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Biomolecular condensates are small droplets forming spontaneously in
biological cells through phase separation. They play a role in many cellular
processes, but it is unclear how cells control them. Cellular regulation often
relies on post-translational modifications of proteins. For biomolecular con-
densates, such chemical modifications could alter the molecular interaction
of key condensate components. Here, we test this idea using a theoretical
model based on non-equilibrium thermodynamics. In particular, we describe
the chemical reactions using transition-state theory, which accounts for the
non-ideality of phase separation. We identify that fast control, as in cell signal-
ling, is only possible when external energy input drives the reaction out of
equilibrium. If this reaction differs inside and outside the droplet, it is even
possible to control droplet sizes. Such an imbalance in the reaction could be
created by enzymes localizing to the droplet. Since this situation is typical
inside cells, we speculate that our proposed mechanism is used to stabilize
multiple droplets with independently controlled size and count. Our model
provides a novel and thermodynamically consistent framework for describing
droplets subject to non-equilibrium chemical reactions.
1. Introduction
Biomolecular condensates are small droplets that structure the cell interior of
eukaryotes [1,2] andprokaryotes [3–5]. They formbyphase separation andpartici-
pate in awide range of cellular functions [6]: since theyare chemically distinct from
their surroundings, they can act as reaction centres [7,8], like the nucleolus inside
the nucleus [9]. In particular, locally elevated concentrations can induce polymer-
ization, as in microtubule branching [10] or in centrosomes [11,12], which
additionally control the subcellular organization. Condensates can also store
molecules to buffer fluctuations in gene expression [13] or to release them later
when the condensate dissolves; examples of these include germ granules and
the Balbiani body [14]. Condensates also help to detect changes in the environ-
ment externally, for example receptor clusters [15,16], and internally, for
example stress granules [17]. In particular, transcriptional condensates actively
regulate gene expression [18]. In all these examples, the cell controls the size,
position or count of the biomolecular condensates [2,19].

The formation of biomolecular condensates can be described in the frame-
work of liquid–liquid phase separation [20]. This implies that the droplet size
is determined by the total amount of droplet material. Moreover, inevitable sur-
face tension drives Ostwald ripening, which is a coarsening process dissolving
smaller droplets in favour of larger ones, so that only a single droplet remains in
thermodynamic equilibrium. The theory can also be used to predict how the
droplet size depends on global parameters, such as temperature, pH and salt
concentration [21–23]. Cells can directly control condensates by changing
protein concentrations or molecular interactions [24,25]. The interactions are
mainly dictated by the genetic sequence, which varies on evolutionary time
scales. On cellular time scales, post-translational modifications can further
adjust the interactions, enabling more dynamic regulation [26]. As an example,
phosphorylating the carboxy-terminal domain (CTD) of RNA polymerase II
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dissolves CTD droplets in vitro [27]. More generally, chemical
reactions, such as post-translational modifications, can affect
the dynamics of droplets and explain how cells could
regulate condensate size, location and count [28,29].

Theoretical studies of active droplets, which combine
phase separation and chemical reactions, suggest that
chemical reactions can suppress Ostwald ripening, leading
to coexisting droplets of similar size [30,31] and even dro-
plet division [32]. These studies described chemical
reactions using fixed rate laws, which do not include the
molecular interactions necessary for phase separation.
Instead, a thermodynamically consistent theory is necessary
to faithfully describe the interplay of phase separation with
reactions. Earlier work in this direction [33–35] suggests
that reactions need to be driven away from equilibrium to
be effective.

Here, we present a minimal model of active droplets that
combines non-equilibrium thermodynamics [36,37] and tran-
sition state theory [38,39] to describe the chemical reactions.
It focuses on chemical potentials as key quantities and
describes the non-equilibrium driving explicitly. We identify
the conditions under which droplet size control is possible
and determine the associated energetic cost. In the following,
we build up the complete model by starting from passive
liquid–liquid phase separation and then successively adding
the reaction, the driving and enzymatic control.
2. Modelling phase separation with chemical
transitions

We consider an incompressible, liquidmixture of a solvent and
a chemical component that can exist in two different forms: a
form A, which is soluble in the solvent, and an insoluble
form B, which segregates from the solvent. The composition
of the system is then given by the volume fractions ϕi(x) of
components i =A, B at each position x. They evolve as

@tfA ¼ �r � jA � s (2:1a)

and

@tfB ¼ �r � jB þ s, (2:1b)

where ji are diffusive fluxes and s is the reactive flux associated
with the chemical transitionAO B.We assume that the chemi-
cal component cannot leave the system, which implies that
the normal fluxes n · jA and n � jB vanish at the boundary
with normal vector n. Consequently, the total amount of the
chemical component is conserved.

The diffusive and reactive fluxes, ji and s, can be described
in the framework of non-equilibrium thermodynamics [36],
which ensures that a closed system relaxes to thermodynamic
equilibrium and that detailed balance is obeyed. One conse-
quence is that the fluxes ji and s are related to the chemical
potentials μi(x) of the species i =A, B. In particular, the diffu-
sive fluxes can be approximated by ji ¼ �P

j Lijrmj , where
the diffusive mobilities Lij form the symmetric, positive
semi-definite Onsager matrix [36]. By contrast, such a linear
approximation is inadequate for the reactive flux s [36] and
we thus discuss a more detailed model below.

The chemical potentials μi(x) describe how the free energy
F of the system changes when a particle i =A, B replaces
an equal volume of solvent at position x. They are thus
given by μi = vi δF[ϕA, ϕB]/δϕi, where we consider constant
molecular volumes vi and we assume vA = vB. We focus on
short-ranged molecular interactions, which typically drive
phase separation in biological systems where electrostatic
interactions are screened by counterions. In this case, the
free energy of this isothermal system at temperature T can
be expressed as

F[fA, fB] ¼
ð "

f(fA, fB)�
X

i,j¼A,B,C

kij

2
rfi �rfj

#
dV, (2:2)

where the integral is over the entire system of volume Vsys.
Here, f is the local free energy density, which governs phase
separation [33], and κij penalizes composition gradients,
which results in surface tension effects [40]. As a concrete
example, we consider the free energy density

f(fA, fB)
kBT

¼
X
i

fi

vi
ln (fi)þ

X
i

eifi þ
X
i,j

eij
2
fifj, (2:3)

where kB is Boltzmann’s constant and i, j∈ {A, B, C} using
ϕC = 1− ϕA− ϕB. Here, the first term is the mixing entropy
and the remaining terms capture enthalpic contributions
[41,42]. In particular, ei can be interpreted as internal energies,
while eij= eji capture interactions. Since Amolecules are soluble
in the solvent, we assume for simplicity that they interact
identically to the solvent (eAA= eAC = eCC and eAB= eBC). In
the special case of a homogeneous system, the chemical
potentials then read

mA ¼ kBT wA þ lnfA � vA
vC

lnfC

� �
(2:4a)

and

mB ¼ kBT wB þ lnfB �
vB
vC

lnfC � 2xfB

� �
, (2:4b)

where 2χ = vB(2eBC− eBB− eCC) is the Flory parameter
capturing relevant interactions and wi = 1− vi/vC +
vi(ei � eC þ eiC � eCC) quantifies internal energies for i =A, B.
In non-homogeneous systems, μB additionally contains the
term kr2fB, which generates the surface tension. Here, κ = 2kB
Tℓ2χ, where ℓ is the interface width [40]. Equations (2.1) and
(2.4) together form a typical model for describing phase
separation without chemical reactions. We first briefly
discuss this classical case and then proceed to examining
how different models for the reaction fluxes s affect the
droplet formation.
2.1. Amount of segregating material determines
droplet size

Without chemical reactions (s = 0; see figure 1a), droplets can
form when the free energy F of the demixed system is lower
than that of the homogeneous system. This is the case if χ is
large enough (figure 2a) while the internal energies wi are
irrelevant since the total amount of each species is conserved
[33]. In equilibrium, the diffusive flux jB vanishes and the
chemical potential μB is homogeneous, while ϕB can vary
strongly (figure 2b,c). The respective equilibrium fractions
fin
B and fout

B inside and outside of the droplet are given by
a tangent construction (figure 2a) [40]. They are constant
and do not depend on the total composition of the system
if the fraction of A is small (ϕA≪ 1). Without reactions,
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Figure 1. Schematic of the four discussed models: (a) B molecules (orange) with weak enthalpic interactions (black dashed lines) form droplets in the C-rich solvent
phase (blue). (b) A spontaneous chemical transition (black arrow) between the segregating form B and the soluble form A (green) determines the amount of
available droplet material B. (c) A second reaction (curved arrow) driven by the conversion of fuel F (orange circle) to waste W (green circle) can lead to a
non-equilibrium stationary state when F and W are coupled to particle baths (arrows across box). (d ) An enzyme segregating into droplets (red square) controlling
the driven reaction causes cyclic diffusive fluxes (dashed arrows) in the system, which can stabilize multiple droplets in the same system.
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Figure 2. The amount of droplet material controls the size of passive droplets. (a) Free energy density f given by equation (2.3) as a function of the volume fraction
ϕB (solid black line). A Maxwell construction (dashed black line) determines the fraction f

in
B inside droplets (orange circle) and the fraction f

out
B in the solvent (blue

circle). (b) Equilibrium volume fraction ϕB (left axis) and associated chemical potential μB (right axis) as a function of the distance from the droplet centre. Shown is
the numerical solution for a single droplet of radius R�. (c) Chemical potential μB given by equation (2.4) as a function of the volume fraction ϕB of the droplet
material. The chemical potentials are equal at the coexistence point (coloured dots). (d ) Total volume V given by equation (2.5) of the droplet phase as a function of
the average fraction �fB of the droplet material. Droplets do not form for �fB , fout

B (grey area). (a–d) Model parameters are χ = 3, wB = 0.5, vB = vC,
�fB ¼ 0:08 (in b) and ϕA = 0, so only B and C are present.
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there are only two equilibrium states: either everything is
mixed or a single droplet enriched in B forms. Even if
multiple droplets form initially, for example because of
nucleation, surface tension effects drive coarsening by
Ostwald ripening [43] or coalescence, so that all droplets
merge into one [33]. The volume V of the droplet follows
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Figure 3. Chemical equilibrium sets the amount of droplet material. (a) The equilibrium ratio K of the fractions of soluble and phase-separating forms given by equation
(2.7) as a function of the total protein fraction ϕ+ = ϕA + ϕB. The respective values Kin and Kout inside and outside the droplet are indicated. (b) Numerically determined
volume fractions ϕA and ϕB (left axis) and the associated chemical potential difference μA− μB (right axis) as a function of the distance from the centre of a droplet of
radius R�. The composition of the droplet (orange shaded area) can differ strongly from that of the solvent (blue shaded area) even at equilibrium (μA = μB). (c) Total
fraction V/Vsys occupied by droplets given by equation (2.8) as a function of the difference wA− wB between the internal energy of A and B. The dashed line marks the
maximal volume, where all proteins are in form B. (d ) Average volume fractions of A (green line) and B (orange line) resulting from K given in equation (2.7) as a
function of the total average protein volume fraction �fþ in the system. Without droplets (grey area), almost all protein is in the soluble A form, while the opposite is
true for large droplets. (a–d) Model parameters are χ = 4, wA− wB = 2, vA = vB = vC (in a–c), �fþ ¼ 0:2 (in b) and �fþ ¼ 0:06 (in c).
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from material conservation and reads

V ¼
�fB � fout

B

fin
B � fout

B

Vsys, (2:5)

where �fB ¼ V�1
sys

Ð
fB dV is the average fraction of B in the

system. Note that the droplet can only exist when �fB . fout
B .

All excess material beyond fout
B concentrates in the droplet,

so V grows linearly with �fB (figure 2d). A biological cell can
thus regulate whether a droplet exists and how large it gets
by controlling the total amount of B. Protein amounts can be
changed by production and degradation, although this is a
costly and slow process. Moreover, V depends on the inter-
action parameter χ, which is a function of, for example,
temperature, pressure, pH and solvent composition. These
parameters are either external to the cell or affect many other
processes, so they are not ideal to regulate a specific droplet.
Taken together, this analysis shows that additional processes
are necessary to control phase separation effectively.
2.2. Chemical reactions control amount of segregating
material

A chemical transition that modifies the physical properties of
the droplet material can affect droplet formation. Our model
captures this when we allow transitions between the soluble
form A and the segregating form B of the material. The
associated reaction rate s is given by the difference in the
rate sf of the forward reaction A→ B and the rate sb of
the opposite direction, s ¼ sf � sb. In the simplest case, the
transition AO B does not require external energy input
(figure 1b), implying the detailed balance condition [33]

sf

sb
¼ exp

mA � mB

kBT

� �
: (2:6)

Chemical equilibrium (s = 0) is thus reached when μA = μB.
In the simple case of a homogeneous system, the equili-

brium state can be characterized by the fractions f
eq
A and

f
eq
B of the two forms. However, since the total fraction ϕ+ =

ϕA + ϕB of the component is conserved, it is convenient to
also discuss the equilibrium constant K ¼ f

eq
B =f

eq
A . Using

the chemical equilibrium (μA = μB) and equation (2.4), we find

K ¼ exp (wA � wB þ 2xfB), (2:7)

which shows that K is strongly affected by the difference
wA−wB of the internal energies of A and B. Note that K is
only a constant for an ideal solution (χ = 0). For a non-ideal
system, K depends on the total fraction ϕ+, such that K is
larger when there is more material (figure 3a). Taken
together, this analysis shows that the chemical equilibrium
depends on the environment.

The only inhomogeneous equilibrium state of the system is
again a single droplet enriched in B. The analysis of the
inhomogeneous state implies that the ratio f

eq
B =f

eq
A is larger

inside the droplet than outside. This is because the droplet
environment favours B overA. Note thatA is enriched outside
the droplet for the chemical potentials given by equation (2.4)
(figure 3b), but more general choices of eij can enrich A inside
the droplet. For our system, ϕA is thus dilute in both phases in
the common case that the system mostly consists of solvent
(�fþ � 1), where �fþ ¼ V�1

sys

Ð
fþdV denotes the conserved
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total fraction of A and B. In this case, we can determine the
equilibrium fractions of B from the tangent construction
given in figure 2a since ϕA≪ 1 everywhere. We can then use
Kin ¼ K(fin

B ) and Kout ¼ K(fout
B ) to determine the total fraction

ϕ+ inside and outside the droplet, fin
þ ¼ (1þ K�1

in )fin
B and

fout
þ ¼ (1þ K�1

out)f
out
B . The conservation of �fþ then implies

that the droplet volume V is given by

V ¼
�fþ � fout

þ
fin
þ � fout

þ
Vsys: (2:8)

Similarly to the case without chemical reactions, a droplet
can only form when �fþ . fout

þ and the total amount
exceeding the threshold determines the droplet volume. How-
ever, the internal energy difference wA−wB now also affects
the droplet volume (figure 3c). This is mainly because it
changes the equilibrium constant Kout and thus fout

þ . Conse-
quently, external parameters, such as temperature and pH,
can now also affect droplet formation via the internal energies,
thus allowing for a potentially stronger response.

The chemical reactions clearly influence the droplet
formation and thus the overall composition in the system. In
particular, the relative amounts of A and B strongly depend
on whether droplets form or not. Figure 3d shows that the
amount of B in the system increases significantly when the
total fraction �fþ exceeds the threshold fout

þ so droplets form.
We showed that the chemical transition allows for more

detailed control of droplet formation. However, similar to
the case without chemical reactions, changing the total
amount is costly and slow while the involved energy differ-
ence wA −wB mainly depends on external parameters. This
is because the equilibrium states in both cases are governed
by the free energy. In particular, kinetic parameters are
irrelevant and droplets cannot be controlled enzymatically.

2.3. Driven reactions allow enzymatic control of droplets
We next extend our system by allowing the transitionAO B to
also be driven by an external energy input (figure 1c). In
particular, we introduce a second reaction, AþW O Bþ F,
where F andW, respectively, denote fuel and waste molecules.
A typical biological example is ATP and ADP, where the
hydrolysis of ATP liberates about 15–30 kBT [44]. For simpli-
city, we consider the case where F and W are dilute and
homogeneously distributed, so they do not affect phase separ-
ation directly. To keep the system away from equilibrium, we
assume that the chemical potential difference Δμ = μF − μW > 0
is constant, e.g. because of ATP regeneration. Taken together,
Δμ can be interpreted as a ubiquitous external energy source.

The driven reaction obeys the detailed balance condition [33]

sf2
sb2

¼ exp
mA � mB � Dm

kBT

� �
, (2:9)

where sf2 and sb2 are the forward and backward rates. The net rate
s2 ¼ sf2 � sb2 of the driven reaction thus vanishes when μA− μB =
Δμ. This condition is incompatiblewith the chemical equilibrium
of thepassive reaction, μA = μB, discussed in the previous section.
This implies that the driven systemcannot reach thermodynamic
equilibrium.

To understand the behaviour of the driven system, we
first consider stationary states where the total reactive flux,
s = s1 + s2, vanishes. Here, s1 ¼ sf1 � sb1 is the rate associated
with the passive reaction, where sf1 and sb1 obey the detailed
balanced condition given by equation (2.6). Taken together,
the condition s = 0 requires that the stationary state chemical
potentials m�

A and m�
B obey

m�
A � m�

B ¼ Dm� kBT ln
exp (Dm=kBT)þ h

1þ h

� �
, (2:10)

where h ¼ sb2=s
b
1 is the ratio of the backward reaction rates.

Note that this condition corresponds to the passive case
(m�

A ¼ m�
B) for η = 0, while the driven reaction dominates

(m�
A � m�

B ¼ Dm) for η→∞ (figure 4a). In general, we have
0 � m�

A � m�
B � Dm, so that the passive reaction creates the

segregating form B while the driven reaction destroys it.
In general, the backward rates sbi depend on composition,

since they describe the kinetics of the chemical reactions [34].
A simple model for chemical reactions is transition state theory
[38,39], where the forward and backward rates only depend
on the chemical potentials of the reactants and products, respect-
ively. Using this theory, we find sb1 ¼ a1 exp (mB=kBT) and
sb2 ¼ a2 exp [(mB þ mF)=kBT], where αi are constant pre-factors
that can be influenced by enzymes; see the electronic supple-
mentary material. This implies that h ¼ a2a

�1
1 exp (mF=kBT),

and thus also m�
A � m�

B, are constant (see equation (2.10)).
Taken together with equation (2.1), we thus find that all station-
ary states with s = 0 must have homogeneous chemical
potentials (figure 4b).

The driven system can be mapped to the system with
passive reactions by altering the internal energies,
wB 7! wB þ (m�

A � m�
B)=kBT. Consequently, this system pos-

sesses the same stationary states as the passive system, so
that at most a single droplet can form and its volume is
given by equation (2.8). However, the driven chemical reac-
tion can now be used to control the droplet volume, e.g. by
enzymatic activity. For instance, increased activity of an
enzyme that catalyses the driven reaction corresponds to an
increase in α2. This results in an increase in η, m�

A � m�
B, s,

K−1 and fout
þ , which leads to a smaller droplet volume V;

see figure 4c. Equivalently, raising the external potential Δμ
also reduces V. In particular, any change that increases fout

þ
beyond the average fraction �fþ of available material will dis-
solve all droplets. Note that this dissolution by enzymatic
reactions happens without degrading the material, so dro-
plets could re-form quickly when the original conditions
are restored. However, the potential for this quick response
comes at the energetic cost, quantified by the entropy pro-
duction (figure 4d ), of keeping the droplets dissolved [31].

We showed that at most a single droplet can be stable
when the net flux of the chemical reactions vanishes every-
where (s = 0). To also regulate the droplet count, we thus
need inhomogeneous states where s≠ 0. However, we show
in the electronic supplementary material that there are no
stationary states with s≠ 0 if η and Δμ are the same every-
where. Consequently, η or Δμ must vary in space to have
multiple stable droplets. This could be achieved by imposing
spatial heterogeneity, e.g. by producing the fuel or enriching
enzymes at particular locations, which would be reflected in
the droplet arrangement. Alternatively, the fuel or enzymes
can segregate into the droplets spontaneously, which is
observed experimentally [27].

2.4. Segregated enzymes can control droplet size
and count

The main idea to control droplets is to use an enzyme that
regulates the chemical transition and segregates into droplets.
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wB = 3, vA = vB = vC and ϕ+ = 0.06; (b only) Δμ = 2 kBT, η = 1, wA− wB = 4.
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As an example, we consider an enzyme E that affects the
driven reaction (figure 1d ). In the simplest case, the rate s2
of this reaction is proportional to the volume fraction ϕE of
the enzyme,

s2 ¼ aE
2fE exp

mA þ mW

kBT

� �
� exp

mB þ mF

kBT

� �� �
, (2:11)

which follows from equation (2.9) and transition state theory
(see the electronic supplementary material). Here, aE

2 is a con-
stant pre-factor, so that this case is equivalent to the one
discussed in the previous section if ϕE is homogeneous.

The distribution of the enzyme will be inhomogeneous if
it segregates into droplets. We model this by introducing an
additional Flory parameter χE, which describes the inter-
action of the enzyme with the other components (see the
electronic supplementary material). For simplicity, we con-
sider dilute enzyme concentrations, so the coexisting
concentrations of the droplet material B at the interface are
not significantly affected. Consequently, χE controls how
strongly the enzyme segregates into the droplet [45],

fin
E

fout
E

� exE(f
in
B �fout

B ) (2:12)

(see the electronic supplementary material). In particular, the
enzyme is homogeneously distributed for χE = 0, correspond-
ing to the case discussed in the previous section.

The enzyme is enriched in the droplet when χE > 0. In this
case, the driven reaction can stabilize multiple droplets at
the same size; see figure 5a–b. To understand this behaviour,
we analyse a single droplet in a large system. Figure 5c
shows that the chemical potentials ofA and B are now inhomo-
geneous even in the stationary state. This implies diffusive
fluxes, which are driven by the non-equilibrium chemical reac-
tions: effectively, inside the droplet, the driven chemical
reaction turns the segregating form B into the soluble form
A, while form A transitions back to B spontaneously outside.
The resulting imbalances between the inside and the outside
are compensated by the diffusive fluxes. Consequently, the
chemical reactions drive a cycle of diffusive fluxes (figure 1d ).

The numerical simulations also show that the stable drop-
let radius R� decreases with larger enzyme segregation (larger
χE) (figure 5d ). In the stationary state, the diffusive influx J of B
towards the droplet is balanced by the reactive flux S of B→A
inside the droplet (J = S). In the simplest case, J is diffusion lim-
ited, J≈ a1R, while the reaction is homogeneous in the droplet,
implying S≈ a3exp(χE)R

3 (see the electronic supplementary
material). Consequently, the stable radius scales as
R� � exp (� 1

2 xE). In more realistic cases, the reaction affects
the influx J, leading to J≈ a2R

2, which implies
R� � exp (� xE) (figure 5e). In both cases, a stable droplet
size exists when the fluxes J and S are equal (figure 5e).

The droplet size regulation depends on the non-equilibrium
chemical reactions, which maintain a chemical potential differ-
ence between the droplet and its surrounding (figure 5). We
observe that the associated entropy production rate σ increases
for smaller radii R� (figure 5f). This suggests that keeping drop-
lets small consumes more fuel F. In particular, preventing
droplet formation (R� ¼ 0) is costly. Conversely, larger droplets
require smaller entropy production, although it is still non-zero,
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Figure 5. A segregated enzyme can control and stabilize multiple droplets. (a) Snapshots of a numerical simulation of three droplets in a cylindrical geometry at
two time points. Simulation parameters are χ = χE = 4, wA− wB = 2, vA = vB = vC, Δμ = 10kBT, Lij ¼ dij kBT‘2=t, α1 = 10−3 τ−1, η = 3 and �fþ ¼ 0:25.
(b) Droplet radii Ri of the simulation in (a) as a function of time. (c) Numerical solutions of the steady-state chemical potential difference between A and B as a
function of the distance from the droplet centre. The chemical potential gradient does not vanish across the interface between the droplet (orange) and the solvent
phase (blue), implying diffusive fluxes. Far away from the droplet, the reactions cancel each other (s = 0), while s < 0 in the droplet and s > 0 in the solvent close
to the interface. (d ) Stable droplet radius R� as a function of the interaction parameter χE for the enzyme. The numerical result (black solid line) is compared with
the scaling (blue dashed line) for strong segregation discussed in the main text. (e) Numerically determined reaction fluxes integrated over the droplet volume (S,
orange dashed line), the solvent volume (J, blue dashed line) and the entire system (black solid line) as a function of the droplet radius. The fluxes S and J are equal
and opposite at the stationary state (black dot). ( f ) Entropy production rate Ts ¼ � Ð

s2Dm dV as a function of R� for the situation shown in (d). The data are
normalized to the entropy production σ0 obtained for χE = 0, where the enzyme distributes homogeneously. (c–f ) Results are obtained numerically using χ = 4,
�fþ ¼ 0:06, �fE ¼ 0:001, Lij ¼ dij kBT‘2=t, α1 = 5 × 10−4 τ−1, η = 0.2, wA − wB = 4, vA = vB = vC and Δμ = 5 kBT. Further details are given in the
electronic supplementary material.
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similar to the case in the previous section. The fact that droplets
reach a stable size implies that multiple droplets can coexist in a
larger system. Since all droplets attain the same volume V�, the
number N of droplets is simply N ¼ V=V�, where the total
volumeV of the droplet phase can be approximated by equation
(2.8). In particular,Vdepends on the total fraction �fþ ofA andB,
the Flory parameter χ, the internal energieswA−wB, the driving
strength Δμ and the reaction rate ratio η. Conversely, the stable
radius V� is additionally controlled by χE, so the droplet count
N and the individual volumeV� can be adjusted independently.
3. Discussion
We introduced a model that explains how chemical reactions
can control liquid-like droplets. In particular, we identified
three ingredients necessary for effective size control: (i) the
chemical modification of the droplet material must convert it
to a soluble form, (ii) this modification must involve a driven
reaction using a chemical fuel, and (iii) the reaction dynamics
must differ inside and outside the droplet, e.g. by localizing
enzymes appropriately. The fuel, combined with the imbalance
of the reaction, maintains a chemical potential difference
between the inside and the outside, which results in sustained
diffusive fluxes. This effectively removes droplet material
from the droplet while producing it outside, which explains
the stable size of this externally maintained droplet [33].
In an alternative interpretation, the enzymes enriching in the
droplet inhibit further growth, which we already identified
as a common motif for size control in biological cells [29].
The stable droplet size R� predicted by our model is
mainly governed by the chemical transition inside the
droplet (see the electronic supplementary material). In particu-
lar, R� � [3DDc=(k0cinE )]

1=2 where D≈ 1 μm2 s−1 is a typical
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diffusivity [46], while the other parameters can varywidely [44].
Here, Δc quantifies the concentration variation of droplet
material B in the dilute phase, k0 is the catalytic rate constant
and cinE is the enzyme concentration inside the droplet. For
strong reactions (k0≈ 100 s−1) and strong enzyme segregation
(Dc=cinE � 0:1),we find very small droplets (R� � 0:05mm).Con-
versely, droplets are much larger (R� � 17:3mm) for weaker
reactions (k0≈ 0.1 s−1) and moderate segregation (Dc=cinE ¼ 10).
Consequently, droplets can be stabilized on all length scales rel-
evant to biological cells. In particular,R� is governed by intrinsic
model parameters and is thus independent of system size, simi-
lar to other theoretical predictions from combining phase
separation with chemical reactions [30,31,34,47]. Whether drop-
lets form and how large they get mainly depends on the
available amount of droplet material. Our model reveals that
this key quantity can be regulated on many scales in biological
cells: adapting the genetic sequence on evolutionary time
scales affects the internal energies of the soluble and segregating
forms, thus influencing the fraction of droplet material
(figure 3d). On the time scale of minutes to hours, protein
production and degradation affect the overall composition
(figure 2d). Faster time scales are accessible using active pro-
cesses: by activating and deactivating enzymes, the cell can
regulate the reaction rates α1 and α2 and thus the balance
between the two forms. Moreover, our analysis shown in
figure 4d indicates that the stable droplet size is very sensitive
to the ratio η= α2/α1, implying that even small changes in
these rates can have a significant impact. This active regulation
allows cells to quickly adapt their biomolecular condensate in
response to internal and external signals [15–17]. Moreover,
the continuous turnover of droplet material could prevent the
observed ageing of biomolecular condensates [48,49].

Our model unveils the required ingredients for droplet
size regulation since it obeys thermodynamic constraints, in
contrast to our earlier theory [30]. Similar to electro-chemical
systems [35], the chemical reactions in our system cannot be
described by the law of mass action since phase-separating
solutions are non-ideal. In particular, the associated equili-
brium constants differ inside and outside the droplet
(figure 3a). To investigate this further, our theory could be
extended to client chemical reactions [45], multi-component
droplets [24], complex multi-layered droplets [40,50,51] and
multiple different droplets affecting each other [52], which
are all relevant in biological cells. Moreover, it is unclear
how active droplets interact with other subcellular structures,
such as the cytoskeleton [53], or generally with the elastic
properties of their surrounding [54,55]. It will be interesting
to test our ideas with engineered condensates [56] using
fuelled chemical reactions [57].
Data accessibility. Code needed to reproduce the results is available at
Zenodo [58]. All other data are available in the manuscript or the
electronic supplementary material.
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