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Abstract: Chiral-selective Tamm plasmon polariton (TPP) has been investigated at the interface
between a cholesteric liquid crystal and a metasurface. Different from conventional TPP that occurs
with distributed Bragg reflectors and metals, the chiral–achiral TPP is successfully demonstrated. The
design of the metasurface as a reflective half-wave plate provides phase and polarization matching.
Accordingly, a strong localized electric field and sharp resonance are observed and proven to be
widely tunable.

Keywords: metasurfaces; tamm plasmon polaritons; chirality

1. Introduction

In recent years, metamaterials have been widely utilized in photoelectronics due to
the advances in controlling the phase, polarizations, and chirality. Indeed, chirality gives
an additional degree of freedom in photonic systems. Therefore, chiral photonics has
received a lot of attention lately, such as chiral-selective metamirrors [1–4], chiral quantum
optics [5], spectropolarimetry [6], etc. Chiral properties can be effectively enhanced using
metamaterials and photonic-crystal cavities. In the literature, chirality surface states could
be observed on the surface of topological materials [7] or at the interface of two cholesteric
liquid crystals (CLCs) [8,9]. However, it would be difficult to be observed at a chiral–achiral
interface as the polarization state could not be preserved. An example of such an interface
state is Tamm plasmon polariton (TPP). It was first proposed in 2007 [10] and is similar to
the Tamm state in a semiconductor, where electrons are localized at the surface of the crystal.
The TPP appears between the metal and the periodic dielectric of high and low refractive
indices, which is called a distributed Bragg reflector (DBR). Later it was shown that this
state can be utilized for absorbers [11], sensors [12–14], Tamm plasmon lasers [15–17], and
solar cells [18,19]. The excitation of chiral-selective TPP at the interface between a CLC and
a flat metal film is impossible (please see Figure 1a,b), and the resonance dip cannot be
seen within the CLC stopband [20] unless the polarization of reflected light from the metal
is changed. Then, the high reflection of the CLC stopband can be maintained without the
localization of the light at the interface between the CLC and the metal.
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In this regard, a novel design combining a CLC and a half-wave plate metasurface
is proposed. The possibility of excitation of a chiral TPP in this structure is demonstrated
experimentally for the first time and confirmed numerically. The tuning of the chiral-TPP
wavelength is shown by varying the temperature.

Figure 1. (a) Schematic of the right-handed helical CLC combined with a bottom film. Polarization
dynamics of the light between (b) CLC and a metal mirror and (c,d) CLC and a half-wave plate
metasurfaces. (e) Reflectance spectra of CLC–metal and CLC-half-wave plate simulated by the
software for Multiphysics simulation COMSOL. The rotation arrow direction indicates the right-
handed (RH) and the left-handed (LH) circular polarizations propagating along the z axis. The center
of the CLC stopband is at 750 nm. The refractive index of the SiO2 layer is fixed at 1.45, and that
of the gold nanobrick and PMMA layer comes from the databases of Johnson and Christy [21] and
Sultanova [22], respectively. The full reflectance spectra of the measurements is presented in the
Supplementary Materials.

2. Description of the Model

Figure 1b shows that partial right-handed circularly polarized light is transmitted
through the right-handed CLC layer of a finite thickness, and the polarization changes
when reflected from the metal. The reflected light with left-handed circular polarization
passes through the CLC, and the reflectance spectra correspond to the blue line in Figure 1e,
resembling the combination of reflection spectra of only metal and CLC. In order to pre-
serve the reflected circular polarization, a quarter-wave plate was proposed to match the
phase [23]. As the partial right-handed circular polarization transforms into linear polariza-
tion when light passes through the quarter-wave plate, the polarization of the reflected light
remained unchanged. Hence, right-handed circularly polarized light is localized between
the CLC and metal, yielding resonance. However, in reality, a typical quarter-wave plate
is much thicker than the wavelengths, which could not sustain the surface waves. For
example, a 75 µm thick conventional quarter-wave plate (Edmund Optics) has been tested
and it was found that the interference diminishes the TPP resonance. Here, we replace the
thick phase plate by a metasurface, with the function of a reflective half-wave plate (HWP),
as shown in Figure 2. The dimensions of the unit cell with a nanobrick fabricated using
electron beam lithography are shown (please see Supplementary Materials). The SiO2
layer and bottom metal film are used to control the phase of the reflected light [24–29].
This design allows the handedness of reflected light to be preserved and the polarization-
matching condition fulfilled. In this paper, the experimentally measured Q factor of the
chiral-selective TPP is 27.2. The Q factor of the TPP resonance is conventionally determined
by the losses and the volume of the resonator. In our case, the cavity volume is mainly
governed by the CLC thickness. In addition, loss is predominantly due to the absorption
in the plasmonic metasurface. Alternatively, the all-dielectric structures allowed us to
obtain higher Q values at the expense of compactness. Additionally, the experimental
implementation of all-dielectric handedness-preserving structures is difficult [30].
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Figure 2. (a,b) Schematic of a unit cell of metasurface consisting of an Au-SiO2-Au structure. The
dashed axes of “u” and “v” define the longer and shorter axes of the nanobrick. The “x” axis defines
the CLC director at the surface; it is oriented at χ = 45◦. (c) The scanning electron microscopic image
(the scale bar is 1.2 µm). The detailed images of the nanobricks are shown in the inset.

The phase matching is another crucial condition for localized state excitation. This
second condition is equivalent to the geometric phase condition for the angle between the
long axis of the metasurface nanobrick and the CLC direction [31,32]. In Figure 2b, this
angle is shown to be χ = 45◦ and the TPP resonance frequency approximately corresponds
to the center of the CLC stopband. By varying, the frequency can be easily tuned through
the entire CLC stopband and even switched off [31]. This possibility is provided by the
junction of two mirrors with unique and complementary properties. The CLC is chiral
and the metasurface is achiral hence anisotropic. The CLC is fluidic and tunable and
the metasurface serves as a robust solid basement for tunability. Such chiral tunability is
intensively investigated in self-organized structures related to tensagrity, durotaxis and
phototropism [33,34].

3. Results

The phase difference in reflection is defined as the phase of the u-polarized light sub-
tracting the phase of the v-polarized light (Figure 3a). It is assumed that the light is incident
on the metasurface from the air. The phase difference approaches π in the wavelength
range from 700 to 900 nm, which satisfies the properties of a half-wave plate [35–37]. Due
to the phase change, the direction of the rotation is opposite when circularly polarized light
impinges on the half-wave plate. Therefore, the handedness remains unchanged between
the reflected light and the incident light.

Figure 3. (a) Phase difference for reflection from the half-wave plate, with the phase for u-polarized
light subtracts the phase of v-polarized light and (b) amplitude of circular cross-polarized reflected
light, conventional mirror behavior (blue) and co-polarized reflected light, HWP behavior (red)
simulated by the software for Multiphysics simulation COMSOL.
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For the incidence of right-handed circular light, the electric field of the reflection in
circular basis can be written as [38]:

Eref =
1
2

[
(ru − rv)e−2iχ; (ru + rv)

]
. (1)

Here, χ is the angle between the x and u axis, and ru and rv are the complex reflection
coefficients for the u and v axes, respectively. To obtain the unchanged polarization of the
reflected light, only the first term of Equation (1) is considered. Therefore, the dimensions
of the nanobrick were adjusted to minimize ru + rv and maximize ru − rv. Figure 3b shows
the amplitude of the unchanged (co-polarized) and opposite (cross-polarized) handedness
of the reflected light. In this case, at a wavelength of 650 nm, a perfect reflection was
observed, since the reflection coefficient for co-polarized light was close to 0. Moreover, the
HWP effect sharply decreased to the left from the resonance; therefore, the CLC stopband
center λ0 = 750 nm was chosen to the right from HWP resonance.

According to the temporal coupled-mode theory [39] applied to chiral Tamm state [9],
the resonance is described by the reflection amplitude of the total CLC–HWP structure:

rTP(ω) = 1− 2γ1

i(ω0 −ω) + (γ1 + γ2)
, (2)

where γ1 = 2kc exp(−2knL), γ2 = (1− R)kc/2, k = πδ sin 2χ/λ0, λ0/p = n +
√

n2 − 1
cos 2χ, ω0 = 2πc/λ0 is resonant cyclic frequency, χ is the angle between the u axis of the
HWP–metasurface and the cholesteric director at the interface with the HWP-metasurface,
0◦ < χ < 90◦ , L is the cholesteric layer thickness, R is the co-handed reflectance of
metasurface, for the cholesteric p is the pitch, n =

√
n2

e − n2
o/2 is the average refractive

index and δ = (n2
e − n2

o)/(n2
e + n2

o) is anisotropy.
A novel design combining a CLC and a half-wave plate metasurface is proposed (see

Figure 1c,d). Between the CLC and the metasurface, poly(methyl methacrylate) (PMMA) is
coated as a layer of 480 nm in thickness to protect the metasurface. Alignment of the CLC
is in the direction of the x axis on both the top substrate and bottom protecting layer by
a surface rubbing machine. The bonding process combines the superstrate and PMMA–
metasurface. Then, CLC was injected into the gap by capillary action, and the thickness of
the gap was 1.5 µm. The CLC used has ordinary and extraordinary refractive indices of
no = 1.52 and ne = 1.75, respectively. The center wavelength λc of the CLC stopband was
750 nm, as calculated by the equation λ0 = p〈n〉, where p is the helical pitch and 〈n〉 is
the average refractive index of the CLC. The optical axis of the CLC lies on the x-y plane,
where the orientation depends on the position of the z axis along the helical pitch of the
liquid crystal. The equivalent permittivity of the dielectric tensor from CLC can be written
as [40]:

ε = ε0

ε + 1
2 ∆ε cos

( 4πz
p
) 1

2 ∆ε sin
( 4πz

p
)

0
1
2 ∆ε cos

( 4πz
p
)

ε + 1
2 ∆ε cos

( 4πz
p
)

0
0 0 ε + 1

2 ∆ε

. (3)

Here, ε = (n2
e + n2

o)/2, ∆ε = (n2
e − n2

o), and z represents the position along the helical
axis of the planar CLC. Modeling was conducted by using the finite-element method
software COMSOL Multiphysics 4.3b and verified by the Berreman matrix method [41].

The reflectance spectrum of Figure 4 was obtained through the Berreman method
simulation. It is in good agreement with Equation (2) for R = 0.7. When γ1(L) = γ2(R),
exp(−2nkL) = 2(1− R), the optimal cholesteric thickness is L = 1.5 µm.

As for the design shown in Figure 1c, the most important point is that the polarization
of the reflected light remains the same as that of the incident light, which provides the
phase and polarization matching. As illustrated in Figure 1c,d, the energy of light would
be localized between the CLC and the half-wave plate to achieve the resonance condi-
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tion. Therefore, in Figure 4, a narrow reflection dip is clearly observed within the optical
stopband of the CLC.

Figure 4. Reflectance spectra of the structure versus the cholesteric layer thickness L simulated by
the Berreman method. The incident light is right-handed circular polarized (Figure 1b). Dark dip
in the center is the TPP resonance. Reflectance minimum corresponds to the optimal coupling with
equal losses through the cholesteric and the metasurface. The resonance bandwidth decreases with
increasing L. Small resonances are observed at the edges of cholesteric stopband. Vertical periodic
ripples are caused by additional reflection from the upper cholesteric interface; the rippling period
equals the half-pitch of cholesteric helix.

As shown in Figure 5, near-field analysis indicates that the strong electric field is
localized at the interface [42] between the CLC and the metasurface at the resonance wave-
length. In contrast, when the wavelength is nonresonant, the electric-field distribution
acts as at an ordinarily-reflecting mirror. The maximum amplitude of the localized electric
field at the resonant wavelength is approximately four times larger than that at a non-
resonant wavelength. At any point inside the structure the mode has two running wave
components with almost equal amplitudes. In Figure 5b, the electric field profile shows
spatial ripples due to the interference between the running waves. The ripple period is
half-wave. In contrast to a conventional Tamm mode, the interference makes no nodes or
antinodes as both running waves are right-handed circularly polarized. In other words,
every x-polarized node coincides with a y-polarized antinode and vice versa, which results
in a smooth profile [30]. The nontrivial field profile in CLC was thoroughly investigated
and illustrated in [43].

Figure 5. (a) Structure of the CLC combined with metasurfaces. (b) The maximum of the electric
field near CLC–metasurface interface. (c) Distribution of normalized electric fields at the resonant
and nonresonant wavelengths. Field distribution at the resonant wavelength in x-y plane is shown in
the Supplementary Materials.

The other advantage of using CLC to generate chiral-selective TPP is that CLC could be
easily controlled by external stimuli such as electric field [44] and ambient temperature [45].
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By utilizing the temperature dependence of the CLC stopband, the wavelength of resonance
can be effectively controlled to achieve a wide-range tunability [46].

As shown in Figure 6, with an increase in temperature from 26 to 29 ◦C, the resonance
dip shifts to a shorter wavelength due to the movement of the CLC stopband. The simula-
tion (dashed lines) and experimental (solid lines) results are in reasonably good agreement.
The deviation may result from the thickness of the CLC layer to be different from the setting
in the simulated model due to its changes within the measurement area. The imperfection
of the rubbing on the PMMA may be an additional reason for the discrepancy between
the measured and simulated data. The simulated temperature dependence of the helix
pitch was considerably tuned to satisfy Table 1. This restricted our prediction ability for
the first experiment. The widening in resonance bandwidth might be due to the extra
loss in metal during the nanofabrication process. Table 1 manifests the tunability of the
resonance wavelengths of TPP and CLC stopbands with varying temperatures. The differ-
ence between the resonant wavelength λTP and the center wavelength λ0 is presumably
due to the thin protecting layer. The quality factor obtained by coupled mode theory is
Q = ω0/2(γ1 + γ2) ≈ 27.2, which is in good agreement with the experimental data.

Table 1. Tunability of the resonant wavelength of chiral-selective TPP (λTP), center wavelength of
CLC stopband (λ0), pitch p and Q factor of the TPP with respect to the different temperatures.

26 ◦C 27 ◦C 29 ◦C

λTP (nm) 809 767 709
λ0 (nm) 890 805 665
p (nm) 495.4 468.5 428.1

Q factor 28.5 27.2 26.7

Figure 6. Reflectance spectra of the CLC–metasurface simulated by Berreman method (dotted lines);
COMSOL (dashed lines) and experiment results (solid lines) by increasing the temperature from
26 ◦C to 29 ◦C.

4. Conclusions

In conclusion, we demonstrated that chiral-selective TPP can be successfully excited
at the interface between metasurface of reflective half-wave plate and CLC. This pho-
tonic surface state combines properties of both anisotropic metasurface and chiral CLC,
providing a wide-ranging orientational tunability. A strong localized electric field at the
interface between the CLC and the metasurface was observed. Furthermore, by changing
the center wavelength of the stopband of the CLC with different pitches and temperatures,
the resonance wavelength of TPP was tuned flexibly. This device can potentially be applied
to optical switches and polariton lasers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14112788/s1, Figure S1: Fabrication process of metasurfaces, Figure S2: (a,b) Structure
of the bonding devices of CLC and metasurface, which are composed of two plywoods and four
precision screws, Figure S3: Schematic of sample fabrication procedure. The plano-convex lens
is used as the superstrate to control the thickness of cell gap, and CLC is poured into the gap

https://www.mdpi.com/article/10.3390/ma14112788/s1
https://www.mdpi.com/article/10.3390/ma14112788/s1
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between the lens and metasurface by capillary action, Figure S4: Experimental setup for reflection
measurement. LS: Halogen light source; PH: pinhole; P: polarizer (Thorlabs, WP25M-UB); WP:
quarter-wave plate (Edmund, 75 µm in thickness); BS: cube beam-splitter (Thorlabs, BS016); Obj:
objective (Olympus, LMPLFLN 50x); S: sample of CLC-metasurface; Detector: spectrometer (Ocean,
USB2000+), Figure S5: (a) Measured reflectance for the co-(black line) and cross-polarized (red line)
light at normal incidence. Optical image of metasurfaces with (b) cross-polarized measurement and
(c) co-polarized measurement, Figure S6: The experimental and simulated reflectance spectra of the
structure, Figure S7: Ex (left) and Ey (right) components of the electric field in x-y plane.
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