may contribute to 
the IP’s effect on allergic inflammation. Moreover, two likely, but nor exclusive, mechanisms could be operated in IP’s 
potentiating effect. One is that airway DCs can be directly and chronically exposed to IP, which results in alteration of 
DC’s function as they carry the antigen and are capable of modulating the immune response via trafficking between 

Figure 3. Indeno[1,2,3-cd]pyrene (IP) exposure aggravates the severity of allergic lung inflammation in the 
presence of allergen. C57BL/6 mice intranasally pre-exposed to vehicle or IP (2 μM) were then immunized 
either with PBS or OVA as indicated. All mice were then challenged with OVA aerosol for three consecutive 
days. Cell subsets (A) and cytokine levels (B) in BALFs were both determined by flow cytometry. The 
line within the vertical points marks the mean for each group. (C) Serum levels of OVA-specific IgE Abs 
(mean ± SEM) were measured by ELISA. (D) Representative lung sections stained with hematoxylin and eosin. 
The magnification: 200×. Data represent one of five independent experiments with consistent results. *P < 0.05 
(Mann-Whitney U test). Scale bars represent 50 µm in (D).



www.nature.com/scientificreports/

6SCIENTIfIC RepoRtS |  (2018) 8:5198  | DOI:10.1038/s41598-018-23542-9

epithelial cells and draining lymph nodes40,41. The other possible mechanism is that IP firstly acts on airway epithelium, 
which induces epithelial cells to release mediators and modulate local DC function. This evidence was provided by our 
cooperative study by Wang et al.42. The authors demonstrated that intranasal exposure to IP was sufficient to induce the 
generation of a lipid mediator, sphingosine-1-phosphate, from either mast cells, or epithelial cells or the combination of 
both without allergen sensitization in a mouse model, while sphingosine-1-phosphate is a potent bioactive lipid medi-
ator that regulates lymphocyte trafficking, cell growth, apoptosis, inflammation and, perhaps, DCs43. In support of this 
notion, we also found that intranasal IP exposure alone without any allergen sensitization resulted in oxidative stress 
response in the lungs (Fig. 6A), but not inflammation (Fig. 3D), and as the consequence, significantly enhanced severity 
of OVA-induced airway inflammation was noted (Fig. 3). This suggests that PAHs may potentiate the development of 
asthma through the AhR-ligand axis in priming immune response. However, the detailed mechanism regarding how 
IP-AhR axis down-regulates IL-10 expression in DCs and its detailed mechanisms on the regulation of allergic asthma 
await further in-depth studies.

In the present study, asthmatic subjects in southern Taiwan showed elevated environmental PAH exposure. 
Chronic exposure to IP, a prominent ambient PAH, may affect DC functions through modulating AhR activity, 
leading to enhanced allergic inflammation in an established asthma murine model. Our study provides evidence 
supporting a direct link between ambient PAH exposure and the expression of allergic diseases.

Methods
Air sampling and PAH detection. One year air sampling campaign was carried out in four sampling sites in 
Kaohsiung City, Taiwan. The details of sampling and measurement of PAHs in PM2.5 are presented in reference27. 
Briefly, the 24-hr PM2.5 samples (twice a month, on 200 mm × 250 mm quartz fiber filter) were collected sequentially 
at each of the four sampling sites during the period of December 2012 to November 2013. The four sampling sites are 
SG, located in southern part of Kaohsiung with petrochemical, shipbuilding, firepower plant, iron, and steel industrial 
activities; FS, located in the northern part with petrochemical industrial activities nearby and densely populated; AG, 
located in the center of the city with intense traffic and commercial activities; while NSYSU is a coastal area site.

For PAH analysis, the quartz fiber filters were extracted with dichloromethane using an accelerated solvent 
extractor (Dionex ASE 300). The extracts were concentrated to 0.5 mL for GC-MS, a capillary gas chromato-
graph (Agilent 6890 N) and a mass spectrometer (Agilent 5973 N), analysis. Sixteen PAHs (USEPA priority) were 
determined, including naphthalene (Nap), acenaphthylene (Aceny), acenaphthene (Acen), fluorene (Flu), phe-
nanthrene (Ph), anthracene (An), fluoranthene (Flt), pyrene (Py), benzo[a]anthracene (BaA), chrysene + triphe-
nylene (Chry + TriPhe), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), BaP, IP, dibenzo[a,h]
anthtracene (DBA), and benzo[g,h,i]perylene (BghiP).

Patients. The study population included adult patients with current asthma (n = 39) at the outpatient depart-
ments of 8 medical centers following established protocols. We also enrolled normal control subjects (n = 43) 

Figure 4. AhR antagonist inhibited the indeno[1,2,3-cd]pyrene (IP) effect on allergic lung inflammation. 
C57BL/6 mice intranasally exposed to methanol or IP (2 μM) in the presence ( + ) or absence (−) of AhR 
antagonist (CH223191, 10 μM) were immunized with OVA. All mice were challenged with OVA aerosol for 
three consecutive days. Cell subsets (A) or cytokine levels (mean ± SEM) (B) in BALFs were determined by 
flow cytometry or ELISA, respectively. (C) Serum levels of OVA specific IgE Abs (mean ± SEM) were measured 
by ELISA. (D) Representative lung sections stained with hematoxylin and eosin. The magnification: 200×. 
*P < 0.05 (Mann-Whitney U test). Data represent one of three independent experiments with consistent results 
in (A). Data are from 3 or 4 experiments in (B,C) (mean ± SEM), respectively. n = 7–9/group in (B); n = 12–13/
group in (C). Scale bars represent 50 µm in (D).
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Figure 5. Indeno[1,2,3-cd]pyrene (IP) modulates DC function and allergic lung inflammation in an AhR-
dependent manner. Bone marrow cells from C57BL/6 and AhRd mice were treated with IP starting from day 
1 to day 8, and LPS was added for another 24 hrs. The BM-DCs were harvested for phenotypic analysis (A) 
and the levels of cytokines in the culture supernatants were measured by ELISA (B). Data shows mean ± SD of 
three independent experiments. C57BL/6 (WT) or DC specific AhR-null mice (DC-AhR−/−) were intranasally 
pre-exposed to vehicle (NC) or IP (2 μM) and then immunized with OVA. All mice were challenged with OVA 
aerosol for three consecutive days. Cell subsets (C) and cytokine levels (D) in BALFs were both determined 
by flow cytometry. The line within the vertical points marks the mean for each group. (E) Serum levels 
(mean ± SEM) of OVA-specific IgE Abs were measured by ELISA. n = 7–10/group. (F) Representative lung 
sections stained with hematoxylin and eosin. The magnification: 200×. *P < 0.05 vs. control (Mann-Whitney U 
test). Scale bars represent 50 µm in (F).

Figure 6. Detection of 4-HNE in lung tissues and in sera. (A) Frozen lung sections from treated mice as 
described in Fig. 3 were stained with DAPI (blue) and Cy3-conjugated 4-HNE Abs (red). The magnification: 
200 × . (B) Serum levels of 4-HNE (mean ± SEM) in OVA immunized mice, as described in Fig. 2. Vehicle, 
n = 21; 0.4 μM, n = 8; 2 μM, n = 19; 10 μM, n = 7. Scale bars represent 50 µm in (A). *P < 0.05 vs. vehicle-treated 
group (Mann-Whitney U test).
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selected from volunteers and from those who requested annual physical examinations without respiratory dis-
eases. All subjects were non-smokers. All eligible subjects were enrolled in the study after signing the informed 
consent approved by the respective recruitment hospitals. Patients with age ≥18 years were enrolled and met the 
following inclusion criteria: (1) at least 18 years of age, (2) physician-diagnosed asthma. Physician’s diagnosis of 
asthma was made according to the 2008 Global Initiative for Asthma (GINA) guidelines. In this study, we further 
stratified asthma into four groups: asthma that required GINA Step 1 or 2 to maintain good control was con-
sidered as mild asthma, GINA Step 3 as moderate, GINA Step 4 as severe (Table 1). Patients with severe asthma 
(step 4) were receiving more than two combination controller therapies (ICS, LABA, leukotriene modifier and 
sustained-release theophylline). Patients were also evaluated for their control status by using asthma control 
test (ACT), a validated patient-completed questionnaire consisting of five parameters aimed at assessing asthma 
symptoms (daytime and nocturnal), use of rescue medications, and the effect of asthma on daily functioning. 
The scores range from 5 (poor control of asthma) to 25 (complete control of asthma). The scores equal or less 
than 19 was considered to be “not well controlled”. Pulmonary function was measured with a Jaeger Master 
screen Pulmonary System spirometer (Hoechberg, Germany). At baseline, FEV1 and FVC were expressed as 
percentages of the predicted values, whereas FEV1/FVC was reported only as a ratio. The smoking status of all 
patients was also assessed and divided into three groups: current smokers, ex-smokers who had stopped smoking 
for a minimum of 1 month before the initial visit, and lifetime non-smokers. Patients have one of self-reported 
allergic triggers (pollen, mold, dust, animals, beans, seafood, milk and eggs), allergic rhinitis and/or atopic 
dermatitis were defined as having positive history of allergy. Urine samples were collected and stored frozen 
in glass container until analysis. In this dataset, demographical comparison revealed significant differences in 
second-hand smoke at home and lung function parameters (FEV1 and FEV1/FVC ratio) between controls and 
patients (Table 1). The study protocol was approved by the Institutional Review Boards of Kaohsiung Medical 
University Hospital (KMU-IRB-990392). The study was performed in accordance with the ethical standards laid 
down in the Declaration of Helsinki.

Urinary PAH metabolite detection. Urinary OH-Py was measured with previously published assay44 and 
used as a surrogate marker for the exposure of PAHs, as the standard IP metabolite was not commercially availa-
ble at the time of analysis. First, the defrosted urine (10 mL) in acetate buffer (0.1 M acetic acid and 0.1 M sodium 
acetate) was digested with α-glucuronidase/aryl-sulphatase, and then OH-Py in the urine samples was extracted, 

Asthma (n = 39)
Normal 
(n = 43) P value

Gender, n (%) 0.658

    Male 20 (51.3) 21 (48.8)

    Female 19 (48.7) 22 (51.23)

Age (mean ± SD) 55 ± 13 57 ± 11 0.454

BMI (mean ± SD) 25 ± 4 24 ± 4 0.602

Smoking habits, n (%) 0.241

    Never-smokers 30 (76.9) 38 (88.3)

    Ex-smokers 9 (23.1) 5 (11.7)

Second hand smoke at home, n (%) 0.037*

    Absent 18 (46.1) 10 (23.3)

    Present 21 (53.9) 33 (76.7)

Second hand smoke at work, n (%) 0.497

    Absent 26 (66.7) 25 (58.1)

    Present 13 (33.3) 18 (41.9)

FEV1% predicted (mean ± SD) 71.6 ± 22.5 87.2 ± 11.6 0.0003*

FEV1/FVC (mean ± SD) 68.4 ± 11.5 86.0 ± 9.1 1.4×10−10*

Severity, n (%)

    Mild (GINA 1,2) 20 (51.3)

    Moderate (GINA 3) 11 (28.2)

    Severe (GINA 4) 8 (20.5)

Allergy history, n (%) 0.183

    Absent 18 (46.2) 27 (62.8)

    Present 21 (53.8) 16 (37.2)

ACT score (mean ± SD) 20.6 ± 4.0

Total IgE level (KU/L, mean ± SD) 247.5 ± 426.3

Eosinophil (per mm3, mean ± SD) 249.8 ± 182.1

Urine creatinine (mg/dL, mean ± SD) 96.5 ± 69.2 104.6 ± 45.1 0.528

Table 1. Demographic characteristics of patients with asthma and normal controls. *Statistically significant 
(P < 0.05). ACT = asthma control test; BMI = body mass index; FEV1 = forced expiratory volume; 
FVC = forced vital capacity.
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enriched and purified by cartridges packed with C-18 reversed-phase liquid chromatographic material (Waters 
SEP-PAK VAC C-18, Waters, Milford, MA, USA) at a loading rate of less than 3 mL/min. The retained solutes in 
cartridges were eluted with 6 mL of isopropyl alcohol and dried. The processed sample was dissolved in 2 mL of 
isopropyl alcohol for analysis, using a high-performance liquid chromatography (Waters 2695) with fluorescence 
detector (Waters 474) and a 150 mm × 4 mm LiChrosorb RP-18 (5 mm) column (Supelo). The mobile phase was 
65% methanol (methanol/water 1⁄4 65:35). The excitation wavelength and emission wavelength of fluorescence 
were 281 and 388 nm, respectively. This method had a limit of detection of 0.028 ng/mL, with an average recovery 
rate of 96.18%, and a coefficient of variance smaller than 10% for repeated measurements. The urinary levels of 
OH-Py were normalized by the levels of urinary CRN and expressed as μg/g CRN.

Chemicals. IP was purchased from Sigma–Aldrich (St. Louis, Mo., USA) and stocked in methanol.

Mice. The protocol used in all animal experiments was approved by Institutional Animal Care and Use 
Committee of the Kaohsiung Medical University (Permit Number: 101048), and was in accordance with the 
guidelines and regulations of the institution. Female C57BL/6 and AhRd congenic mice, aged 6–8 weeks were 
obtained from National Laboratory Animal Center, Taiwan. DC-AhR−/− mice were generated by crossing 
CD11ccre and AhRfl/fl mice, which were both from National Health Research Institutes. All mice maintained in a 
pathogen-free facility.

Establishment and assessment of allergic lung inflammation murine model. Different concen-
trations of IP (0.4, 2 or 10 μM) or 0.2% methanol (vehicle) were intranasally delivered into naïve female mice 
every other day between day 1 and day 20. The mice received OVA (20 μg/mouse) or PBS plus Al(OH)3 intra-
peritoneally on day 7 and then daily received 3% OVA aerosol exposure on days 18–20. On day 21, BALFs were 
collected and the cells in BALFs were stained with PE-Cy7-anti-CD11c (N418; eBioscience), FITC-anti-I-Ad/I-Ed 
(M5/114.15.2; eBioscience), PE-anti-CCR3 (83101; R&D Systems), APC-anti-CD3 (145–2C11; BD Biosciences, 
San Diego, California, USA) and anti-B220 (RA3–6B2; eBioscience) antibodies (Abs)45. The cellular composition 
of BALF cells was determined by flow cytometry (LSR II; BD Biosciences).

Cytokine determination. Cytokine levels in supernatants from BM-DC cultures or in BALFs from treated 
mice were assessed by ELISA (eBioscience, Ireland, UK) or cytokine beads array (LEGENDplex; BioLegend) 
according to manufacturers’ instructions, respectively.

OVA-specific IgE detection. The levels of OVA-specific IgE in serum samples were determined by a 
standard ELISA method. Briefly, five-fold diluted serum was loaded in OVA-coated 96 well plate, and followed 
by biotin rat anti-mouse IgE (R35-72, BD biosciences), avidin-horseradish peroxidase, and tetramethylbenzi-
dine substrate. The absorbance (O.D value) was measured by VERSAmax ELISA reader (Molecular Devices, 
Sunnyvale, California., USA) at 450 nm and corrected by 540 nm.

Lung pathology. The whole lung was fixed in 3.7% formaldehyde and embedded in paraffin. The tissue 
sections (3 μM) were stained by hematoxylin and eosin, according to the manufacture’s protocol (NovoLinkTM. 
Polymer Detection System, Leica, UK). Frozen samples embedded in OCT (5 μM) were stained with DAPI 
or rabbit anti-4-hydroxynonenal (4-HNE) Ab (Abcam, UK) followed by goat anti-rabbit IgG Alexa Fluor 568 
(Invitrogen) according to manufacturers’ instructions. The level of 4-HNE in serum was analyzed using mouse 
specific 4-HNE ELISA kit (OxiSelect HNE Adduct Competitive ELISA kit, Cell Biolabs, CA, USA), according to 
manufacturers’ instructions.

BM-DCs generation and treatment. BM-DCs were prepared as described previously46. Briefly, bone 
marrow cells were cultured with recombinant murine GM-CSF (rmGM-CSF) (500 U/ml, Pepro Tech Inc., Rocky 
Hill, NJ) and treated with various concentrations of IP or 0.2% methanol (as a vehicle control) at the beginning of 
the day 1. The medium containing rmGM-CSF and IP or methanol was refreshed on day 3 and day 6. On day 8, 
BM-DCs were stimulated with or without LPS (1 μg/ml, Escherichia coli O127:B8; Sigma-Aldrich) for another 24 
hrs. The phenotype of BM-DCs were analyzed by flow cytometry (LSR II; BD Biosciences) for the expression of 
CD11c (G418), CD40 (1C10), CD80 (16-10A1), CD86 (GL1) and MHC class II (M5/114.15.2).

Statistical Analysis. The independent t-tests were used to examine the differences of age, body mass 
index, and urine CRN. Chi-square tests were used to compare the difference of gender, smoking habits, and 
second-hand smoke status. One-way ANOVA was used to compare the difference among groups. Nonparametric 
Mann-Whitney U tests were conducted to examine the differences of human urinary OH-Py and the results from 
control and treated cells or mice. P values < 0.05 were considered significant. All statistical tests were performed 
by SPSS for Windows, version 22.0. (SPSS Inc., Chicago, Ill., USA).
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