

OPEN

Postoperative pain—from mechanisms to treatment

Esther M. Pogatzki-Zahn^a, Daniel Segelcke^a, Stephan A. Schug^{b,c,*}

Abstract

Introduction: Pain management after surgery continues to be suboptimal; there are several reasons including lack of translation of results from basic science studies and scientific clinical evidence into clinical praxis.

Objectives: This review presents and discusses basic science findings and scientific evidence generated within the last 2 decades in the field of acute postoperative pain.

Methods: In the first part of the review, we give an overview about studies that have investigated the pathophysiology of postoperative pain by using rodent models of incisional pain up to July 2016. The second focus of the review lies on treatment recommendations based on guidelines and clinical evidence, eg, by using the fourth edition of the "Acute Pain Management: Scientific Evidence" of the Australian and New Zealand College of Anaesthetists and Faculty of Pain Medicine.

Results: Preclinical studies in rodent models characterized responses of primary afferent nociceptors and dorsal horn neurons as one neural basis for pain behavior including resting pain, hyperalgesia, movement-evoked pain or anxiety- and depression-like behaviors after surgery. Furthermore, the role of certain receptors, mediators, and neurotransmitters involved in peripheral and central sensitization after incision were identified; many of these are very specific, relate to some modalities only, and are unique for incisional pain. Future treatment should focus on these targets to develop therapeutic agents that are effective for the treatment of postoperative pain as well as have few side effects. Furthermore, basic science findings translate well into results from clinical studies. Scientific evidence is able to point towards useful (and less useful) elements of multimodal analgesia able to reduce opioid consumption, improve pain management, and enhance recovery.

patients' outcome after surgery.

Keywords: Postoperative pain, Surgical incision, Sensitization, Multimodal analgesia, Ketamine, Pregabalin

1. Introduction

More than 230 million people undergo surgery each year worldwide and the number is increasing annually.¹⁸³ Surgery causes commonly postoperative pain that should be alleviated as soon and as effective as possible to reduce suffering, to promote

^a Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Muenster, Muenster, Germany, ^b Pharmacology, Pharmacy and Anaesthesiology Unit, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia, ^c Department of Anaesthesia and Pain Medicine, Royal Perth Hospital, Perth, Western Australia, Australia

*Corresponding author. Address: UWA Anaesthesiology, Level 2 MRF Building, Royal Perth Hospital, GPO Box X2213, Perth, Western Australia 6847, Australia. Tel.: +61 8 9224 0201; fax: +61 8 9224 0279. E-mail address: stephan.schug@ uwa.edu.au (S.A. Schug).

Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. on behalf of The International Association for the Study of Pain. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

PR9 2 (2017) e588

http://dx.doi.org/10.1097/PR9.000000000000588

the healing process and rehabilitation and to prevent complications. However, clinical pain management after surgery is far from being successful despite dramatically increased scientific evidence in this area. Many patients suffer from severe pain after surgery^{55,104}; even less well recognized, many develop chronic pain after surgery which might be, at least in part, a result of undertreated acute postoperative pain.⁵⁰ One reason for this undertreatment is the limited translation of basic and clinical scientific findings into clinical practice. For example, pain after surgery is a very specific entity; it is neither the result of an inflammatory process alone nor only the result of isolated injury to nerves. Although inflammation and neural tissue damage occur, the pathophysiology of postoperative pain is unique and the consequences are specific. However, treatment strategies used in the "real world" are still not based on these findings. Furthermore, analgesics and techniques with limited adverse effects and/or with benefits targeting specific aspects of postoperative pain (eg, movement-evoked pain) are lacking. It is necessary to gain new insights into the mechanisms of postoperative pain in experimental and clinical settings to develop therapeutic options with greater efficacy and less risk of adverse effects than those available today. Finally, comprehensive evidence based on results from clinical studies enhances knowledge, but needs to be implemented

Sponsorships or competing interests that may be relevant to content are disclosed at the end of this article.

into clinical practice as well. Here we will present and discuss results from basic science studies and clinical scientific evidence generated within the last 2 decades to improve knowledge and enable translation of these findings into clinical practice more rapidly.

2. Animal-experimental basic research

2.1. Animal models of postoperative pain: an overview

To identify the mechanisms inherent in incision-induced postoperative pain, a specific surgery-related animal model in rats was developed in the 90s of the last century.^{19,197} By using this plantar incision model (and other animal models developed thereafter investigating specific aspects of pain after surgical trauma), we have learnt much about the underlying neurophysiology of incisional pain (comprehensive reviews are found here).^{18,20,141,189}: In general, it ensued that many of those mechanisms inherent in pure inflammatory, antigen-induced or neuropathic pain are not relevant for incisional pain and vice versa. In the following, we will summarize some aspects of incisional pain, which were identified by using the plantar incision model. Because of the high number of published studies during the last 2 to 3 decades (PubMed entry key words: "Incision" and "animals" and "postoperative pain" revealed 397 hits, November 9, 2016), we are not able to report all findings. Those up to 2007 are mainly summarized in the reviews guoted here.^{20,141} We will provide a selective overview of topics, which are relevant to the pain field in general and specifically interesting to those dealing with postoperative pain in the clinical setting.

2.1.1. Brief description of the models

The original plantar incision model was developed in 1996 by Brennan et al.¹⁹ Briefly, under general anesthesia, a 1-cm longitudinal incision is performed through the glabrous skin, fascia, and plantar muscle of the rat hind paw. The skin is surgically sutured, then the animals recover from anesthesia; pain behavior can be measured from one hour thereafter. The combination of transsection of the skin, fascia, and retracted muscle compares well to the tissue trauma of patients undergoing surgery.¹⁸ Similar to patients after surgery, rats develop short-lasting nonevoked guarding pain behavior (for a short time period of approximately 2 days after incision) and longer lasting evoked pain-related behavior to punctate mechanical stimuli (von Frey hairs); these pain behaviors are seen as a surrogate for nonevoked resting pain (lasting some days) and evoked pain (lasting several days till weeks) after surgery, respectively, and are therefore relevant to postoperative pain in patients.^{35,166}

Mechanical hyperalgesia occurs at the side of the incision (primary hyperalgesia) and in an area surrounding the injury (secondary hyperalgesia) for several days after the incision.¹⁹⁶ Furthermore, heat hyperalgesia, but not cold hyperalgesia,¹⁵⁶ is prominent at the site of the incision lasting up to approximately 7 days.¹⁹⁶ Secondary heat hyperalgesia (usually measured as withdrawal thresholds to radiant heat) does not occur after this incision. Additionally, an incision model within the hairy skin hind paw of rats was developed for better investigation of secondary mechanical hyperalgesia in animals (gastrocnemius incision).¹³⁴

More recently, anxiety- and depression-like behaviors were investigated after plantar incision; for example, rats show an increase in anxiety-like avoidance behaviors in the light/dark box and an increase in depression-like behavior (sucrose preference test) for some days after incision.^{86,168} Other studies assessing

anxiety-like behavior after incision in rats gave similar results by using slightly different approaches and study designs.^{36,97} Interestingly, the anxiety-like behavior lasted longer than hyperalgesia in 2 (but not one) of these studies. As anxiety and other psychological factors such as depression, catastrophizing, and stress enhance acute and promote long-lasting pain after surgery, investigation of appropriate assays in animals might be relevant.

In 2003, the rat plantar incision model has been transferred from the rat to the mouse with some modification (5 mm incision. one mattress suture, modulated assessment of mechanical, and heat hyperalgesia), with very similar results in behavioral experiments.¹³⁶ To investigate prolonged pain after a surgical incision more specifically, a skin and muscle retraction injury model (SMIR) was introduced.⁴⁸ Here, a 1.5 to 2-cm incision is made in the skin of the medial inner thigh, 4 mm medial to the saphenous vein. The superficial (gracilis) muscle layer is then incised (7-10 mm) approximately 4 mm medial to the saphenous nerve and retracted with a microdissecting retractor for one hour. The tissue is sutured with silk. Mechanical hyperalgesia in the SMIR model lasts for up to 3 weeks and therefore much longer than after plantar incision, but heat hyperalgesia was not observed. Interestingly, the SMIR model has been transferred to a porcine model of prolonged incisional pain,²⁸ which may have some very interesting advantages: For instance, pigs have a greater phylogenetic proximity with humans like a similar metabolism and a comparable skin anatomy with great homology in wound healing compared to rodents.33 These advantages could be deployed for validating new topical and localized treatment options for postoperative, incisional pain in human. Many other pain models related to surgical and trauma injuries have been developed and a comprehensive overview can be found in the review guoted here.¹⁸⁹ One interesting model, for instance, is the back hairy skin incision model that represents another clinically relevant model for pain behavior after an incision in hairy skin.^{43,125} However, because of space limitations and because of the fact that the plantar (and more recently the SMIR incision) is used most frequently for studying mechanisms of incisional pain, we will mainly focus on these 2 models. Finally, an incision model in humans is also available and may provide an important link between animal studies and patients (eg, see 23,47,77,139). However, we will mainly focus on results from animal studies for this review.

2.2. Mechanisms of pain caused by a surgical incision

The patterns of pain behavior after surgical incisions in rodents indicate that peripheral and central sensitization occur. In neurophysiological experiments, activation and sensitization of peripheral nociceptors^{62,133} and spinal dorsal horn neurons¹⁹⁶ were identified, and their specific mechanisms were investigated further.

2.2.1. Spinal sensitization after surgical incision

It is very intriguing that spinal administration of many substances that are able to prevent central sensitization in other pain models failed to produce a significant effect after incision; the first studies in the plantar incision model indicated this using spinal *N*-methylp-aspartate (NMDA) receptor antagonists which basically failed to produce any effect.^{49,137,196} These effects (or rather failure of effects) led to the assumption that an incision causes a different "form" of spinal sensitization compared to other pain entities. Additional pharmacological support for a unique spinal

sensitization process after incision came from pharmacological studies showing that non-NMDA/a-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor antagonists are involved in the spinal transmission of pain behavior after incision. 195, 198, 199 This again differs from many other pain models and was somehow striking by firstly questioning the general "rule" of a NMDA receptor-dependent central sensitization process relevant for certain types of pain, eq, after an incision and secondly "promoting" another rather new player in the game. namely the non-NMDA receptor group. The first issue was elaborated further by studies investigating the role of preemptive analgesia for postoperative pain, where NMDA receptors had earlier been identified as key molecules.¹⁴⁰ Spinal sensitization after the plantar incision is maintained (at least initially) by the afferent barrage of sensitized nociceptors¹³³ and the non-NMDA/ AMPA receptor group is maintaining this process which is responsible for nonevoked pain and hyperalgesia after incision.¹⁹⁸ More recent studies further elucidated mechanisms of AMPA-receptor mediated pain and hyperalgesia after incision and found that phosphorylation of the AMPA receptor GluR1 subunit at Serine-831 via phospho kinase C gamma (PKC_v), but not other conventional PKC's isoforms (PKCa, BI and BII), leads to an increased trafficking of Ca²⁺ permeable AMPA receptors in the neuronal plasma membrane and might play a role for incisional pain.¹⁸¹ Interestingly, AMPA receptor phosphorylation was enhanced under (social defeat) stress after incision⁹⁶; at the same time, incision-induced punctate mechanical hyperalgesia was prolonged. Besides phosphorylation of AMPA receptors. one subunit, GluR1, but not GluR2, is upregulated in the spinal cord ipsilateral to an incision. The regulation of the surface delivery of this spinal AMPA receptor subunit is caused by stargazin (member of the AMPA receptor regulatory protein family), and selective down-regulation of stargazin was able to reduce synaptic targeting of GluR1 subunit and nonevoked pain behavior and mechanical hyperalgesia caused by plantar incision⁶⁰ (Fig. 1). These spinal AMPA receptor subunits and the mechanisms regulating them after incision are therefore useful targets for drugs to treat pain after surgery in the future. However, spinal NMDA-receptor blockade might still have some indications. For example, remifentanil-induced enhanced mechanical hyperalgesia after incision in rats is regulated via phosphorylation of spinal NR2B at Tyr1472 which was prevented by ketamine.⁵⁹ This has clinical implications as discussed below.

Studies showing different effects of spinal substances on different pain modalities are very interesting. Two examples are an effect on mechanical hyperalgesia, but not on nonevoked guarding pain and vice versa; and the activation of spinal aminobutyric acid (GABA)-receptors, especially GABAA and GABAB, attenuated the generation of mechanical/heat hyperalgesia but not nonevoked pain after plantar incision.¹⁴³ Similarly, the selective inhibition of spinal pERK1/2 before incision exclusively altered mechanical hyperalgesia after incision but not nonevoked pain.^{160,177} A comparable differentiation has been shown by Reichl et al.¹⁴⁵; the inhibition of glutamate transporter (GluT) upregulation via mitogen-activated protein kinase p38 enhanced acute nonevoked pain after plantar incision, but did not alter mechanical or heat hyperalgesia. Interestingly, the effect of GluT inhibition extended the acute phase and lasted for approximately 2 weeks after incision. Thus, development of prolonged pain after surgery may be a result of impaired GLuT upregulation via p38 indicating a role spinal GluT in the prevention of chronic pain after incision. In the same way, prolonged pain behavior after the plantar incision was reported by inhibition of spinal cannabinoid receptors (CB1 and CB2) and dysregulation of mitogen-activated protein kinase phosphatase-3.^{3,152} Mitogenactivated protein kinase phosphatase-3 knockout mice showed a persistent mechanical hyperalgesia up to 21 days after surgical incision; this correlated with persistent phosphorylation of spinal p38 and extracellular signal-regulated kinases (ERKs)-1/2 in neurons and microglia on postoperative day 12.

Together, these studies indicate the relevance of assessing the effect of various compounds after plantar incision in different pain behavior assays (nonevoked pain behavior, mechanical hyperalgesia), in particular to determine potential clinical relevance (resting pain vs movement evoked pain) after surgery.^{35,166} Secondly, these studies identify factors relevant for prolongation of incisional pain; this may translate to mechanisms relevant for the development of chronic pain after surgery, another important clinical issue.^{39,80}

Many other studies were undertaken to investigate pharmacological options to influence pain and hyperalgesia after incision by spinal modulation. Because of space limitations, we refer to **Table 1** and to a review of studies published earlier than 2007.¹⁴¹

However, we assess here some studies investigating the role of multimodal analgesia for postoperative pain, highly relevant to clinical practice. For example, subcutaneous co-administration of morphine and gabapentin generates a dose-dependent antihyperalgesic synergistic effect.¹³² Similarly, intrathecal administration of gabapentin together with diclofenac, in doses not affecting nociception, reduced secondary hyperalgesia after incision. Thus, diclofenac augments the antihyperalgesic effects of gabapentin through spinal action.¹²⁰ These findings highlight that certain combinations of medicines might offer benefits in the treatment of postsurgical pain and need to be assessed in future clinical studies.

2.2.2. Peripheral sensitization after incision

After plantar incision, peripheral C- and Aδ-fibers are sensitized contributing to nonevoked pain and heat and mechanical hyperalgesia in the early days after incision.^{8,62,133} Some of the underlying mechanisms were investigated within the last 10 years. Combined behavioral and neurophysiological experiments revealed that muscle nociceptors play a central role in the genesis of nonevoked guarding behavior after incision; the mechanism seems to be the spontaneous activity of C-fibers sensitized after incision.^{18,187,188} In contrast, a skin incision without a muscle tissue injury seems to be responsible for inducing mechanical hyperalgesia after incision; muscle injury seems to be not required.^{18,187,188} A series of studies revealed mechanisms inherent in (muscle) fiber sensitization after incision. They basically found a decrease in pH (pH ~6.8) and an increase in lactate concentration (6 mM) that correlated well with a peak in pain behaviors at 1 to 2 days after incision.^{83,184} Similarly, a decrease of oxygen tension in both skeletal muscle and skin was detected immediately after incision for several days⁷⁴; together with an increased lactate and decrease pH (see above), these ischemiclike conditions in the incisional wound are likely to contribute to peripheral sensitization (eg, muscle C-fibers, see⁸¹) and pain behavior (eg, nonevoked pain) after incision.74 Furthermore, a response of muscle C-fibers to antagonists to acid-sensing ion channels (ASICs) in cultured dorsal root ganglion (DRG) neurons points towards the role of tissue acidity in nonevoked pain behavior after incision.⁸¹ Interestingly, the ASIC3 channel is upregulated early after incision in muscle tissue innervating DRG neurons and seems to be important for nonevoked incisional pain, weight-bearing, and also partially for heat hyperalgesia. The role of ASIC3 for heat hyperalgesia is being controversially

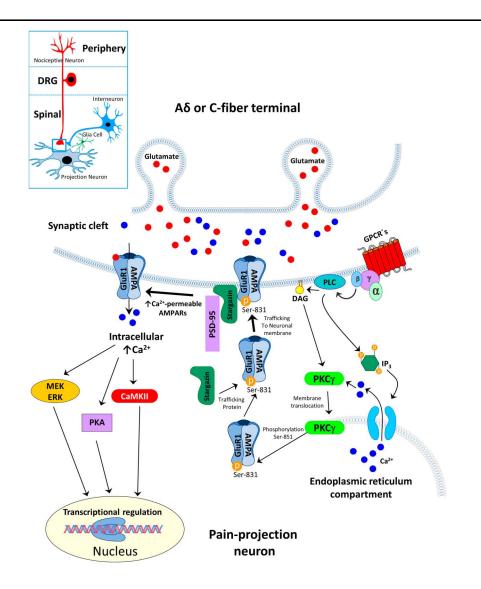


Figure 1. Postoperative pain is associated with increased trafficking of the GluR1 subunit of AMPA-receptors by phosphorylation of Ser-831. Surgical plantar incision enhances the membrane translocation of PKC_Y, but not other PKC isoforms, and induces the phosphorylation the Ser-831 site of the GluR1 subunit from AMPA-receptors. Stargazin interacts with the phosphorylated subunit in the endoplasmic reticulum compartment and trafficking into the neuronal membrane.^{60,181} The enhanced phosphorylation of GluR1 subunit and interaction of stargazin increased insertion of Ca^{2+} -permeable AMAPA receptors in the postsynaptic density (via PSD-95) that enhanced spinal nociceptive transmission. AMPA, α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; Ca, calcium; CaMKII, Ca^{2+} /calmodulin-dependent protein; DAG, diacylglycerin kinase II; ERK, extracellular-signal Regulated Kinase; GluR, AMPA receptor subunit; GPCR's, G-Protein-coupled recetors; IP₃, inosit-1,4,5-trisphosphat; MEK, mitogen-activated protein kinase kinase; P, phosphat; PKA, phospho kinase A; PKC_Yphospho kinase C gamma; PLC, phospholipase C; PSD-95, postsynaptic density-95; Ser, serine.

discussed in the literature with regard to different pain models. Whereas in vivo knockdown or specific inhibition via toxin APETx2a leads to complete remission of heat hyperalgesia after Complete Freund's Adjuvant (CFA) injection,⁴¹ mechanical but not heat hyperalgesia after carrageenan injection into the muscle seems to be ASIC3 mediated.¹⁶¹ Together, the role of ASIC (eg, ASIC3) channel blocker for pain in general and specifically for incisional pain needs further investigation.

The role of specific peripheral mechanisms contributing to hyperalgesia after the incision has been investigated as well. There are 2 important aspects, which will be highlighted here: Firstly there are different nociceptors that seem to be responsible for heat vs mechanical hyperalgesia after incision. Secondly, the molecular mechanisms of the fiber sensitization process responsible for mechanical and heat hyperalgesia after incision differ in many ways to other pain entities. Hints for the first aspect came from early studies using pretreatment of the incision site with a low dose of capsaicin (transient receptor potential vanilloid 1 receptor agonist); this reduced the heat hyperalgesia (and nonevoked pain) but not mechanical hyperalgesia after incision.⁶¹ Consistent with other pain models, there is an upregulation of peripheral (and spinal) transient receptor potential vanilloid 1, which contributes to the development of heat (but not mechanical) hyperalgesia after incision.^{10,138,174} There are many other examples differentiating mechanical and heat hyperalgesia after incision, which we will not address in detail but which are represented in **Table 1**.

One example for the second aspect, a differential sensitization process relevant for hyperalgesia after incision compared to inflammation or neuropathic pain, is the important role of calcitonin gene-related peptide in inflammation-related pain (CFA), which is not involved in spontaneous pain or mechanical

Table 1

Pharmacological modulation of incision-induced pain behavior.

Targets	Incision type	Species	Altered expression	Substance	Pain behavior	Literature
Voltage/Ligand-gated ion channels						
$\alpha \widetilde{2} \delta$ subunit voltage-gated Ca^{2+} channels	Plantar incision	Rat		Gabapentin (s.c.) preincision, S-(+)-3-	↓ Mechanical/heat hyperalgesia	46
				IsobutyIgaba (s.c.) preincision Gabapentin (i.t.)	1 Mechanical hyperalgesia	32
				Gabapentin (p.c.) intracerebroventricular	1 Mechanical hyperalgesia	63
				Gabapentin (s.c) + Morphine (s.c)	Mechanical hyperalgesia Mechanical hyperalgesia	132
	SMIR	Rat		Gabapentin (i.p.) post-SMIR	1 Mechanical hyperalgesia	49
N-type voltage-sensitive Ca ²⁺ channels	Plantar incision	Mice		Armed spider peptide Tx3-5 (i.t.) preincision/	1 Mechanical hyperalgesia	128
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,				postincision		
ASIC3	Plantar incision	Rat	↑4h, DRG	siRNA (i.t.), APETx2 or PcTx1 (i.pl.)	↓ Nonevoked pain, heat hyperalgesia, weight bearing	40
NMDA-receptor	Plantar incision	Rat		MK-801 (NMDA-Antagonist) (i.t.) postincision AP5 (NMDA-Antagonist) (i.t.) postincision	\leftrightarrow Mechanical hyperalgesia, \leftrightarrow nonevoked pain	195
	Plantar incision	Rat		Ro 25-6981 (NR2B antagonist) (i.t.) preincision	↓ Mechanical/thermal hyperalgesia 2 h after incision	70
	Gastroemicus incision	Rat		MK-801 (NMDA-Antagonist) (i.t.) postincision	↓ Secondary mechanical hyperalgesia ↑ motor impairment	135
	SMIR	Rat		MK-801 (i.p.) post-SMIR	↔ Mechanical hyperalgesia	49
AMPA/Kaniat (KA)	Gastroemicus incision	Rat		NBQX (AMPA/KA-Antagonist) (i.t.) JSTX (Ca2+ permeable AMAP/KA Antagonist)	↓ Secondary mechanical hyperalgesia	135
	Plantar incision	Mice		NBQX (AMPA/KA-Antagonist) (i.t.)	↓ Mechanical/heat hyperalgesia	198
5-HT ₃	Plantar incision	Mice		Ondansetron (5-HT ₃ antagonist) (i.pl.)	↓ Mechanical hyperalgesia	126
P2X	Plantar incision	Rat		TNF-ATP (P2X purinoceptor antagonist) postincision (i.pl.)	↓ Heat hyperalgesia	51
P2X7R	SMIR	Rat	↑ 1-22d, spinal	BBG (P2X7R-antagonist) (i.t.) A438079 (P2X7R- antagonist) (i.t.) Preincision, once daily for 7 d	↓ Mechanical hyperalgesia	193
GABA _A	Plantar incision	Rat	\leftrightarrow , spinal	Muscimol IT	\downarrow Mechanical/heat hyperalgesia, \leftrightarrow nonevoked pain	143
TRPV1	Plantar incision	Rat		Capsaicin (i.pl), preincision	↓ Heat hyperalgesia/nonevoked pain, ↔ mechanical hyperalgesia	61
	Plantar incision	Rat		SB366791 (TRPV1 receptor antagonist) (i.t., 15 min preincision; i.pl., 30 min preincision)	↓ Heat hyperalgesia, ↔ mechanical hyperalgesia	174
	Plantar incision	Rat		SB366791 postincision (i.pl.)	1 Heat hyperalgesia	51
	Plantar incision	Mice		TRPV1 ^{-/-} KO	↓ Heat hyperalgesia, ↔ mechanical	10,138
					hyperalgesia	
TRPA1	Plantar incision	Rat		Chembridge-5861528 (TRPA1 antagonist) (i.pl.), 15 min preincision)	↓ Mechanical hyperalgesia/nonevoked pain	182
Neurotransmitter-transporter						
GLAST (glutamate transporter, GT)	Plantar incision	Rat	↑ 2 h–14 d, spinal	DL-TOBA (GT-inhibitor) (i.t.) postincision	\uparrow Long lasting nonevoked pain; \leftrightarrow mechanical/ heat hyperalgesia	144
GLT-1 (glutamate transporter, GT)	Plantar incision	Rat	↑ 24 h, spinal	DL-TOBA (GT-inhibitor) (i.t.) postincision	↑ Long lasting nonevoked pain; \leftrightarrow mechanical/ heat hyperalgesia	
G protein-coupled receptors/channels		· <u> </u>		_		
5-HT (serotonin) _{2A}	Plantar incision	Mice		Ketanserin (5-HT _{2A} antagonist) (i.pl.)	↓ Mechanical hyperalgesia	126
5 (00.000		Rat		TCB-2 (5-HT _{2A} -Agonist) (i.t.) Ketanserin	↑ Mechanical hyperalgesia; ↓ mechanical	42
				$(5-HT_{2A}-Antagonist)$ (i.t.)	hyperalgesia	-
H ₁ (histamine)	Plantar incision	Mice		Promethazine (H1 antagonist) (i.pl.)	↓ Mechanical hyperalgesia	126
GABA _B	Plantar incision	Rat	\leftrightarrow , spinal	Baclofen (i.t.)	↓ Mechanical/heat hyperalgesia, ↔ nonevoked pain	143

(continued on next page)

Table 1 (continued)

Pharmacological modulation of incision-induced pain behavior.

Targets	Incision type	Species	Altered expression	Substance	Pain behavior	Literature
Somatostatin receptor type 2 (sstr2)	Plantar incision	Rat	↑ 8 h, ↓ 1 d, spinal	Somatostatin (i.p.) postincision thrice daily	↓ Mechanical hyperalgesia, ↔ heat hyperalgesia	142
µ-opioid receptor (MOR)	SMIR	Rat		Morphine (i.p.) post-SMIR	↓ Mechanical hyperalgesia	49
	Plantar incision	Rat		Morphine (i.p.) postincision Buprenorphine (i.p.) postincision	 Mechanical hyperalgesia/nonevoked pain 	73
	Plantar incision	Rat		Tramadol (i.pl./i.v) postincision	↓ Mechanical hyperalgesia	162
	Plantar incision	Mice	↔, DRG	Remifentanil (MOR-agonist) (s.c.) postincision	↑ Mechanical/heat hyperalgesia	25
CB (cannabinoid receptor) type 1/2	Plantar incision	Rat		AM281 (CB1 antagonist) and AM630 (CB2 antagonist) (i.p.) postincision (twice daily until POD9)	↑ Mechanical hyperalgesia (up to 15 d)	3
	Plantar incision	Rat		JWH015 (CB2 agonist) (i.t.) postincision	↓ Mechanical hyperalgesia	149
Imidazoline-2 (l ₂)	Plantar incision	Rat		CR4056 (l ₂ receptor ligand) (p.o.) postincision	↓ Mechanical hyperalgesia	88
α_{2B} -adrenoceptor	Plantar incision	Rat		Centhaquin citrate (α 2A/B-adrenoceptor-agonist) (i.p.) postincision	↓ Mechanical/heat hyperalgesia ↓ nonevoked pain	94
Toll-like receptors (TLRs)	_		_			_
TLR4	SMIR	Rat	↑ 5–20 d; DRG	LPS-RS (TLR4 inhibitor) preincision and daily 10 d post (i.t.)	↓ Mechanical hyperalgesia	31
Neurotrophic factors/peptides/mediators						
BDNF (brain-derived neurotrophic factor)	Plantar incision	Rat	↑ 24 h, spinal			107
NGF (nerve growth factor)	Plantar incision	Rat	\uparrow 4 h–10 d, skin \uparrow 4 h, 48 h muscle			164
			↑ 4 h–5 d, skin	anti-NGF antibody (i.p.) preincision	\downarrow Heat hyperalgesia/nonevoked pain, \leftrightarrow	9
Dependent in in	Dianter incision	Det		dee AreQ Leve breddinin (dALDIA) in LIOE 140	mechanical hyperalgesia	05
Bradykinin	Plantar incision	Rat		des-Arg8, Leu8-bradykinin (dALBK) i.v.; HOE-140	↔ Mechanicai/neat hyperaigesia	95
				(bradykinin B ₂ receptor antagonist) i.v. HOE-140 postincision (i.pl.) [des-Arg ¹⁰]-HOE 140	L Heat hyperalgesia	51
				postincision (i.pl.)		51
CGRP	Plantar incision	Mice	\leftrightarrow 4 and 24 h	$\alpha CGRP KO mice$	\leftrightarrow Mechanical/heat hyperalgesia, \leftrightarrow	67
					nonevoked pain, \leftrightarrow paw thickness	0.
C5a (complement component C5)	Plantar incision	Mice	↑ 4 h–3 d, skin ↔ spinal/DRG	PMX53 (C5a receptor antagonist) (i.pl.) preincision	↓ Mechanical/heat hyperalgesia ↓ paw	69
					thickness	
Endothelin-1	Plantar incision	Rat		Endothelin-1 (potent vasoconstrictor) (i.t.)	↓ Mechanical hyperalgesia	30,115
Neuropeptide Y	Plantar incision	Rat	↓ 1, 2 d, muscle	NPY (i.t.)	↓ Mechanical/heat hyperalgesia ↓ nonevoked	190
	DI 1 1 1 1	D /			pain .	101
NF-KB (nuclear factor kappa-light-chain- enhancer of activated B cells)	Plantar incision	Rat	↑ 2 h–3 d, spinal	Pyrrolidinedithiocarbamate (PDTC) (i.t.) preincision	1 Mechanical/heat hyperalgesia	191
Cytokines	_		_	_		_
TNF (Tumor necrosis factor) $\boldsymbol{\alpha}$	SMIR	Rat	↑ 5–20 d, spinal	Thalidomide (TNF- α synthesis inhibitor) (i.p.) 30 min prior SMIR, for 10 d	↓ Mechanical hyperalgesia	171
	SMIR	Rat	↑ 1–22 d, spinal	•		193
IL (interleukin)-1β	Plantar incision	Mice	↑ 2–72 h, hind paw plantar skin	Anakinra (i.pl.)	↓ Mechanical/heat hyperalgesia	153
	Plantar incision	Mice		IL-1αβ KO Mice	↔ Mechanical hyperalgesia	65
	Plantar incision	Mice	↑ 2–48 h, hind paw plantar skin			98
	Plantar incision	Rat	↑ 1–48 h, skin ↑ 1, 4 h muscle			164
	SMIR	Rat	↑ 5–20 d; DRG	IL-1ra (IL-1 receptor antagonist) preincision and	↓ Mechanical hyperalgesia	31
IL-6	Plantar incision	Pot	↑ 4, 48 h, skin ↑ 1 h–10 d muscle	daily 10 d post (i.t.)		164
IL-0 IL-10	Plantar incision	Rat Rat	\uparrow 4, 48 h, skin \uparrow 4 h–10 d muscle			104
		Rat	↑ 5–20 d; DRG	LPS-RS (TLR4 inhibitor) preincision and daily 10	↓ Mechanical hyperalgesia	31
TLR4	SMIR	Bai				

E.M. Pogatzki-Zahn et al. • 2 (2017) e588

ი

PAIN Reports®

(continued on next page)

Table 1 (continued)

Pharmacological modulation of incision-induced pain behavior.

Targets	Incision type	Species	Altered expression	Substance	Pain behavior	Literature
LIF (leukemia inhibitory factor)	Plantar incision	Rat	\uparrow 1 d, skin \uparrow 2, 5 d, muscle	Anti LIF antibody (i.pl.) preincision	\leftrightarrow mechanical/heat hyperalgesia \leftrightarrow nonevoked pain	165
Enzymes						
Tryptase	Plantar incision	Mice		Gabexate (Tryptase-Inhibitor) preincision (i.pl.); ENMD-1068 (PAR-2 antagonist) preincision (i.pl.)	\downarrow Mechanical hyperalgesia, \downarrow nonevoked pain	127
Caspase 1	Plantar incision	Mice	\uparrow 2–72 h, hind paw plantar skin	Ac-YVAD-CMK (caspase-1 inhibitor) (i.pl.) VRTXSD727	↓ Mechanical/heat hyperalgesia, ↓ paw thickness, ↓ hind paw temperature	98
iNOS	Plantar incision	Rat	↑ 4 h, spinal	N-(3-(Aminomethyl)benzyl)acetamidine (1400 W, iNOS-inhibitor) preincision/postincision (i.t./i.pl.)	Preincision/postincision (i.t./i.pl): 1 mechanical/ heat hyperalgesia, 1 nonevoked pain	53
NOS	Plantar incision	Rat		L-NOARG (NO synthase inhibitor) postincision (i.pl.)	↓ Heat hyperalgesia	51
р38	Plantar incision	Rat		SB203580 (p38MAPK-inhibitor) Postincision daily for 3 d (every 12 h, i.t.)	↑ Long lasting nonevoked pain; ↔ mechanical/ heat hyperalgesia	144
p38	Plantar incision	Mice	↑ 5–12 d, spinal	_		152
p-p38	SMIR	Rat	↑ 5–20 d; DRG	SB203580 (p38MAPK-inhibitor) pre-SMIR and daily 10 d post (i.t.)	↓ Mechanical secondary hyperalgesia	31
			↑ 3–11 d; spinal	SB203580 (i.t.) postincision	↓ Mechanical secondary hyperalgesia	66
MEK (pERK1/2)	Plantar incision	Rat	↑ 4 h, spinal	PD98059 (i.t.) preincision	↓ Mechanical hyperalgesia; ↔ heat hyperalgesia and nonevoked pain	177
Mitogen-activated protein kinase phosphatase (MKP)-3	Plantar incision	Mice	↑ 5–12 d, spinal	MKP-3 ^{-/-} KO Mice	↑ Mechanical hyperalgesia up to 21 d, ↑ paw thickness up to 7 d in MKP-3 KO mice	152
				SB239063 and PD98059 (i.t.)	↓ Mechanical hyperalgesia on day 12 in MKP-3 KO mice	
PI (phosphatidylinositol) 3- kinase	Plantar incision	Mice	\uparrow 2 and 6 h, spinal	Wortmannin; LY294002 (i.t., i.p.) preincision	Mechanical/heat hyperalgesia and nonevoked pain, 1 c-Fos positive cells	186
COX (Cylcooxygenase) 2	Plantar incision	Rat	↑ 4 h, 1–3 d, skin	SC-236 (COX-2 inhibitor) (s.c.) preincision	↓ Heat hyperalgesia	26
MAO (monoamine oxidase)-B	Plantar incision	Mice		Selegiline (MAO-B-inhibitor) (p.o.) preincision	↓ Mechanical hyperalgesia	178
Epigenetic Mechanism						
DNA metyltransferase	Plantar incision	Mice		5-AZA-CdR (DNA methyltransferase inhibitor) (i.p.) preincision	\downarrow Mechanical/heat hyperalgesia \downarrow paw edema	170
Histon deacetylase (HDAC)	Plantar incision	Mice		SAHA (Suberoylanilide hydroxamic acid, HDAC- inhibitor) (i.p.) preincision (1 d and 2 h),	↑ Mechanical hyperalgesia ↔ heat hyperalgesia	169
Histon-acetyltransferase (HAT)	Plantar incision	Mice		postincision (daily for 4 d) Anacardic acid (ACA, HAT-inhibitor) (i.p.)	↓ Mechanical hyperalgesia ↔ heat	
	FIGHTER INCISION	IVIICE		preincision (1 d and 2 h), postincision (daily for 4 d)		
Cells						
Neutrophil granulocyte	Plantar incision	Mice		Anti-Ly6G/Gr-1 Antibody (i.p) preincision	↑ Heat hyperalgesia 24 h, ↓ paw edema	153
Mast cell	Plantar incision	Mice		Compound 48/80 (i.pl.) preincision Cromoglycate (i.pl.) preincision Ketotifen (p.o.) preincision	\downarrow Mechanical hyperalgesia, \downarrow nonevoked pain	126,127,192
Microglia	Plantar incision	Rat	↑ 1–4 d, spinal			150
······ ogna	SMIR	Rat	\uparrow 3–12 d, spinal			193
Astrocytes	Plantar incision	Rat	\uparrow 1–4 d, spinal			150
	SMIR	Rat	↑ 3–12 d			193

↑, increased; ↓, decreased; ↔, no alteration; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazole propionate; ASIC, acid-sensing ion channels; CGRP, calcitonin gene-related peptide; DRG, dorsal root ganglion; ERK, extracellular signal-regulated kinase; i.p., intra peritoneal; i.p., intra plantar; i.t, intrathecal; i.v., intravenous; KO, knockout; NMDA, *N*-methyl-b-aspartate; p.o., per oral; POD, postoperative day; s.c., subcutaneous; SMIR, skin/muscle incision and retraction; TRPV1, transient receptor potential vanilloid 1.

and heat hyperalgesia after incision in mice.⁶⁷ Further confirmation for an unique peripheral sensitization process after incision came from a study investigating 84 mRNAs from the neurotrophins and inflammatory cytokines families in skin, muscle, and DRG after plantar incision.¹⁶⁴ As demonstrated, most alterations in the mRNA expression are present in incised skin and muscle, less in the DRG. They occur within the first 48 hours after incision when the mechanical and heat hyperalgesia, as well as guarding pain, is most obvious. In particular, genes for wound healing, reinnervation, and the immune response are differently expressed in comparison to other pain models.¹⁶⁴ More examples supporting this are shown in **Table 1**.

Only recently peripheral inflammatory cell responses were investigated after incision injury in animals. For instance, migration of neutrophilic granulocytes (NGs) into tissue traumatized by incision occurs shortly after surgery, reaching a maximum at 24 hours and declining rapidly to baseline within 3 days.27,45,153 Neutrophilic granulocytess release many wellknown proinflammatory mediators and contain endogenous opioid peptides (met-enkephalin and β -endorphin).¹⁴⁶ Sahbaie and colleagues demonstrated that the systemic depletion of NGs (with Gr-1 antibody) reduced the paw edema and the interleukin-1β (IL-1β) concentration, but increased significantly the heat hyperalgesia for 24 hours and did not alter the mechanical hyperalgesia after plantar incision in mice.¹⁵³ This suggests a role of endogenous opioids (released by NGs) for incisional pain similar to that shown in inflammatory pain models.¹⁴⁷ However, another study from Carreira et al.27 used the same method to deplete NGs but showed attenuation of mechanical hyperalgesia after incision; they suggested the role of CXCL-1-CXCR1/2 recruitment of NGs after incision. Presumably, proinflammatory mediators from NGs (IL-1ß and C5a) may play a role for hyperalgesia after incision.^{69,99,153} Thus, as the local concentration of C5a after the incision is increased, this complement factor may provide a novel target for analgesic drug development.^{69,99} However, the exact role of NGs in postoperative pain is currently unclear because of the contradictory results of both NGdepletion studies.27,153

The prevention of mast cell degranulation (mast cell membrane stabilization with Cromoglycate) or depletion of mast cell mediators (with Compound 48/80 prior to incision), thus inhibiting the effect of histamine, 5-HT, and tryptase (a serine protease localized exclusively in mast cells) reduce the mechanical hyperalgesia and nonevoked pain in mice.^{127,192} Similar effects are observed by administration of tryptase-binding receptor antagonist (protease-activated receptor 2, PAR2).¹²⁷ These results suggest a role of mast cells contributing to hypersensitization after incision. However, it should be noted that the mast cell degranulation alone seems insufficient to promote pain (eg, allergies, some drug administration).

2.2.3. Neuroplastic changes in the brain after incision

Our understanding of the processing of pain in the human brain has improved significantly¹⁰⁵; however, activity and neuroplasticity in the pain matrix after incision contributing to pain-related behavior remains poorly understood. A recent study in animals indicates directly how the brain reacts to an incision compared to inflammation by using functional magnetic resonance imaging to assess oxygenation levels of the blood as an indirect measure of neural activity and functional magnetic resonance spectroscopy.⁵ Mechanical stimulation of the incised hind paw showed blood oxygen level dependent (BOLD) signals, which differed significantly in quantity and quality to BOLD signals related to

mechanical stimulation of the hind paw after CFA inflammation. Similarly, BOLD signals after electrical stimulation in both animal models differed to mechanical stimulation.⁵ However, GABA levels (measured with functional magnetic resonance spectroscopy) increased in both pain models within the thalamus, during rest and during mechanical stimulation.⁵ Thus, the thalamus might play a central role for hyperalgesia regardless of the pain entity and GABA neurotransmission might be involved. Further imaging studies investigated central neuroplastic changes relevant for the development of more chronic pain after incision. Human functional magnetic resonance imaging studies confirmed the role the thalamus139 and indicated a lack of descending inhibition in enhanced pain responses of patients with chronic pain after incision.^{22,23} By using the positron emission tomography-method, Romero et al.¹⁴⁸ demonstrated long-lasting changes in glucose metabolism in central painrelated areas and opioid-related pathways up to 21 days after incision. The metabolic changes in the pain matrix were positively correlated with hypersensitivity caused by naloxone injection in rats which received remifentanil anesthesia earlier.148 This suggests long-lasting neuroplastic adaptations in central opioid circuits possibly contributing to chronic pain after incision.

Systemic administration of gabapentin, or inhibition of ERK within the anterior cingulate cortex (ACC) early after surgery, but not systemic morphine, reduced incision-induced anxiety.^{36,86,97} Interestingly, ERK-inhibition reduced anxiety-like behavior and mechanical hyperalgesia early after surgery (1 hour), but (different to inflammatory and neuropathic pain) in the later phase (6 hour), it exclusively reduced anxiety.

A recent study showed that presurgical or postsurgical exposure to stress factors like immobilization and force swimming test does not change the basal pain perception to different stimuli, such as mechanical, hot and cold, but prolongs the duration of incision-induced hyperalgesia after incision.²⁶ By blocking spinal glucocorticoid receptors or removing the adrenal glands, stress-induced prolongation of incision-induced hyperalgesia was abrogated. These results indicate a direct connection between the activation of the hypothalamic-pituitary-adrenal axis through presurgery and postsurgery stress and duration of incision-induced hypersensitivities. Maternal adversity in the form of perinatal stress and depression may also activate the hypothalamic-pituitary-adrenal system and increased incisional pain in adult rats.⁸⁵ Thus, acute stress might be—similar to other psychological factors-relevant for the transformation of acute into chronic pain after surgery.²⁶

2.3. Epigenetic modulation after incision

In recent years, a growing body of publications has examined the potential of the epigenetic modulation, such as DNA methylation, histone acetylation and noncoding RNA, for chronic pain conditions.^{90,131} Some epigenetic results are now available for acute postoperative incisional pain in animals.154,169,170 An incision seems to induce changes in global DNA methylation, which leads to increased incision-induced hyperalgesia. Peripheral and spinal inhibition of a DNA methyltransferase via 5-Aza-2'deoxycytidine led to attenuation of the mechanical and heat hyperalgesia and reduced hind paw swelling.¹⁷⁰ Furthermore, epigenetic modulation of spinal Bdnf- (brain-derived neurotropic factor) and Pdyn- (prodynorphin) genes via acetylated Histone H3K9 in mice under chronic opioid exposure seems to be involved in opioid tolerance after incision.154 Notably, different histone deacetylase inhibitors, such as suberoylanilide hydroxamic acid or trichostatin A, attenuated heat hyperalgesia⁷ or

mechanical hyperalgesia¹⁵⁹ in an inflammatory (CFA) and in a neuropathic pain model, but exacerbated mechanical hyperalgesia after incision in mice.¹⁶⁹ Taken together, these first epigenetic results suggest that peripheral and spinal epigenetic modulation are involved in increased postoperative nociceptive sensitization (**Fig. 2**). The additional influence of epigenetic regulation by drugs (eg, opioids) or environmental input could induce long-lasting changes in the pain system, one possible cause for a transformation from acute to chronic conditions.

2.4. New drugs in the pipeline

In recent years, nonclassical active pharmaceutical ingredients from venoms of spiders^{128,163} or from other sources^{66,82,84,100,106,122,155,180,200,201} have been tested for their potential to reduce mechanical/heat hyperalgesia and/or nonevoked pain or gait abnormalities after incision. Some substances act directly at receptors, such as the vitexin, a C-glycosylated flavone present in several medicinal herbs, which binds to GABA_A and opioid receptors.²⁰⁰ Some more recent studies report that curcumin (diferuloylmethane), a phenolic constituent of turmeric, reduces incisional inflammation, nociceptive hypersensitivity,²⁰¹ spontaneous pain, and functional gait abnormalities by increasing the level of TGF- β in incisional skin.¹⁵⁵ Other substances block spinal N-type voltage-sensitive Ca²⁺ channels and reduce mechanical hyperalgesia after incision without altering the normal nociceptive sensitivity, eg, venom of the Brazilian armed spider *Phoneutria nigriventer*.¹²⁸ These nonclassical active pharmaceutical substances have characteristics making them suitable as potential candidates for the development of new analgesics for postoperative pain.

2.5. Challenges in the translation of animal studies to man

The translation of findings from animals to patients (and back) is one of the greatest challenges in modern (pain) research. Previous studies have shown that the direct translation of results from rodent experiments is difficult and should be performed and interpreted with caution.¹¹¹ One major disadvantage of many animal pain models is that they are not representing the pain etiology or pain entity they are translated to.111,112 The development of more sophisticated animal models, mimicking human pain conditions to improve bench-to-bedside translation, is part of the current discussion.^{24,34,111} The same, in fact, relates to human experimental pain models and their translation to patients and needs attention as well.¹⁰³ Furthermore, the portfolio of behavioral pain measurements in animals does not represent well clinically relevant pain aspects in humans. For several years, we and others assess spontaneous pain behavior in rats after incision representative of pain at rest in patients.^{19,133,143,144} Hyperalgesia to pinprick stimuli are assessed in rats frequently; interestingly, the same stimuli are used to assess hyperalgesia around a surgical wound in patients, 37,167 the mechanisms behind this might be relevant for central sensitization and prolongation of pain after surgery and are therefore useful to study.44,93 More recently, movement-evoked pain and painrelated anxiety and depression are explored in animals after incision; presumably, these might be other translatable

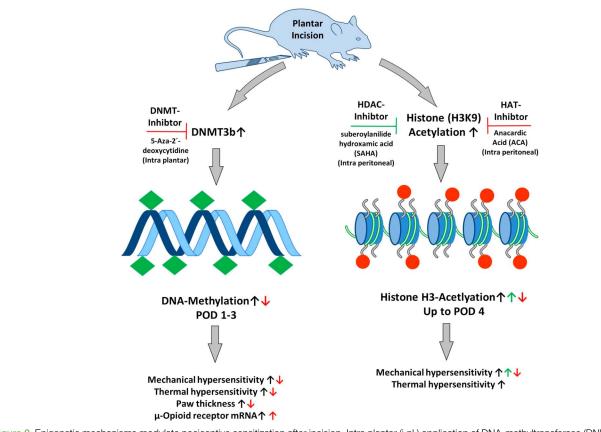


Figure 2. Epigenetic mechanisms modulate nociceptive sensitization after incision. Intra plantar (i.pl.) application of DNA-methyltransferase (DNMT) inhibitor (5-Aza-2'-deoxycytindine) reduced DNA-methylation and attenuated mechanical/heat hyperalgesia (↓), paw thickness (↓), and reinforced peripheral µ-opioid receptor mRNA expression (↑).¹⁷⁰ The inhibition of Histon-deacetylase (HDAC) with suberoylanilide hydroxamic acid (SAHA, i.p.) reinforced mechanical hyperalgesia (↑). However, treatment of histon acetyltransferase inhibitor anacardic acid (ACA, i.p.) attenuated mechanical hyperalgesia (↓).

pain-related behaviors and should be focused on in the future.^{111,112,176} Together, adequate animal pain models (eg, incisions for surgical pain,^{18,19}) and relevant pain behavior assessed in these models combined with experimental human studies¹³⁹ will pave the way for a refined and more applicable bench-to-bedside translation in postoperative pain.

3. Evidence for clinical management of postoperative pain

The preceding part of this article has outlined quite clearly that postoperative pain as a manifestation of acute pain is markedly more complex than originally thought. The complexity of postoperative pain requires, therefore, considerably more than simply applying opioids as required. It is, therefore, not surprising that there is now a large scientific evidence basis for the management of postoperative pain. This has been summarized recently in the fourth edition of the document "Acute Pain Management: Scientific Evidence", published by the Australian and New Zealand College of Anaesthetists and its Faculty of Pain Medicine.¹⁵⁷ The sheer size of this document reflects the complexity quite well; the document has nearly 650 pages, assesses over 8500 references, and condenses the evidencebased information in 669 key messages. It is obvious that it would be impossible to summarize that entire document in this article. The article will, therefore, concentrate on overarching key strategies and specific treatment options as far as they are of more general importance.

3.1. Multimodal analgesia

The concept of multimodal ("balanced") analgesia has been introduced into the management of postoperative pain more than 20 years now.⁷⁹ The concept suggests that it is superior to combine analgesics with different modes or sites of action, as such combinations will improve analgesia, reduce opioid requirements (so-called "opioid-sparing" effect), and thereby reduce the adverse effects of opioids.¹⁹⁴ This concept is in line with the observations in basic science models that combinations of, for example, peripherally and centrally acting analgesic compounds are of value here. In addition, such multimodal approaches show further benefits with regard to other postoperative outcomes. Just to mention a few examples here, after total knee joint replacement, multimodal analgesia increases patient satisfaction scores and permits earlier achievement of milestones of physical therapy.⁸⁷ Similarly, after spinal surgery, use of multimodal analgesia improves postoperative mobilization.¹⁰⁸ In view of data showing that increased opioid use, with resulting opioid adverse effects (in particular nausea, vomiting, and constipation), delays recovery after surgery and thereby leads to extended hospital stay with increased costs,¹²⁴ multimodal analgesia would reduce such complications, speed up recovery, and possibly even reduce hospital costs. This is nicely reflected in the fact that more or less all approaches using enhanced recovery after surgery protocols include multimodal analgesia concepts as one component.⁷⁸ However, it has to be acknowledged that multimodal analgesia by itself does not result in early rehabilitation or enhanced recovery after surgery. To achieve these goals, multimodal analgesia needs to be integrated into a holistic and multidisciplinary approach to the postoperative period.¹¹⁹ In particular, again the importance seems to be the opioid-sparing effect, as avoidance of oral opioids in the postoperative period after colorectal surgery reduces the length of stay.² This is confirmed by other data that show that opioid-sparing analgesic techniques reduce post-operative ileus. $^{11}\,$

In this context, it is interesting to look in more detail at which compounds are actually useful components of multimodal analgesia and should thereby be combined with opioids.

3.2. Reduction of peripheral sensitisation due to inflammation

3.2.1. Nonsteroidal anti-inflammatory drugs

As outlined before, peripheral sensitisation of nociceptors leading to primary hyperalgesia is an important contributor to postoperative pain. It is, therefore, not surprising that in clinical reality drugs which are reducing peripheral prostaglandin concentration and thereby leading to reduced peripheral sensitisation are a useful component of multimodal analgesia. In randomized controlled trials⁵² and their meta-analyses, these drugs fulfill all 3 requirements on multimodal analgesia, ie, improved analgesia, reduced opioid requirements, and reduced adverse effects of opioids.¹⁰⁹ A reduction of postoperative nausea and vomiting, one of the most disturbing adverse effects of opioids in the early postoperative period, is reported. COX-2 selective nonsteroidal anti-inflammatory drugs (NSAIDs) (coxibs) have similar efficacy to nonselective NSAIDs.¹¹³ However, they are superior in the postoperative setting because of reduced adverse events.

With regard to bleeding complications, coxibs lack platelet inhibition¹¹⁶ and therefore cause less postoperative blood loss than nonselective NSAIDs⁶⁴ and are comparable to placebo.¹⁰¹ Furthermore, these compounds show a gastric ulceration rate similar to placebo and significantly lower than nonselective NSAIDs in high-risk patients, even for short-term use.⁵⁶ Coxibs do not cause bronchospasm in patients with NSAID-exacerbated respiratory disease, a complication, which can occur with nonselective NSAIDs.¹¹⁴ Concerns about cardiovascular complications of coxibs, identified with rofecoxib and leading to its withdrawal,²¹ have not eventuated with short-term use of parecoxib¹⁵⁸ or even long-term use of celecoxib.¹²³

The effect of NSAIDs may be enhanced by the addition of paracetamol as the combination of paracetamol and NSAIDs is more effective than either compound alone. $^{\rm 129}$

3.2.2. Corticosteroids

Dexamethasone as an anti-inflammatory corticosteroid is widely used in anesthetic practice to prevent nausea and vomiting.³⁸ Other effects include an improvement of the quality of recovery and reduced fatigue.¹¹⁷ In addition, dexamethasone in therapeutic doses reduces postoperative pain scores and opioid consumption.¹⁷⁹ However, these effects are small and only statistically significant and might not be of clinical relevance. In addition, there is still an ongoing debate about potential risks of perioperative steroid administration with regard to induction of hyperglycemia, increasing risk of infection and bleeding and possibly malignancy recurrence.¹⁷³ A large randomized controlled trial currently underway will try to address these unresolved questions (https://www.paddi.org.au).

3.3. Reduction of secondary hyperalgesia due to central sensitisation

As outlined in detail in the preceding part of the article, it is obvious that central sensitisation plays a much more relevant role in the development of postoperative pain than previously thought. Findings in this setting illustrate that contrary to common beliefs, central sensitisation can occur within a very short time span and can significantly contribute to the overall picture of a postoperative pain state. It is therefore not surprising that there is increasing interest in the use of medications, which are attenuating such states of secondary hyperalgesia due to central sensitisation. A number of these compounds have become components of clinically useful multimodal analgesia. These include the NMDA receptor ketamine, the alpha-2-delta ligands pregabalin and gabapentin and the alpha-2-adrenergic agonist's clonidine and dexmedetomidine.

3.3.1. Ketamine

Ketamine is a noncompetitive antagonist of the NMDA receptor when used in subanaesthetic doses. Meta-analyses support the use of perioperative IV infusions of low-dose ketamine (in the range of around 0.1 mg·kg⁻¹·h⁻¹) with resulting improved analgesia, an opioid-sparing effect and reduction of opioid side effects such as postoperative nausea and vomiting.⁸⁹ The benefits of ketamine are, in particular, seen in patients after major surgeries that are suffering severe pain (VAS >7/10). This explains why these benefits have been shown after thoracic and upper abdominal and major orthopedic surgery. In addition, not only in laboratory settings but also in the clinical settings, NMDA receptor antagonists such as ketamine are reducing the development of opioid-induced hyperalgesia, for example after remifentanil use.¹⁸⁵ It is, therefore, not surprising that ketamine is also a useful analgesic in the settings of patients with established opioid tolerance^{13,175} and preoperative high opioid use.¹⁰² Similar findings with regard to opioidsparing and improvement of analgesia have also been found with a perioperative infusion of magnesium which has to be regarded as another NMDA-receptor antagonist.¹¹⁸ Last, not least, there are data supporting the effect of perioperative ketamine in reducing the incidence of chronic postsurgical pain (see preventive analgesia).²⁹

3.3.2. Alpha-2-delta ligands

The alpha-2-delta ligands pregabalin and gabapentin, which were developed for the treatment of neuropathic pain where they find their most relevant indication, have also been shown to have an effect on central sensitisation and are, therefore, for example, indicated in the treatment of fibromyalgia with FDA approval. In this context, it is, therefore, not surprising that for both compounds there is evidence from meta-analyses supporting their role as a component of multimodal analgesia.^{110,172} Data show reduced pain scores as well as reduced opioid consumption and thereby reduced adverse effects of opioids. This beneficial effect can be achieved with a single preoperative dose. In addition, the anxiolytic effect of these drugs should be taken into consideration and might be an additional beneficial factor,¹³⁰ again in analogy to the basic science findings.

3.3.3. Alpha-2-adrenergic agonists

Perioperative systemic use of alpha-2 agonists such as clonidine and dexmedetomidine also fulfills the criteria for successful multimodal analgesia resulting in reduced pain intensity, opioid consumption, and nausea.¹⁵ However, with their use, potential adverse effects such as hypotension and bradycardia and possibly dose-dependent sedation need to be considered. 11

In conclusion, the concept of multimodal analgesia is supported by a large clinical data set, which shows that addressing both peripheral and central sensitisation after surgical incision leads to improved analgesia with reduced opioid requirements and thereby opioid side effects. Current data do not permit a decision on which combinations of how many components may comprise multimodal analgesia after what kind of surgical incision. However, from a practical point of view it seems to become increasingly routine in the setting of acute pain services to use an NSAID (best seems to be a COX-2 selective one) routinely, paracetamol and (eg, before major procedures, in healthy patients) an alpha-2-delta ligand as standard components of multimodal analgesia with rescue opioid being available on top of this. Other components such as ketamine and alpha-2 agonists are used in specific indications. The role of corticosteroids is not yet fully established in this setting and requires further investigation.

3.4. Procedure-specific postoperative pain management

The basic science data presented above suggest that depending on the type and location of the incisional model, different pain states result. Again this is confirmed by clinical data which show that analgesics may have different efficacies in different surgical settings.⁵⁷ This is true even for a simple analgesic like paracetamol, which is significantly less effective after orthopedic surgery (relative risk reduction 1.87) than after dental extraction (relative risk reduction 3.77). Current large meta-analyses used to calculate the number needed to treat of analgesic agents might pool data from different postoperative pain states and thereby ignore the specific effects of a specific analgesic in a specific postoperative pain state.⁵⁷ In addition, it has to be acknowledged that different surgical procedures do not only cause different pain states but also pain states of different severities in different locations. These observations and the support by basic science have led to the development of the concept of procedure-specific postoperative pain management. Treatment pathways for the management of postoperative pain after different surgical procedures can be developed in an evidence-based fashion by analyzing the literature specific to the respective procedure.72 Guidelines for a number of surgical procedures of different types have been developed by the PROSPECT initiative with the consideration of primarily procedure-specific evidence (www. postoppain.org). The guidelines can be found at the website of this initiative, and most of the guidelines have been accompanied by publications in the peer-reviewed literature with regard to these specific procedures.

3.5. Acute postoperative neuropathic pain

Neuropathic pain is still widely considered a chronic pain state. However, clinical experience and clinical data, as well as the animal data provided above, are showing that neuropathic pain can occur acutely and can be a component of postoperative pain. The literature shows that for example following sternotomy 50% of patients presented with dysaesthesia in the early postoperative period as a manifestation of acute neuropathic pain.⁴ As in other chronic neuropathic pain states, a manifestation of neuropathic pain is accompanied by increased pain severity. Similarly, after cancer surgery, use of a screening tool in a prospective setting found acute neuropathic pain in the first week postoperatively in around 10% of the cases.⁶⁸ A case series in a general surgical population identified an incidence in the range of 3% to 4%.¹⁵¹ It is, therefore, relevant for clinicians looking after postoperative patients (and even more so after post-traumatic patients) to identify a neuropathic pain component, which might then require appropriate treatment, for example, with alpha-2-delta ligands or ketamine on top of commonly used opioids.

3.6. Preventive analgesia

Nerve injury leading to acute neuropathic pain is one of the major risk factors for the progression of acute to chronic pain.¹ Chronic postsurgical pain is much more common than usually thought and the estimated incidence of chronic severe pain with an intensity of more than 5/10 occurs in 2% to 10% of patients after surgery.¹⁵⁷ Besides nerve injury as a risk factor, other risk factors include preexisting preoperative pain, preoperative anxiety, catastrophizing as well as genetic predisposition. Postoperative factors are again severe acute postoperative pain and psychosocial risk factors similar to those in the preoperative setting. This is in line with some of the observations with regard to behavioral changes observed in animal studies. In view of nerve injury as a risk factor, it is not surprising that a large percentage of chronic postsurgical pain has features of neuropathic pain.⁷¹

With regard to the prevention of such pain states, there has been a significant change in concepts away from the previously supported pre-emptive analgesia approach to a preventive analgesia approach.⁹¹ Pre-emptive analgesia is defined as a preoperative treatment, which is more effective than the identical treatment administered after the incision. The key difference is the timing of the administration. It has become increasingly obvious that preventive analgesia, ie, an analgesic effect beyond its expected duration is a more useful approach. For practical terms, this has been defined as analgesia which persists beyond 5.5 half-lives of a medicine.⁷⁶ In the context of prevention of chronic surgical pain, it is also important to maximize the benefits of any analgesic strategy by continuing the treatment into the postoperative period as long as the sensitising stimulus persists. With regard to the preventive effect on chronic postsurgical pain, best data are available for the use of regional or neuraxial analgesia. A meta-analysis supports the use of epidural analgesia after thoracotomy and the use of paravertebral blocks after breast cancer surgery.⁶ Data at lower levels of evidence support the use of spinal anesthesia over general anesthesia for Caesarean section¹²¹ and hysterectomy,¹⁷ as well as the use of epidural analgesia after major abdominal surgery⁹² and for amputations with regard to the reduction of phantom limb pain.⁵⁴ Interesting specifically for phantom limb pain is the idea of decreasing the already existing preoperative pain to reduce phantom limb pain after surgery; here, both epidural analgesia and systemic opioids seem to be effective.⁷⁵ Other data support the use of perioperative local anesthetics for wound infiltration.^{14,16} However, it is important in this context to realize that intravenous lignocaine also has preventive effects on acute postoperative pain¹² and in one small study reduced chronic postsurgical pain.58

Further evidence supports the use of ketamine as a preventive treatment for chronic postsurgical pain. A meta-analysis of 14 rather small randomized controlled trials shows a reduction of chronic postsurgical pain at 3 and 6 months, in particular if ketamine is administered for more than 24 hours perioperatively.²⁹ With regard to the alpha-2-delta ligands gabapentin and pregabalin, there may be an effect on preventing chronic postsurgical pain; however, the data are currently rather contradictory and looking at only a few usually small studies with a large degree of heterogeneity so that uncertainty continues here.^{29,33} In conclusion, the current evidence base for the management of acute postoperative pain is significant. Much of the clinical data, which support certain approaches are in line with findings in the experimental setting. However, there are a number of discrepancies here and it will be interesting to see if the development of new compounds based on basic science studies will further help to improve the management of acute postoperative pain. It remains important to realize that postoperative pain management is not only a humanitarian task to reduce patient suffering and improve patient satisfaction but that treatment of acute postoperative pain has the potential to reduce morbidity possibly even mortality after surgery and in parallel enhance recovery, improve rehabilitation, reduce hospital stay and thereby overall hospital cost.

Disclosures

Stephan Schug: The Anesthesiology Unit of the University of Western Australia, but not Stephan Schug personally, has received research, travel funding, and speaking and consulting honoraria from bioCSL/Seqirus/Grunenthal, iXBiopharma, Mundipharma, and Pfizer within the last 2 years. Esther Pogatzki-Zahn received travel funding, and speaking and consulting honoraria from Grünenthal, Mundipharma, MSD, Fresenius Kabi, Janssen Cilag, The Medicine Company and ArcelRx and research support from Mundipharma (paid to the hospital).

Article history:

Received 9 December 2016 Received in revised form 4 February 2017 Accepted 6 February 2017

References

- Aasvang EK, Brandsborg B, Christensen B, Jensen TS, Kehlet H. Neurophysiological characterization of postherniotomy pain. PAIN 2008;137:173–81.
- [2] Ahmed J, Lim M, Khan S, McNaught C, Macfie J. Predictors of length of stay in patients having elective colorectal surgery within an enhanced recovery protocol. Int J Surg 2010;8:628–32.
- [3] Alkaitis MS, Solorzano C, Landry RP, Piomelli D, DeLeo JA, Romero-Sandoval EA. Evidence for a role of endocannabinoids, astrocytes and p38 phosphorylation in the resolution of postoperative pain. PLoS One 2010;5:e10891.
- [4] Alston RP, Pechon P. Dysaesthesia associated with sternotomy for heart surgery. Br J Anaesth 2005;95:153–8.
- [5] Amirmohseni S, Segelcke D, Reichl S, Wachsmuth L, Görlich D, Faber C, Pogatzki-Zahn E. Characterization of incisional and inflammatory pain in rats using functional tools of MRI. NeuroImage 2016;127:110–22.
- [6] Andreae MH, Andreae DA. Regional anaesthesia to prevent chronic pain after surgery: a cochrane systematic review and meta-analysis. Br J Anaesth 2013;111:711–20.
- [7] Bai G, Wei D, Zou S, Ren K, Dubner R. Inhibition of class II histone deacetylases in the spinal cord attenuates inflammatory hyperalgesia. Mol Pain 2010;6:51.
- [8] Banik RK, Brennan TJ. Sensitization of primary afferents to mechanical and heat stimuli after incision in a novel in vitro mouse glabrous skinnerve preparation. PAIN 2008;138:380–91.
- [9] Banik RK, Subieta AR, Wu C, Brennan TJ. Increased nerve growth factor after rat plantar incision contributes to guarding behavior and heat hyperalgesia. PAIN 2005;117:68–76.
- [10] Barabas ME, Stucky CL. TRPV1, but not TRPA1, in primary sensory neurons contributes to cutaneous incision-mediated hypersensitivity. Mol Pain 2013;9:9.
- [11] Barletta JF, Asgeirsson T, Senagore AJ. Influence of intravenous opioid dose on postoperative ileus. Ann Pharmacother 2011;45:916–23.
- [12] Barreveld A, Witte J, Chahal H, Durieux ME, Strichartz G. Preventive analgesia by local anesthetics: the reduction of postoperative pain by peripheral nerve blocks and intravenous drugs. Anesth Analg 2013;116: 1141–61.
- [13] Barreveld AM, Correll DJ, Liu X, Max B, McGowan JA, Shovel L, Wasan AD, Nedeljkovic SS. Ketamine decreases postoperative pain scores in patients

taking opioids for chronic pain: results of a prospective, randomized, double-blind study. Pain Med 2013;14:925–34.

- [14] Batoz H, Verdonck O, Pellerin C, Roux G, Maurette P. The analgesic properties of scalp infiltrations with ropivacaine after intracranial tumoral resection. Anesth Analg 2009;109:240–4.
- [15] Blaudszun G, Lysakowski C, Elia N, Tramer MR. Effect of perioperative systemic alpha2 agonists on postoperative morphine consumption and pain intensity: systematic review and meta-analysis of randomized controlled trials. Anesthesiology 2012;116:1312–22.
- [16] Blumenthal S, Dullenkopf A, Rentsch K, Borgeat A. Continuous infusion of ropivacaine for pain relief after iliac crest bone grafting for shoulder surgery. Anesthesiology 2005;102:392–7.
- [17] Brandsborg B. Pain following hysterectomy: epidemiological and clinical aspects. Dan Med J 2012;59:B4374.
- Brennan TJ. Pathophysiology of postoperative pain. PAIN 2011;152: S33.
- [19] Brennan TJ, Vandermeulen EP, Gebhart GF. Characterization of a rat model of incisional pain. PAIN 1996;64:493–501.
- [20] Brennan TJ, Zahn PK, Pogatzki-Zahn EM. Mechanisms of incisional pain. Anesthesiol Clin North America 2005;23:1–20.
- [21] Bresalier RS, Sandler RS, Quan H, Bolognese JA, Oxenius B, Horgan K, Lines C, Riddell R, Morton D, Lanas A, Konstam MA, Baron JA. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med 2005;352:1092–102.
- [22] Burgmer M, Pfleiderer B, Maihöfner C, Gaubitz M, Wessolleck E, Heuft G, Pogatzki-Zahn E. Cerebral mechanisms of experimental hyperalgesia in fibromyalgia. Eur J Pain 2012;16:636–47.
- [23] Burgmer M, Pogatzki-Zahn E, Gaubitz M, Wessoleck E, Heuft G, Pfleiderer B. Altered brain activity during pain processing in fibromyalgia. NeuroImage 2009;44:502–8.
- [24] Burma NE, Leduc-Pessah H, Fan CY, Trang T. Animal models of chronic pain: advances and challenges for clinical translation. J Neurosci Res 2016. doi: 10.1002/jnr.23768. [Epub ahead of print].
- [25] Cabañero D, Célérier E, García-Nogales P, Mata M, Roques BP, Maldonado R, Puig MM. The pro-nociceptive effects of remiferitanil or surgical injury in mice are associated with a decrease in delta-opioid receptor mRNA levels: prevention of the nociceptive response by on-site delivery of enkephalins. PAIN 2009;141:88–96.
- [26] Cao J, Wang P, Tiwari V, Liang L, Lutz BM, Shieh K, Zang W, Kaufman AG, Bekker A, Gao X, Tao Y. Short-term pre- and post-operative stress prolongs incision-induced pain hypersensitivity without changing basal pain perception. Mol Pain 2015;11:73.
- [27] Carreira EU, Carregaro V, Teixeira MM, Moriconi A, Aramini A, Verri WA, Ferreira SH, Cunha FQ, Cunha TM. Neutrophils recruited by CXCR1/2 signalling mediate post-incisional pain. Eur J Pain 2013;17:654–63.
- [28] Castel D, Willentz E, Doron O, Brenner O, Meilin S. Characterization of a porcine model of post-operative pain. Eur J Pain 2014;18:496–505.
- [29] Chaparro LE, Smith SA, Moore RA, Wiffen PJ, Gilron I. Pharmacotherapy for the prevention of chronic pain after surgery in adults. Cochrane Database Syst Rev 2013;7:CD008307.
- [30] Chen G, Tanabe K, Yanagidate F, Kawasaki Y, Zhang L, Dohi S, lida H. Intrathecal endothelin-1 has antinociceptive effects in rat model of postoperative pain. Eur J Pharmacol 2012;697:40–6.
- [31] Chen H, Jiang Y, Sun Y, Xiong Y. p38 and interleukin-1 beta pathway via toll-like receptor 4 contributed to the skin and muscle incision and retraction-induced allodynia. J Surg Res 2015;197:339–47.
- [32] Cheng JK, Pan HL, Eisenach JC. Antiallodynic effect of intrathecal gabapentin and its interaction with clonidine in a rat model of postoperative pain. Anesthesiology 2000;92:1126–31.
- [33] Clarke H, Bonin RP, Orser BA, Englesakis M, Wijeysundera DN, Katz J. The prevention of chronic postsurgical pain using gabapentin and pregabalin: a combined systematic review and meta-analysis. Anesth Analg 2012;115:428–42.
- [34] Cobos EJ, Ghasemlou N, Araldi D, Segal D, Duong K, Woolf CJ. Inflammation-induced decrease in voluntary wheel running in mice: a nonreflexive test for evaluating inflammatory pain and analgesia. PAIN 2012;153:876–84.
- [35] Cooper SA, Desjardins PJ, Turk DC, Dworkin RH, Katz NP, Kehlet H, Ballantyne JC, Burke LB, Carragee E, Cowan P, Croll S, Dionne RA, Farrar JT, Gilron I, Gordon DB, Iyengar S, Jay GW, Kalso EA, Kerns RD, McDermott MP, Raja SN, Rappaport BA, Rauschkolb C, Royal MA, Segerdahl M, Stauffer JW, Todd KH, Vanhove GF, Wallace MS, West C, White RE, Wu C. Research design considerations for single-dose analgesic clinical trials in acute pain: IMMPACT recommendations. PAIN 2016;157:288–301.
- [36] Dai R, Li C, Zhang J, Li F, Shi X, Zhang J, Zhou X. Biphasic activation of extracellular signal-regulated kinase in anterior cingulate cortex distinctly regulates the development of pain-related anxiety and

mechanical hypersensitivity in rats after incision. Anesthesiology 2011; 115:604–13.

- [37] De Kock MF, Lavand'homme PM. The clinical role of NMDA receptor antagonists for the treatment of postoperative pain. Best Pract Res Clin Anaesthesiol 2007;21:85–98.
- [38] De Oliveira GS Jr, Castro-Alves LJ, Ahmad S, Kendall MC, McCarthy RJ. Dexamethasone to prevent postoperative nausea and vomiting: an updated meta-analysis of randomized controlled trials. Anesth Analg 2013;116:58–74.
- [39] Deumens R, Steyaert A, Forget P, Schubert M, Lavand'homme P, Hermans E, Kock M de. Prevention of chronic postoperative pain: cellular, molecular, and clinical insights for mechanism-based treatment approaches. Prog Neurobiol 2013;104:1–37.
- [40] Deval E, Noël J, Gasull X, Delaunay A, Alloui A, Friend V, Eschalier A, Lazdunski M, Lingueglia E. Acid-sensing ion channels in postoperative pain. J Neurosci 2011;31:6059–66.
- [41] Deval E, Noël J, Lay N, Alloui A, Diochot S, Friend V, Jodar M, Lazdunski M, Lingueglia E. ASIC3, a sensor of acidic and primary inflammatory pain. EMBO J 2008;27:3047–55.
- [42] Dong R, Yu B, Chen L, Yu W. The 5-HT2A receptor potassium-chloride cotransporter 2 signaling pathway in a rat incision pain model. Exp Ther Med 2016;12:3583–88.
- [43] Duarte AM, Pospisilova E, Reilly E, Mujenda F, Hamaya Y, Strichartz GR. Reduction of postincisional allodynia by subcutaneous bupivacaine: findings with a new model in the hairy skin of the rat. Anesthesiology 2005;103:113–25.
- [44] Eisenach JC. Preventing chronic pain after surgery: who, how, and when? Reg Anesth Pain Med 2006;31:1–3.
- [45] Engelhardt E, Toksoy A, Goebeler M, Debus S, Bröcker EB, Gillitzer R. Chemokines IL-8, GROalpha, MCP-1, IP-10, and Mig are sequentially and differentially expressed during phase-specific infiltration of leukocyte subsets in human wound healing. Am J Pathol 1998;153: 1849–60.
- [46] Field MJ, Holloman EF, McCleary S, Hughes J, Singh L. Evaluation of gabapentin and S-(+)-3-isobutylgaba in a rat model of postoperative pain. J Pharmacol Exp Ther 1997;282:1242–6.
- [47] Fimer I, Klein T, Magerl W, Treede R, Zahn PK, Pogatzki-Zahn EM. Modality-specific somatosensory changes in a human surrogate model of postoperative pain. Anesthesiology 2011;115:387–97.
- [48] Flatters SJ. Characterization of a model of persistent postoperative pain evoked by skin/muscle incision and retraction (SMIR). PAIN 2008;135: 119–30.
- [49] Flatters SJ. Effect of analgesic standards on persistent postoperative pain evoked by skin/muscle incision and retraction (SMIR). Neurosci Lett 2010;477:43–7.
- [50] Fletcher D, Stamer UM, Pogatzki-Zahn E, Zaslansky R, Tanase NV, Perruchoud C, Kranke P, Komann M, Lehman T, Meissner W. Chronic postsurgical pain in Europe: an observational study. Eur J Anaesthesiology 2015;32:725–34.
- [51] Füredi R, Bölcskei K, Szolcsányi J, Petho G. Comparison of the peripheral mediator background of heat injury- and plantar incisioninduced drop of the noxious heat threshold in the rat. Life Sci 2010;86: 244–50.
- [52] Gan TJ, Joshi GP, Zhao SZ, Hanna DB, Cheung RY, Chen C. Presurgical intravenous parecoxib sodium and follow-up oral valdecoxib for pain management after laparoscopic cholecystectomy surgery reduces opioid requirements and opioid-related adverse effects. Acta Anaesthesiol Scand 2004;48:1194–207.
- [53] Gautam M, Kumar R, Prasoon P, Ray SB. Antinociceptive effect of 1400 W, an inhibitor of inducible nitric oxide synthase, following hind paw incision in rats. Nitric Oxide 2015;50:98–104.
- [54] Gehling M, Tryba M. Prophylaxis of phantom pain: is regional analgesia ineffective? Schmerz 2003;17:11–9.
- [55] Gerbershagen HJ, Pogatzki-Zahn E, Aduckathil S, Peelen LM, Kappen TH, van Wijck AJ, Kalkman CJ, Meissner W. Procedure-specific risk factor analysis for the development of severe postoperative pain. Anesthesiology 2014;120:1237–45.
- [56] Goldstein JL, Kivitz AJ, Verburg KM, Recker DP, Palmer RC, Kent JD. A comparison of the upper gastrointestinal mucosal effects of valdecoxib, naproxen and placebo in healthy elderly subjects. Aliment Pharmacol Ther 2003;18:125–32.
- [57] Gray A, Kehlet H, Bonnet F, Rawal N. Predicting postoperative analgesia outcomes: NNT league tables or procedure-specific evidence? Br J Anaesth 2005;94:710–4.
- [58] Grigoras A, Lee P, Sattar F, Shorten G. Perioperative intravenous lidocaine decreases the incidence of persistent pain after breast surgery. Clin J Pain 2012;28:567–72.
- [59] Gu X, Wu X, Liu Y, Cui S, Ma Z. Tyrosine phosphorylation of the N-Methyl-D-Aspartate receptor 2B subunit in spinal cord contributes to

remifentanil-induced postoperative hyperalgesia: the preventive effect of ketamine. Mol Pain 2009;5:76.

- [60] Guo R, Zhao Y, Zhang M, Wang Y, Shi R, Liu Y, Xu J, Wu A, Yue Y, Wu J, Guan Y, Wang Y. Down-regulation of stargazin inhibits the enhanced surface delivery of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor GluR1 subunit in rat dorsal horn and ameliorates postoperative pain. Anesthesiology 2014;121:609–19.
- [61] Hamalainen MM, Subieta A, Arpey C, Brennan TJ. Differential effect of capsaicin treatment on pain-related behaviors after plantar incision. J Pain 2009;10:637–45.
- [62] Hämäläinen MM, Gebhart GF, Brennan TJ. Acute effect of an incision on mechanosensitive afferents in the plantar rat hindpaw. J Neurophysiol 2002;87:712–20.
- [63] Hayashida K, DeGoes S, Curry R, Eisenach JC. Gabapentin activates spinal noradrenergic activity in rats and humans and reduces hypersensitivity after surgery. Anesthesiology 2007;106:557–62.
- [64] Hegi TR, Bombeli T, Seifert B, Baumann PC, Haller U, Zalunardo MP, Pasch T, Spahn DR. Effect of rofecoxib on platelet aggregation and blood loss in gynaecological and breast surgery compared with diclofenac. Br J Anaesth 2004;92:523–31.
- [65] Honore P, Wade CL, Zhong C, Harris RR, Wu C, Ghayur T, Iwakura Y, Decker MW, Faltynek C, Sullivan J, Jarvis MF. Interleukin-1alphabeta gene-deficient mice show reduced nociceptive sensitivity in models of inflammatory and neuropathic pain but not post-operative pain. Behav Brain Res 2006;167:355–64.
- [66] Huang L, Wang C, Serhan CN, Strichartz G. Enduring prevention and transient reduction of postoperative pain by intrathecal resolvin D1. PAIN 2011;152:557–65.
- [67] Ishida K, Kawamata T, Tanaka S, Shindo T, Kawamata M. Calcitonin gene-related peptide is involved in inflammatory pain but not in postoperative pain. Anesthesiology 2014;121:1068–79.
- [68] Jain P, Padole D, Bakshi S. Prevalence of acute neuropathic pain after cancer surgery: a Prospective Study. Indian J Anaesth 2014;58: 36–42.
- [69] Jang JH, Liang D, Kido K, Sun Y, Clark DJ, Brennan TJ. Increased local concentration of complement C5a contributes to incisional pain in mice. J Neuroinflammation 2011;8:80.
- [70] Jiang M, Zhang W, Ma Z, Gu X. Antinociception and prevention of hyperalgesia by intrathecal administration of Ro 25-6981, a highly selective antagonist of the 2B subunit of N-methyl-D-aspartate receptor. Pharmacol Biochem Behav 2013;112:56–63.
- [71] Johansen A, Schirmer H, Stubhaug A, Nielsen CS. Persistent postsurgical pain and experimental pain sensitivity in the Tromso study: comorbid pain matters. PAIN 2014;155:341–8.
- [72] Joshi GP, Schug SA, Kehlet H. Procedure-specific pain management and outcome strategies. Best practice & research. Clin Anaesthesiology 2014;28:191–201.
- [73] Kabadi R, Kouya F, Cohen HW, Banik RK. Spontaneous pain-like behaviors are more sensitive to morphine and buprenorphine than mechanically evoked behaviors in a rat model of acute postoperative pain. Anesth Analg 2015;120:472–8.
- [74] Kang S, Lee D, Theusch BE, Arpey CJ, Brennan TJ. Wound hypoxia in deep tissue after incision in rats. Wound Repair Regen 2013;21:730–9.
- [75] Karanikolas M, Aretha D, Tsolakis I, Monantera G, Kiekkas P, Papadoulas S, Swarm RA, Filos KS. Optimized perioperative analgesia reduces chronic phantom limb pain intensity, prevalence, and frequency: a prospective, randomized, clinical trial. Anesthesiology 2011;114:1144–54.
- [76] Katz J, Clarke H, Seltzer Z. Review article: preventive analgesia: quo vadimus? Anesth Analg 2011;113:1242–53.
- [77] Kawamata M, Takahashi T, Kozuka Y, Nawa Y, Nishikawa K, Narimatsu E, Watanabe H, Namiki A. Experimental incision-induced pain in human skin: effects of systemic lidocaine on flare formation and hyperalgesia. PAIN 2002;100:77–89.
- [78] Kehlet H. Fast-track surgery-an update on physiological care principles to enhance recovery. Langenbecks Arch Surg 2011;396:585–90.
- [79] Kehlet H, Dahl JB. The value of "multimodal" or "balanced analgesia" in postoperative pain treatment. Anesth Analg 1993;77:1048–56.
- [80] Kehlet H, Jensen TS, Woolf CJ. Persistent postsurgical pain: risk factors and prevention. Lancet 2006;367:1618–25.
- [81] Kido K, Gautam M, Benson CJ, Gu H, Brennan TJ. Effect of deep tissue incision on pH responses of afferent fibers and dorsal root ganglia innervating muscle. Anesthesiology 2013;119:1186–97.
- [82] Kim JG, Lim DW, Cho S, Han D, Kim YT. The edible brown seaweed Ecklonia cava reduces hypersensitivity in postoperative and neuropathic pain models in rats. Molecules 2014;19:7669–78.
- [83] Kim TJ, Freml L, Park SS, Brennan TJ. Lactate concentrations in incisions indicate ischemic-like conditions may contribute to postoperative pain. J Pain 2007;8:59–66.

- [84] Kim WJ, Kang H, Choi GJ, Shin HY, Baek CW, Jung YH, Woo YC, Kim JY, Yon JH. Antihyperalgesic effects of ginseng total saponins in a rat model of incisional pain. J Surg Res 2014;187:169–75.
- [85] Knaepen L, Rayen I, Charlier TD, Fillet M, Houbart V, van Kleef M, Steinbusch HW, Patijn J, Tibboel D, Joosten EA, Pawluski JL. Developmental fluoxetine exposure normalizes the long-term effects of maternal stress on post-operative pain in Sprague-Dawley rat offspring. PLoS One 2013;8:e57608.
- [86] Kouya F, Iqbal Z, Charen D, Shah M, Banik RK. Evaluation of anxiety-like behaviour in a rat model of acute postoperative pain. Eur J Anaesthesiol 2015;32:242–7.
- [87] Lamplot JD, Wagner ER, Manning DW. Multimodal pain management in total knee arthroplasty: a prospective randomized controlled trial. J Arthroplasty 2014;29:329–34.
- [88] Lanza M, Ferrari F, Menghetti I, Tremolada D, Caselli G. Modulation of imidazoline I2 binding sites by CR4056 relieves postoperative hyperalgesia in male and female rats. Br J Pharmacol 2014;171: 3693–701.
- [89] Laskowski K, Stirling A, McKay WP, Lim HJ. A systematic review of intravenous ketamine for postoperative analgesia. Can J Anaesth 2011; 58:911–23.
- [90] Laumet G, Garriga J, Chen S, Zhang Y, Li D, Smith TM, Dong Y, Jelinek J, Cesaroni M, Issa J, Pan H. G9a is essential for epigenetic silencing of K(+) channel genes in acute-to-chronic pain transition. Nat Neurosci 2015;18:1746–55.
- [91] Lavand'homme P. From preemptive to preventive analgesia: time to reconsider the role of perioperative peripheral nerve blocks? Reg Anesth Pain Med 2011;36:4–6.
- [92] Lavand'homme P, De Kock M, Waterloos H. Intraoperative epidural analgesia combined with ketamine provides effective preventive analgesia in patients undergoing major digestive surgery. Anesthesiology 2005;103:813–20.
- [93] Lavand'homme P. Perioperative pain. Curr Opin Anaesthesiol 2006;19: 556–61.
- [94] Leonard MG, Jung S, Andurkar SV, Gulati A. Centhaquin attenuates hyperalgesia and non-evoked guarding in a rat model of postoperative pain primarily through α2B-adrenoceptors. Eur J Pharmacol 2016;789: 81–7.
- [95] Leonard PA, Arunkumar R, Brennan TJ. Bradykinin antagonists have no analgesic effect on incisional pain. Anesth Analg 2004;99:1166–72; table of contents.
- [96] Li C, Yang Y, Liu S, Fang H, Zhang Y, Furmanski O, Skinner J, Xing Y, Johns RA, Huganir RL, Tao F. Stress induces pain transition by potentiation of AMPA receptor phosphorylation. J Neurosci 2014;34: 13737–46.
- [97] Li C, Zhang J, Dai R, Wang J, Luo X, Zhou X. Surgical incision induces anxiety-like behavior and amygdala sensitization: effects of morphine and gabapentin. Pain Res Treat 2010;2010:705874.
- [98] Liang D, Li X, Li W, Fiorino D, Qiao Y, Sahbaie P, Yeomans DC, Clark JD. Caspase-1 modulates incisional sensitization and inflammation. Anesthesiology 2010;113:945–56.
- [99] Liang D, Li X, Shi X, Sun Y, Sahbaie P, Li W, Clark JD. The complement component C5a receptor mediates pain and inflammation in a postsurgical pain model. PAIN 2012;153:366–72.
- [100] Lim D, Kim J, Han D, Kim Y. Analgesic effect of harpagophytum procumbens on postoperative and neuropathic pain in rats. Molecules 2014;19:1060–8.
- [101] Lin J, Zhang L, Yang H. Perioperative administration of selective cyclooxygenase-2 inhibitors for postoperative pain management in patients after total knee arthroplasty. J Arthroplasty 2013;28: 207–13. e2.
- [102] Loftus RW, Yeager MP, Clark JA, Brown JR, Abdu WA, Sengupta DK, Beach ML. Intraoperative ketamine reduces perioperative opiate consumption in opiate-dependent patients with chronic back pain undergoing back surgery. Anesthesiology 2010;113:639–46.
- [103] Magerl W, Klein T. Chapter 33 experimental human models of neuropathic pain. Handb Clin Neurol 2006;81:503–16.
- [104] Maier C, Nestler N, Richter H, Hardinghaus W, Pogatzki-Zahn E, Zenz M, Osterbrink J. The quality of pain management in German hospitals. Dtsch Arztebl Int 2010;107:607–14.
- [105] Maihöfner C, Seifert F, Decol R. Activation of central sympathetic networks during innocuous and noxious somatosensory stimulation. Neuroimage 2011;55:216–24.
- [106] Martins DF, Emer AA, Batisti A, Donatello N, Carlesso MG, Mazzardo-Martins L, Venzke D, Micke GA, Pizzolatti MG, Piovezan A, dos Santos A. Inhalation of cedrus atlantica essential oil alleviates pain behavior through activation of descending pain modulation pathways in a mouse model of postoperative pain. J Ethnopharmacol 2015;175:30–8.

- [107] Masaki E, Mizuta K, Ohtani N, Kido K. Early postoperative nociceptive threshold and production of brain-derived neurotrophic factor induced by plantar incision are not influenced with minocycline in a rat: role of spinal microglia. Neurosignals 2016;24:15–24.
- [108] Mathiesen O, Dahl B, Thomsen BA, Kitter B, Sonne N, Dahl JB, Kehlet H. A comprehensive multimodal pain treatment reduces opioid consumption after multilevel spine surgery. Eur Spine J 2013; 22:2089–96.
- [109] Maund E, McDaid C, Rice S, Wright K, Jenkins B, Woolacott N. Paracetamol and selective and non-selective non-steroidal antiinflammatory drugs for the reduction in morphine-related side-effects after major surgery: a systematic review. Br J Anaesth 2011;106:292–7.
- [110] Mishriky BM, Waldron NH, Habib AS. Impact of pregabalin on acute and persistent postoperative pain: a systematic review and meta-analysis. Br J Anaesth 2015;114:10–31.
- [111] Mogil JS. Animal models of pain: progress and challenges. Nature reviews. Neuroscience 2009;10:283–94.
- [112] Mogil JS, Davis KD, Derbyshire SW. The necessity of animal models in pain research. PAIN 2010;151:12–7.
- [113] Moore RA, Derry S, McQuay HJ, Wiffen PJ. Single dose oral analgesics for acute postoperative pain in adults. Cochrane Database Syst Rev 2011;9:CD008659.
- [114] Morales DR, Lipworth BJ, Guthrie B, Jackson C, Donnan PT, Santiago VH. Safety risks for patients with aspirin-exacerbated respiratory disease after acute exposure to selective nonsteroidal anti-inflammatory drugs and COX-2 inhibitors: meta-analysis of controlled clinical trials. J Allergy Clin Immunol 2014;134:40–5.
- [115] Mujenda FH, Duarte AM, Reilly EK, Strichartz GR. Cutaneous endothelin-A receptors elevate post-incisional pain. PAIN 2007;133: 161–73.
- [116] Munsterhjelm E, Niemi TT, Ylikorkala O, Neuvonen PJ, Rosenberg PH. Influence on platelet aggregation of i.v. parecoxib and acetaminophen in healthy volunteers. Br J Anaesth 2006;97:226–31.
- [117] Murphy GS, Szokol JW, Greenberg SB, Avram MJ, Vender JS, Nisman M, Vaughn J. Preoperative dexamethasone enhances quality of recovery after laparoscopic cholecystectomy: effect on in-hospital and postdischarge recovery outcomes. Anesthesiology 2011;114:882–90.
- [118] Murphy JD, Paskaradevan J, Eisler LL, Ouanes JP, Tomas VA, Freck EA, Wu CL. Analgesic efficacy of continuous intravenous magnesium infusion as an adjuvant to morphine for postoperative analgesia: a systematic review and meta-analysis. Middle East J Anesthesiol 2013;22:11–20.
- [119] Nanavati AJ, Prabhakar S. Fast-track surgery: toward comprehensive peri-operative care. Anesth Essays Res 2014;8:127–33.
- [120] Narai Y, Imamachi N, Saito Y. Gabapentin augments the antihyperalgesic effects of diclofenac sodium through spinal action in a rat postoperative pain model. Anesth Analg 2012;115:189–93.
- [121] Nikolajsen L, Sorensen HC, Jensen TS, Kehlet H. Chronic pain following caesarean section. Acta Anaesthesiol Scand 2004;48:111–6.
- [122] Nishijima CM, Ganev EG, Mazzardo-Martins L, Martins DF, Rocha LR, Santos AR, Hiruma-Lima CA. Citral: a monoterpene with prophylactic and therapeutic anti-nociceptive effects in experimental models of acute and chronic pain. Eur J Pharmacol 2014;736:16–25.
- [123] Nissen SE, Yeomans ND, Solomon DH, Lüscher TF, Libby P, Husni ME, Graham DY, Borer JS, Wisniewski LM, Wolski KE, Wang Q, Menon V, Ruschitzka F, Gaffney M, Beckerman B, Berger MF, Bao W, Lincoff AM. Cardiovascular safety of celecoxib, naproxen, or ibuprofen for arthritis. N Engl J Med 2016;375:2519–29.
- [124] Oderda GM, Evans RS, Lloyd J, Lipman A, Chen C, Ashburn M, Burke J, Samore M. Cost of opioid-related adverse drug events in surgical patients. J Pain Symptom Manage 2003;25:276–83.
- [125] Ohri R, Wang JC, Blaskovich PD, Pham LN, Costa DS, Nichols GA, Hildebrand WP, Scarborough NL, Herman CJ, Strichartz GR. Inhibition by local bupivacaine-releasing Microspheres of acute postoperative pain from hairy skin incision. Anesth Analg 2013;117:717–30.
- [126] Oliveira SM, Drewes CC, Silva CR, Trevisan G, Boschen SL, Moreira CG, de Almeida Cabrini D, Da Cunha C, Ferreira J. Involvement of mast cells in a mouse model of postoperative pain. Eur J Pharmacol 2011; 672:88–95.
- [127] Oliveira SM, Silva CR, Ferreira J. Critical role of protease-activated receptor 2 activation by mast cell tryptase in the development of postoperative pain. Anesthesiology 2013;118:679–90.
- [128] Oliveira SM, Silva CR, Trevisan G, Villarinho JG, Cordeiro MN, Richardson M, Borges MH, Castro CJ, Gomez MV, Ferreira J. Antinociceptive effect of a novel armed spider peptide Tx3-5 in pathological pain models in mice. Pflugers Arch 2016;468:881–94.
- [129] Ong CK, Seymour RA, Lirk P, Merry AF. Combining paracetamol (acetaminophen) with nonsteroidal antiinflammatory drugs: a qualitative

- [130] Owen RT. Pregabalin: its efficacy, safety and tolerability profile in generalized anxiety. Drugs Today (Barc) 2007;43:601–10.
- [131] Pan Z, Zhu L, Li Y, Hao L, Yin C, Yang J, Guo Y, Zhang S, Hua L, Xue Z, Zhang H, Cao J. Epigenetic modification of spinal miR-219 expression regulates chronic inflammation pain by targeting CaMKII_Y. J Neurosci 2014;34:9476–83.
- [132] Papathanasiou T, Juul RV, Heegaard A, Kreilgaard M, Lund TM. Coadministration of morphine and gabapentin leads to dose dependent synergistic effects in a rat model of postoperative pain. Eur J Pharm Sci 2016;82:97–105.
- [133] Pogatzki EM, Gebhart GF, Brennan TJ. Characterization of adelta- and C-fibers innervating the plantar rat hindpaw one day after an incision. J Neurophysiol 2002;87:721–31.
- [134] Pogatzki EM, Niemeier JS, Brennan TJ. Persistent secondary hyperalgesia after gastrocnemius incision in the rat. Eur J Pain 2002; 6:295–305.
- [135] Pogatzki EM, Niemeier JS, Sorkin LS, Brennan TJ. Spinal glutamate receptor antagonists differentiate primary and secondary mechanical hyperalgesia caused by incision. PAIN 2003;105:97–107.
- [136] Pogatzki EM, Raja SN. A mouse model of incisional pain. Anesthesiology 2003;99:1023–7.
- [137] Pogatzki EM, Zahn PK, Brennan TJ. Effect of pretreatment with intrathecal excitatory amino acid receptor antagonists on the development of pain behavior caused by plantar incision. Anesthesiology 2000;93:489–96.
- [138] Pogatzki-Zahn EM, Shimizu I, Caterina M, Raja SN. Heat hyperalgesia after incision requires TRPV1 and is distinct from pure inflammatory pain. PAIN 2005;115:296–307.
- [139] Pogatzki-Zahn EM, Wagner C, Meinhardt-Renner A, Burgmer M, Beste C, Zahn PK, Pfleiderer B. Coding of incisional pain in the brain: a functional magnetic resonance imaging study in human volunteers. Anesthesiology 2010;112:406–17.
- [140] Pogatzki-Zahn EM, Zahn PK. From preemptive to preventive analgesia. Curr Opin Anaesthesiology 2006;19:551–5.
- [141] Pogatzki-Zahn EM, Zahn PK, Brennan TJ. Postoperative pain-clinical implications of basic research. Best practice & research. Clin Anaesthesiology 2007;21:3–13.
- [142] Prasoon P, Kumar R, Gautam M, Sebastian EK, Reeta KH, Ray SB. Role of somatostatin and somatostatin receptor type 2 in postincisional nociception in rats. Neuropeptides 2015;49:47–54.
- [143] Reichl S, Augustin M, Zahn PK, Pogatzki-Zahn EM. Peripheral and spinal GABAergic regulation of incisional pain in rats. PAIN 2012;153: 129–41.
- [144] Reichl S, Segelcke D, Keller V, Jonas R, Boecker A, Wenk M, Evers D, Zahn PK, Pogatzki-Zahn EM. Activation of glial glutamate transporter via MAPK p38 prevents enhanced and long-lasting non-evoked resting pain after surgical incision in rats. Neuropharmacology 2016;105: 607–17.
- [145] Reichl S, Segelcke D, Keller V, Jonas R, Boecker A, Wenk M, Evers D, Zahn PK, Pogatzki-Zahn EM. Activation of glial Glutamate transporter via MAPK p38 prevents enhanced and long-lasting non-evoked resting pain after surgical incision in rats. Neuropharmacology 2016;105: 607–17.
- [146] Rittner HL, Machelska H, Stein C. Leukocytes in the regulation of pain and analgesia. J Leukoc Biol 2005;78:1215–22.
- [147] Rittner HL, Mousa SA, Labuz D, Beschmann K, Schäfer M, Stein C, Brack A. Selective local PMN recruitment by CXCL1 or CXCL2/3 injection does not cause inflammatory pain. J Leukoc Biol 2006;79: 1022–32.
- [148] Romero A, Rojas S, Cabañero D, Gispert JD, Herance JR, Campillo A, Puig MM. A ¹⁸F-fluorodeoxyglucose MicroPET imaging study to assess changes in brain glucose metabolism in a rat model of surgery-induced latent pain sensitization. Anesthesiology 2011;115:1072–83.
- [149] Romero-Sandoval A, Eisenach JC. Spinal cannabinoid receptor type 2 activation reduces hypersensitivity and spinal cord glial activation after paw incision. Anesthesiology 2007;106:787–94.
- [150] Romero-Sandoval A, Nutile-McMenemy N, DeLeo JA. Spinal microglial and perivascular cell cannabinoid receptor type 2 activation reduces behavioral hypersensitivity without tolerance after peripheral nerve injury. Anesthesiology 2008;108:722–34.
- [151] Sadler A, Wilson J, Colvin L. Acute and chronic neuropathic pain in the hospital setting: use of screening tools. Clin J Pain 2013;29:507–11.
- [152] Saha M, Skopelja S, Martinez E, Alvarez DL, Liponis BS, Romero-Sandoval EA. Spinal mitogen-activated protein kinase phosphatase-3 (MKP-3) is necessary for the normal resolution of mechanical allodynia in a mouse model of acute postoperative pain. J Neurosci 2013;33:17182–7.

15

- [153] Sahbaie P, Li X, Shi X, Clark JD. Roles of Gr-1+ leukocytes in postincisional nociceptive sensitization and inflammation. Anesthesiology 2012;117: 602–12.
- [154] Sahbaie P, Liang D, Shi X, Sun Y, Clark JD. Epigenetic regulation of spinal cord gene expression contributes to enhanced postoperative pain and analgesic tolerance subsequent to continuous opioid exposure. Mol Pain 2016;12;pii:1744806916641950.
- [155] Sahbaie P, Sun Y, Liang D, Shi X, Clark JD. Curcumin treatment attenuates pain and enhances functional recovery after incision. Anesth Analg 2014;118:1336–44.
- [156] Scherer M, Reichl SU, Augustin M, Pogatzki-Zahn EM, Zahn PK. The assessment of cold hyperalgesia after an incision. Anesth Analg 2010; 110:222–7.
- [157] Schug S, Palmer G, Scott D, Halliwell P, Trinca J. Acute pain management: scientific evidence. 4th ed. Melbourne: ANZCA & FPM, 2015.
- [158] Schug SA, Joshi GP, Camu F, Pan S, Cheung R. Cardiovascular safety of the cyclooxygenase-2 selective inhibitors parecoxib and valdecoxib in the postoperative setting: an analysis of integrated data. Anesth Analg 2009;108:299–307.
- [159] Shen X, Liu Y, Xu S, Zhao Q, Wu H, Guo X, Shen R, Wang F. Menin regulates spinal glutamate-GABA balance through GAD65 contributing to neuropathic pain. Pharmacol Rep 2014;66:49–55.
- [160] Shi X, Di Fu, Xu J, Zhang Y, Dai R. Activation of spinal ERK1/2 contributes to mechanical allodynia in a rat model of postoperative pain. Mol Med Rep 2013;7:1661–5.
- [161] Sluka KA, Radhakrishnan R, Benson CJ, Eshcol JO, Price MP, Babinski K, Audette KM, Yeomans DC, Wilson SP. ASIC3 in muscle mediates mechanical, but not heat, hyperalgesia associated with muscle inflammation. PAIN 2007;129:102–12.
- [162] Sousa AM, Ashmawi HA. Local analgesic effect of tramadol is not mediated by opioid receptors in early postoperative pain in rats. Rev Bras Anestesiol 2015;65:186–90.
- [163] de Souza AH, Lima MC, Drewes CC, da Silva JF, Torres KC, Pereira EM, de Castro CJ Jr, Vieira LB, Cordeiro MN, Richardson M, Gomez RS, Romano-Silva MA, Ferreira J, Gomez MV. Antiallodynic effect and side effects of Phα1β, a neurotoxin from the spider Phoneutria nigriventer: comparison with ω-conotoxin MVIIA and morphine. Toxicon 2011;58:626–33.
- [164] Spofford CM, Brennan TJ. Gene expression in skin, muscle, and dorsal root ganglion after plantar incision in the rat. Anesthesiology 2012;117: 161–72.
- [165] Spofford CM, Mohan S, Kang S, Jang JH, Brennan TJ. Evaluation of leukemia inhibitory factor (LIF) in a rat model of postoperative pain. J Pain 2011;12:819–32.
- [166] Srikandarajah S, Gilron I. Systematic review of movement-evoked pain versus pain at rest in postsurgical clinical trials and meta-analyses: a fundamental distinction requiring standardized measurement. PAIN 2011;152:1734–9.
- [167] Stubhaug A, Breivik H, Eide PK, Kreunen M, Foss A. Mapping of punctuate hyperalgesia around a surgical incision demonstrates that ketamine is a powerful suppressor of central sensitization to pain following surgery. Acta Anaesthesiol Scand 1997;41:1124–32.
- [168] Su C, D'amour J, Lee M, Lin H, Manders T, Xu D, Eberle SE, Goffer Y, Zou AH, Rahman M, Ziff E, Froemke RC, Huang D, Wang J. Persistent pain alters AMPA receptor subunit levels in the nucleus accumbens. Mol Brain 2015;8:46.
- [169] Sun Y, Sahbaie P, Liang D, Li W, Li X, Shi X, Clark JD. Epigenetic regulation of spinal CXCR2 signaling in incisional hypersensitivity in mice. Anesthesiology 2013;119:1198–208.
- [170] Sun Y, Sahbaie P, Liang D, Li W, Shi X, Kingery P, Clark JD, Taylor B. DNA methylation modulates nociceptive sensitization after incision. PLoS One 2015;10:e0142046.
- [171] Sun Y, Yang M, Tang H, Ma Z, Liang Y, Li Z. The over-production of TNF-α via Toll-like receptor 4 in spinal dorsal horn contributes to the chronic postsurgical pain in rat. J Anesth 2015;29:734–40.
- [172] Tiippana EM, Hamunen K, Kontinen VK, Kalso E. Do surgical patients benefit from perioperative gabapentin/pregabalin?: a systematic review of efficacy and safety. Anesth Analg 2007;104:1545–56; table of contents.
- [173] Turan A, Sessler DI. Steroids to ameliorate postoperative pain. Anesthesiology 2011;115:457–9.
- [174] Uchytilova E, Spicarova D, Palecek J. TRPV1 antagonist attenuates postoperative hypersensitivity by central and peripheral mechanisms. Mol Pain 2014;10:67.
- [175] Urban MK, Ya Deau JT, Wukovits B, Lipnitsky JY. Ketamine as an adjunct to postoperative pain management in opioid tolerant patients after spinal fusions: a prospective randomized trial. HSS J 2008;4:62–5.
- [176] Urban R, Scherrer G, Goulding EH, Tecott LH, Basbaum AI. Behavioral indices of ongoing pain are largely unchanged in male mice with tissue or nerve injury-induced mechanical hypersensitivity. PAIN 2011;152:990–1000.

- [177] van den Heuvel, I, Reichl S, Segelcke D, Zahn PK, Pogatzki-Zahn EM. Selective prevention of mechanical hyperalgesia after incision by spinal ERK1/2 inhibition. Eur J Pain 2015;19:225–35.
- [178] Villarinho JG, Oliveira SM, Silva CR, Cabreira TN, Ferreira J. Involvement of monoamine oxidase B on models of postoperative and neuropathic pain in mice. Eur J Pharmacol 2012;690:107–14.
- [179] Waldron NH, Jones CA, Gan TJ, Allen TK, Habib AS. Impact of perioperative dexamethasone on postoperative analgesia and side-effects: systematic review and meta-analysis. Br J Anaesth 2013;110:191–200.
- [180] Walker CI, Trevisan G, Rossato MF, Silva CR, Pinheiro FV, Franciscato C, Tatsch E, Moretto MB, Silva MD, Manfron MP, Noal Moresco R, Santos AR, Pereira ME, Ferreira J. Antinociceptive effect of Mirabilis jalapa on acute and chronic pain models in mice. J Ethnopharmacology 2013;149:685–93.
- [181] Wang Y, Wu J, Guo R, Zhao Y, Zhang M, Chen Z, Wu A, Yue Y. Surgical incision induces phosphorylation of AMPA receptor GluR1 subunits at Serine-831 sites and GluR1 trafficking in spinal cord dorsal horn via a protein kinase Cγ-dependent mechanism. Neuroscience 2013;240:361–70.
- [182] Wei H, Karimaa M, Korjamo T, Koivisto A, Pertovaara A. Transient receptor potential ankyrin 1 ion channel contributes to guarding pain and mechanical hypersensitivity in a rat model of postoperative pain. Anesthesiology 2012;117:137–48.
- [183] Weiser TG, Regenbogen SE, Thompson KD, Haynes AB, Lipsitz SR, Berry WR, Gawande AA. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet 2008;372: 139–44.
- [184] Woo YC, Park SS, Subieta AR, Brennan TJ. Changes in tissue pH and temperature after incision indicate acidosis may contribute to postoperative pain. Anesthesiology 2004;101:468–75.
- [185] Wu L, Huang X, Sun L. The efficacy of N-methyl-D-aspartate receptor antagonists on improving the postoperative pain intensity and satisfaction after remifentanil-based anesthesia in adults: a metaanalysis. J Clin Anesth 2015;27:311–24.
- [186] Xu B, Guan X, Yu J, Lv J, Zhang H, Fu Q, Xiang H, Bu H, Shi D, Shu B, Qin L, Manyande A, Tian Y. Activation of spinal phosphatidylinositol 3kinase/protein kinase B mediates pain behavior induced by plantar incision in mice. Exp Neurol 2014;255:71–82.
- [187] Xu J, Brennan TJ. Comparison of skin incision vs. skin plus deep tissue incision on ongoing pain and spontaneous activity in dorsal horn neurons. PAIN 2009;144:329–39.
- [188] Xu J, Brennan TJ. Guarding pain and spontaneous activity of nociceptors after skin versus skin plus deep tissue incision. Anesthesiology 2010;112: 153–64.
- [189] Xu J, Brennan TJ. The pathophysiology of acute pain: animal models. Curr Opin Anaesthesiol 2011;24:508–14.
- [190] Yalamuri SM, Brennan TJ, Spofford CM. Neuropeptide Y is analgesic in rats after plantar incision. Eur J Pharmacol 2013;698:206–12.
- [191] Yang T, Yang P, Jiang L, Zhou R. Activation of spinal NF-KB mediates pain behavior induced by plantar incision. Int J Clin Exp Med 2015;8: 9149–55.
- [192] Yasuda M, Kido K, Ohtani N, Masaki E. Mast cell stabilization promotes antinociceptive effects in a mouse model of postoperative pain. J Pain Res 2013;6:161–6.
- [193] Ying Y, Wei X, Xu X, She S, Zhou L, Lv J, Li D, Zheng B, Liu X. Overexpression of P2X7 receptors in spinal glial cells contributes to the development of chronic postsurgical pain induced by skin/muscle incision and retraction (SMIR) in rats. Exp Neurol 2014;261:836–43.
- [194] Young A, Buvanendran A. Recent advances in multimodal analgesia. Anesthesiol Clin 2012;30:91–100.
- [195] Zahn PK, Brennan TJ. Lack of effect of intrathecally administered Nmethyl-D-aspartate receptor antagonists in a rat model for postoperative pain. Anesthesiology 1998;88:143–56.
- [196] Zahn PK, Brennan TJ. Primary and secondary hyperalgesia in a rat model for human postoperative pain. Anesthesiology 1999;90: 863–72.
- [197] Zahn PK, Pogatzki EM, Brennan TJ. Mechanisms for pain caused by incisions. Reg Anesth Pain Med 2002;27:514–6.
- [198] Zahn PK, Pogatzki-Zahn EM, Brennan TJ. Spinal administration of MK-801 and NBQX demonstrates NMDA-independent dorsal horn sensitization in incisional pain. PAIN 2005;114:499–510.
- [199] Zahn PK, Umali E, Brennan TJ. Intrathecal non-NMDA excitatory amino acid receptor antagonists inhibit pain behaviors in a rat model of postoperative pain. PAIN 1998;74:213–23.
- [200] Zhu Q, Mao L, Liu C, Sun Y, Jiang B, Zhang W, Li J. Antinociceptive effects of vitexin in a mouse model of postoperative pain. Sci Rep 2016; 6:19266.
- [201] Zhu Q, Sun Y, Yun X, Ou Y, Zhang W, Li J. Antinociceptive effects of curcumin in a rat model of postoperative pain. Sci Rep 2014;4:4932.