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Abstract: NMR spectroscopy is a widely used method for the detection and quantification of metabo-
lites in complex biological fluids. However, the large number of metabolites present in a biological
sample such as urine or plasma leads to considerable signal overlap in one-dimensional NMR spectra,
which in turn hampers both signal identification and quantification. As a consequence, we have
developed an easy to use R-package that allows the fully automated deconvolution of overlapping
signals in the underlying Lorentzian line-shapes. We show that precise integral values are computed,
which are required to obtain both relative and absolute quantitative information. The algorithm is
independent of any knowledge of the corresponding metabolites, which also allows the quantitative
description of features of yet unknown identity.

Keywords: NMR; 1D; deconvolution; metabolites; quantification; signal identification

1. Introduction

Nuclear magnetic resonance (NMR) spectroscopy is a common method to analyze
metabolites in biological fluids such as urine or blood plasma [1,2]. The resulting spectra
consist of a large number of signals at different frequency positions (x-axis), at which
each peak corresponds ideally to a certain metabolite, while its signal volume reflects its
concentration in the fluid. However, due to the large number of metabolites present in
a typical biological sample substantial signal overlap is commonly observed. Therefore,
a precise discrimination between individual overlapping metabolite signals is often not
feasible, hampering both signal assignment and accurate quantification. To overcome
this drawback several methods have already been developed. One obvious solution is to
spread the overlapping signals over more than one dimension [3,4]. However, this comes,
in the case of 'H-13C HSQC spectra measured at natural abundance, at the price of reduced
sensitivity and prolonged measurement time, which may be partly compensated by the
application of non-uniform sampling schemes [5] or by application of so-called ultrafast
NMR methods, where the conventional time incrementation has been replaced by spatial
encoding [6]. Consequently, for large studies comprising up to several thousand samples or
in cases where NMR measurement time is limiting, 1D 'H NMR spectra will be commonly
used. Therefore, to obtain accurate quantitative information from 1D spectra containing
signal overlap, spectral deconvolution techniques are required. For example, Gaussian or
Lorentzian line shapes may be fitted to 3'P NMR spectra to analyze single compounds such
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as inositol phosphates [7]. For the analysis of 1D fluorine spectra of proteins, Hughes et al.
developed an approach employing Bayesian information criteria to objectively determine
the minimal number of signals required to reproduce the experimental data [8]. In the case
of the simultaneous analysis of multiple compounds, one widely used approach is to fit
reference spectra of standards to approximate the measured mixture spectrum. This can be
done in a semi- or fully-automated fashion using, for example, the commercial software
Chenomx (Chenomx Inc. Edmonton, Canada), or freely available tools such as Bayesil [9] or
Batman [10]. Common to these methods is their requirement of reference information
obtained for pure compounds. Moreover, they do not provide quantitative information for
NMR signals of yet unknown identity. A recent approach is the SigMa software [11], which
was developed for the analysis of urinary spectra and which is able to obtain quantitative
information from both known and unknown metabolites. To this end, SigMa focuses
mainly on the analysis of spectral intervals representing only single compounds, while for
spectral regions containing signal overlap a binning approach is used.

Spectral deconvolution including a combination of time-frequency analysis and proba-
bilistic sparse matrix factorization has been used as a preprocessing step to reduce noise
in NMR spectra [12]. For 2D 'H-13C HSQC spectra, Chylla et al. implemented a decon-
volution algorithm based on the fast maximum likelihood reconstruction (FMLR) [13] to
provide accurate signal integrals without the use of reference spectra. As an advancement
of the previously developed Batman package, a Bayesian deconvolution algorithm for
the automated analysis of 2D JRES spectra has been introduced [14]. Additionally, in in
vivo NMR analyses spectral deconvolution is an important topic as drastically increased
line widths result in a substantial amount of signal overlap. Over the years numerous
approaches such as LCModel [15] for metabolite quantitation in in vivo NMR spectra
have been developed. An overview of existing approaches was recently given by Barker
et al. [16]. Additionally, for high-dimensional metabolomic data generated by means
of liquid chromatography coupled-mass spectrometry (LC-MS), fully automated signal
deconvolution methods using continuous wavelet transforms were developed [17].

The aim of the present contribution was the development of an easy to use R-package
for the deconvolution of overlapped signals in 1D NMR spectra without the need for refer-
ence spectra. To this end, a fully automated determination of the underlying Lorentzian
lines, which is the natural line-form of NMR signals, was implemented. The method is
based on previous theoretical work by Koh et al. [18,19], which we adapted to optimally
work with highly complex spectra of human biofluids such as urine and plasma. Our
approach is also distantly related to work by Schmidt et al. who used Lorentzian line
shapes for the deconvolution of electrophoretic NMR data to study non-aqueous elec-
trolytes [20]. The implemented method is tested on 1D NMR spectra of a Latin-square
design consisting of defined mixtures of 10 different metabolites commonly found in
human biofluids, as well as on real human and mouse urine spectra and human blood
plasma spectra. Obtained quantitative results are compared to those of two commonly
used commercial software packages, namely the AMIX software v. 3.9.13, May 2012
(https:/ /www.bruker.com, accessed on 2 July 2021) and the Chenomx NMR suite v. 8.6,
May 2020 (https:/ /www.chenomx.com, accessed on 1 July 2021).

2. Results

The deconvolution approach named MetaboDecon1D, which combines automated
peak selection and parameter approximation, was tested employing 10 specimens of a
Latin-square design containing 10 geometrically diluted metabolites in each specimen, five
mouse urine specimens, five human urine and 20 human EDTA blood plasma specimens.
As detailed in the Materials and Methods Section (Section 4), for each specimen a 1D 'H
spectrum was acquired using either a 1D NOESY (Latin-square design and mouse urine
specimens) or a 1D CPMG (all human specimens) pulse sequence.


https://www.bruker.com
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2.1. Peak Selection Procedure

The peak selection procedure was tested for each of the above mentioned spectra. The
threshold parameter ¢ for the signal-noise-differentiation was manually set to ensure that
all clear signals were reliably identified, while only a small amount of noise signals was
detected. Figure 1 shows as an example the resulting peak triplets for one real human
blood plasma spectrum. The three points Xy, ¢, Xiddie, Xrignt for each peak are marked with
a green, red and blue dot, respectively.

x_left
“ x_middle
@ x_right

200 300 400
| |

Intensity [a.u.]

100
|

[ppm]

Figure 1. The result of the peak selection procedure is shown for one real human blood plasma
spectrum. The detected peak triplets are marked with the green, red and blue dot for the points

Xiefts Xmiddles Xright, Tespectively.

For a typical spectrum of mouse urine around 1100 signals were detected in total, in
the region on the right-hand side of the water signal between 4.60-0.50 ppm, where almost
no signal-free regions are present, this number amounts to 780 signals. In comparison, a
typical equidistant bucketing with a bucket width of 0.01 ppm would result in 410 buckets
in this region. For human urine typically around 1600 signals were identified in total.
For the region on the right-hand side of the water signal this number reduced to around
1000 signals. For human plasma which is a little bit less complex in composition around
430 and 400 signals were detected in total and on the right-hand side of the water signal,
respectively.

2.2. Results of Parameter Approximation Method

Next, the parameter approximation method was tested for the above mentioned
spectra. To this end, for each spectrum the mean squared error (MSE) between the sum of
the approximated Lorentz-curves obtained after 10 iterations of parameter optimization
and the corresponding experimental spectrum were determined. Please note that prior to
computation of MSE values both experimental and approximated spectra were normalized
to a total integral of one. The MSE results of all tested spectra are listed in Table 1 (For
the Latin-square design only the first five results are shown, the MSE values for spectra 6
to 10 amounted to 1.05 x 107, 8.46 x 10 1%, 1.64 x 1077, 6.45 x 1071°, and 7.86 x 101,
respectively, the same is true for the EDTA plasma data, the MSE values for spectra 6 to 20
amounted t05.85x 1071,9.53 x 101,595 x 1071, 1.01 x 107, 1.81 x 10719, 1.34 x 101,
716 x1071,5.07 x 107, 4.40 x 10711, 1.55 x 10719,1.46 x 10710,1.20 x 1071, 231 x 1017,
6.86 x 10711, and 1.16 x 1019, respectively). In all cases very small MSEs below 2.0 x 10~°
were obtained indicating a reliable reconstruction of the experimental spectra.
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Table 1. MSE values after 10 iterations for the first five spectra of the Latin-square design, the five
mouse urine, the five human urine and the first five human EDTA blood plasma spectra.

No. Latin-Square Design Mouse Urine Human Urine Human Blood Plasma

1 6.08 x 10~10 441 x 10711 5.37 x 1011 1.37 x 10710
2 6.52 x 10710 358 x 10711 4,06 x 10710 1.37 x 10710
3 7.72 x 10710 3.35x 10711 7.08 x 10~ 11 1.66 x 10710
4 8.54 x 1010 292 x 1011 2.86 x 10711 8.82 x 1011
5 7.52 x 10710 311x10° 11 392 x 1011 1.09 x 10~10

As an example, in Figure 2 the sum of reconstructed Lorentz curves after 10 iterations
(depicted in red) is compared to the original spectrum (shown in black) for one human
plasma spectrum. The MSE amounts to 1.66 x 10710,

MSE = 1.66x10-0
— Original spectrum - o
o —— Sum of Lorentz curves for iteration 10
(= o -
=
o~ - ) ]
- WL
A
g - | - /
« ° 5 T T T T T T T
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=
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& &7
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8 4
o - l Wil wLn l
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Figure 2. The parameter approximation method is shown for one real human blood plasma spectrum.
The original spectrum is represented with the black line and the superposition of all Lorentz curves
after 10 iterations is illustrated with the red line. The corresponding MSE value is shown on top
of the figure. The insert shows a magnification of a part of the sugar region to show in detail the
agreement between experimental and approximated spectrum.

2.3. Quantification Results

The correctness of the deconvolution of 1D NMR spectra is inspected through the
quantification of the spectra of the Latin-square design, the mouse urine spectra, and
the human urine and blood plasma spectra. To this end, the Lorentz curves of selected
metabolites are integrated and the concentration is determined with the help of the known
reference concentration of TSP (or FA for blood plasma). Please note that for each type
of spectrum a small representative set of metabolites was analyzed. For the investigated
groups different metabolites are examined:

U Latin-square design: acetic acid, alanine, betaine, citric acid, creatinine, ethanolamine,
glycine, histidine, taurine, TMAO

*  Mouse urine spectra: 2-oxoglutarate, 3-indoxylsulfate, creatinine, glucose, hippurate,
succinate, trimethylamine

*  Human urine spectra: alanine, creatinine, glycine, hippurate

¢  Human blood plasma spectra: alanine, creatinine, glucose, lactate, tyrosine
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2.3.1. Latin-Square Design

The actual concentrations of the metabolites of the spectra of the Latin-square design
are known. Hence, the concentrations determined by MetaboDecon1D were compared with
the real values. Furthermore, the concentrations were also determined with the well-known
software AMIX (Bruker), and, additionally, both methods were compared with each other.
To obtain absolute concentrations, integral values of the respective metabolites were set in
relation to the integral of the TSP reference signal assuming for reasons of simplicity equal
T, relaxation for all signals. Figure 3 shows for the signal of the methyl group of alanine
at 1.48 ppm the correlations obtained for the different comparisons. As shown by the
best-fit line and an R? = 0.9991 in (a), the actual concentrations and the values determined
by MetaboDecon1D correlate well with each other. This indicates that the deconvolution
method reflects the concentration of the metabolite alanine well and that accurate integral
values are obtained. Furthermore, the correlation between the actual concentration and
the results of the AMIX Software (shown in (b)) as well as the correlation between AMIX
and the new deconvolution method (shown in (c)) are high with R? values above 0.99.
Please note that for both AMIX and MetaboDeconl1D a slight under-quantification of the
actual values was obtained, which is due to differences in the T relaxation of alanine and
the TSP reference signal. This under-quantification is easily rectified by a multiplicative
correction factor.

Alanine Alanine
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Figure 3. The known actual concentrations of the metabolite alanine of the 10 spectra of the Latin-square design are
compared with results obtained by (a) MetaboDecon1D and (b) AMIX. Furthermore, the correlation between the AMIX and
MetaboDecon1D results is shown (c). For quantification of alanine by both MetaboDecon1D and AMIX the doublet signal
of the methyl group was used.

Correlation results for the other investigated metabolites are listed in Table 2. Results
indicate that both MetaboDecon1D (column a) and AMIX (column b) precisely determine
the concentrations of the investigated metabolites. Furthermore, as shown in column c,
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both methods agree well with each other. Please note that no significant differences were
obtained between MetaboDecon1D and AMIX.

Table 2. Correlation parameter R? for the investigated metabolites for the comparison between the
known actual concentrations of the 10 spectra of the Latin-square design and the concentration values
obtained by either MetaboDecon1D (a) or AMIX (b) are shown. Furthermore, the correlations between
AMIX and MetaboDecon1D are given (c). # For the lowest concentration value of ethanolamine at
0.010 mmol /L signals were below the noise threshold. ? For the three lowest concentration values of
taurine at 0.010, 0.020 and 0.039 mmol/L signals were below the noise threshold. ¢ For TMAO no
values could be determined as one signal of betaine exactly overlaps with the singlet signal of TMAO

at 3.25 ppm.
Metabolites (a) (b) (c) (Selected Signals)
acetic acid 0.9991 0.9992 0.9998 1.91 ppm
alanine 0.9991 0.9979 0.9995 1.48 ppm
betaine 0.9994 0.9969 0.9973 3.25; 3.89 ppm
citric acid 0.9998 1.0000 0.9999 2.56; 2.65 ppm
creatinine 0.9994 1.0000 0.9992 3.05; 4.05 ppm
ethanolamine * 0.9999 1.0000 0.9999 3.81 ppm
glycine 0.9989 1.0000 0.9989 3.56 ppm
histidine 0.9993 0.9997 0.9985 3.12;3.22; 3.97;7.05; 7.77 ppm
taurine ? 0.9996 0.9989 0.9976 3.41 ppm
TMAO* - - - 3.25 ppm

2.3.2. Mouse Urine Spectra

So far, MetaboDecon1D was tested on the well resolved spectra of the Latin-square
design. The analysis of mouse urine spectra, which contain signals from several hundred
compounds in a single spectrum, poses a considerably larger challenge. To this end, the
performance of MetaboDecon1D on a set of mouse urine spectra was compared to that of
AMIX and Chenomx (Chenomx Inc. Edmonton, AB, Canada), the latter being especially
designed to deal with signal overlap. As the true concentrations were unknown, we
concentrated on the analysis of correlations between the different methods. For further
analyses all values obtained for a given metabolite by one of the different methods were
normalized by setting its maximum value to one. The correlation for the metabolite 2-
oxoglutarate is shown in Figure 4a for the comparison with AMIX and in Figure 4b for
the comparison with Chenomx. With R? values of 0.9701 in (a) and 0.9988 in (b) both
AMIX and Chenomx agree well with MetaboDecon1D. However, MetaboDecon1D agrees
especially well with Chenomx as both methods were specifically designed to deal with
signal overlap, as is the case for the signals of 2-oxoglutarate at 2.42 and 2.99 ppm (data

not shown).
2-Oxoglutarate 2-Oxoglutarate
1.2 _ 12
£l 3
il i
o 1.0 . e 1.0
'g y =1.0061x - 0.0158 < y =0.9928x + 0.0035 .
208 R?=0.9701 g 0.8 R?=0.9988
Eo [}
£ ) 2
g 0.6 .. éJ 0.6 “"..d
£ .. = K
2 04 £ 04
Eo2 Eo2
< €
5 0.0 500
< 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 04 0.6 0.8 1.0 1.2
Concentration with AMIX [a.u.] Concentration with Chenomx [a.u.]
(a) (b)

Figure 4. The results of MetaboDecon1D for the metabolite 2-oxoglutarate of the five mouse urine spectra are compared
with (a) AMIX and (b) Chenomx. The best-fit line and the correlation parameter R? are shown.
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The results of the correlation analyses obtained for the other investigated metabolites
are given in Table 3. Data show that MetaboDecon1D agrees well with both AMIX and
Chenomx with a consistent albeit not significant better agreement with Chenomx. This
indicates that MetaboDecon1D allows for a precise determination of integral values even
in spectra of highly complex biofluids such as mouse urine.

Table 3. Correlation parameter R? for the metabolites investigated in five mouse urine spectra for
the comparison of MetaboDecon1D with AMIX (a) and with Chenomx (b).

Metabolites (a) (b) (Selected Signals)
2-oxoglutarate 0.9701 0.9988 2.42;2.99 ppm
3-indoxylsulfate 0.9837 0.9984 7.35 ppm
creatinine 0.9467 0.9907 3.05; 4.05 ppm
glucose 0.9830 0.9776 5.22 ppm
hippurate 0.9985 0.9898 7.54;7.63;7.83 ppm
succinate 0.9906 0.9943 2.39 ppm
trimethylamine 0.9949 0.9953 2.87 ppm

2.3.3. Human Urine Spectra

Next, spectra of five human urine specimens were analyzed with MetaboDecon1D,
AMIX and Chenomx. As a challenging example the signal of glycine at 3.55 ppm was
selected, as it is relatively small and in addition considerably overlapped with other signals.
Figure 5a shows the comparison of MetaboDecon1D with AMIX, while Figure 5b depicts
the comparison with Chenomx. As for the data of mouse urine all values of each method
were normalized by setting for a given metabolite the maximum value of each method
to one. For the comparison with AMIX in (a) only a moderate R? = 0.7482 was obtained,
which considerably increased to R? = 0.9350 for the comparison with Chenomx (b), clearly
showing the importance of proper spectra deconvolution of overlapping signals as achieved
by both MetaboDecon1D and Chenomx.

Glycine Glycine
12 1.2
o . . 1.0 . -
0.8 0.8
y=0.8091x+0.016 _.~"e e
0.6 i 0.6 y=10211x+0.0171 -~

R2=0.7482 . . .
R?=0935 .

I
kS
e
IS

e
]
e
i

Concentration with MetaboDecon1D [a.u.]

[=]
o
Concentration with MetaboDecon1D [a.u.]

e
o

0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Concentration with Amix [a.u.] Concentration with Chenomx [a.u.]
(a) (b)

Figure 5. Analysis of glycine in five human urine spectra. The results of MetaboDecon1D were compared with (a) AMIX
and (b) Chenomx. The best-fit line and the fit parameter R? are given.

The correlation results for the other investigated metabolites are shown in Table 4. Data
show that MetaboDeconlD agrees well with both AMIX and, even better, with Chenomx.
This indicates that MetaboDecon1D allows for a precise determination of integral values
even in spectra of highly complex biofluids such as human urine.
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Table 4. Correlation parameter R? for the metabolites investigated in the five human urine spectra
for the comparison of MetaboDecon1D with AMIX (a) and with Chenomx (b).

Metabolites (a) (b) (Selected Signals)
alanine 0.9501 0.9955 1.48 ppm
creatinine 0.9990 0.9993 4.05 ppm
glycine 0.7482 0.9350 3.56 ppm

hippurate 0.9997 0.9900 7.54;7.63;7.83 ppm

2.3.4. Human Blood Plasma Spectra

Another major and challenging application of NMR-based metabolomics is the inves-
tigation of human blood plasma spectra. Due to the presence of large amounts of human
serum albumin, which gives rise to large, broad background signals, samples are either
ultra-filtrated prior to measurement, or a CPMG pulse sequence, as performed here, is
employed for the suppression of macro-molecular signals. Furthermore, human plasma
contains large amounts of glucose causing significant signal overlap in the region from
5.2-3.2 ppm. Therefore, to investigate the performance of MetaboDecon1D under such
constraints 20 spectra of human blood plasma were employed in which MetaboDecon1D
was compared with both AMIX and Chenomx. The correlation of the metabolite lactate
is shown in Figure 6a for the comparison with AMIX and in Figure 6b for the compari-
son with Chenomx. Prior to analysis data were normalized as described above for urine
(Section 2.3.3). Data clearly show that for lactate the agreement of MetaboDecon1D with
AMIX R? = 0.9160 in (a) is lower than with Chenomx R? = 0.9706 in (b).

Concentration with MetaboDecon1D [a.u.]

=}

=}
=]
o

Lactate Lactate
— 12
E
a
y=0.9225x - 0.0214 : gto y=09832x-00003  .*
R*=0.916 15 RE=0.9706 .
gos L
2
e 2 .
. T 06 o*
. b= =
oy e _©® £ LY ]
o B0 Soa ad
€
- Y .g e
e £02 ®
[=
o
o
500
0.2 0.4 0.6 0.8 1.0 1.2 < 0.0 0.2 0.4 0.6 0.8 1.0 12
Concentration with AMIX [a.u.] Concentration with Chenomx [a.u.]
(a) (b)

Figure 6. Analysis of lactate in 20 spectra of human plasma. First MetaboDecon1D was compared with AMIX (a) and then

with Chenomx (b).

The comparisons for all investigated metabolites are provided in Table 5. Except for
lactate, R? values slightly below 1 indicate good agreement between MetaboDecon1D,
AMIX and Chenomx. The lower agreement observed for lactate will be discussed in the
discussion section (Section 3).

Table 5. Correlation parameter R? for the metabolites investigated in the 20 human blood plasma
spectra for the comparison of MetaboDecon1D with AMIX (a) and with Chenomx (b).

Metabolites (a) (b) (Selected Signals)
alanine 0.9845 0.9715 1.47 ppm
creatinine 0.9802 0.9663 4.05 ppm
glucose 0.9886 0.9615 523 ppm
lactate 0.9160 0.9706 1.32 ppm
tyrosine 0.9730 0.9588 6.88 ppm
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3. Discussion

We presented a novel deconvolution algorithm, called MetaboDecon1D, to facilitate
automatic deconvolution of complex 1D NMR spectra. The key features of MetaboDecon1D
include the curvature-based peak selection approach followed by the deconvolution of
overlapping signals in the underlying line shapes. Therefore, these two features will
be discussed in more detail in the following. A challenging example is the analysis of
the signal of the methyl group of lactate in spectra of human blood plasma as it shows
considerable overlap with signals of threonine. Here, for a precise determination of integral
values a proper deconvolution in the underlying individual signals is mandatory. For
MetaboDeconl1D the peak selection procedure and the parameter approximation method
for the frequency region of the methyl groups of lactate and threonine in a spectrum of
human blood plasma are depicted in Figure 8. The peak selection procedure in (a) shows
the detected peak triplets in this frequency region. The approximation of the parameters
starts in (b) with the initial Lorentz curves, which are then optimized in an iterative
process until after 10 iterations an optimal agreement between the approximated curves
and the experimental spectrum is reached (c), as demonstrated by the superposition of all
estimated Lorentz curves (d). As depicted in (b) and (c) the deconvolution method detects
two Lorentz curves each for both of the doublet signals of lactate and threonine. This
clearly demonstrates that MetaboDecon1D allows for a fully automated deconvolution
even of highly overlapping signals.

The same frequency region was also analyzed with AMIX as shown in Figure 7a and
Chenomx as shown in Figure 7b. As indicated by the small vertical lines in Figure 7a the
automated peak detection algorithm of AMIX only detects the doublet signal of lactate
and not the smaller underlying threonine signals, which are indicated as shoulders of the
lactate signals. In contrast, Chenomx allows for a proper deconvolution of the signals of
lactate and threonine. However, a proper deconvolution of highly overlapping signals, as
in this example, is only achieved by manual fitting.

/ \/ \

T
133 1‘32 1.31

(a) (b)

Figure 7. The signals of the methyl groups of lactate and threonine. Automated signal detection by AMIX (a) and signal

deconvolution by Chenomx for lactate (green area) and threonine (purple area) by manual fitting (b).

Similar results for metabolites showing considerable signal overlap were obtained for
2-oxoglutarate (see Figure 4) and glycine (see Figure 5).

These results show that MetaboDecon1D provides precise signal integrals in a fully
automated fashion. As it does not depend on reference spectra, precise integrals can
also be obtained for yet unknown compounds. This will allow checking for relevant
group differences justifying identification of the corresponding compounds. This is a
clear advantage compared to conventional binning approaches where signal overlap is
not resolved. In the case that major shifts in signal position occur [21] signal alignment
procedures such as icoshift [22] or further developments based on icoshift such as IFFD-
icoshift [23] may be used to achieve proper signal alignment, as well as for signals where
the assignment to the corresponding metabolites is known relative quantification is straight
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forward. For absolute quantification of metabolites, signal splittings due to J-couplings
have to be considered by summation of the corresponding Lorentz curves, which is easily
doable for singlet, doublet and triplet NMR signals.

A limitation of MetaboDeconlD is its inability to resolve two exactly overlapping
signals as is the case for the signals of TMAO and betaine at 3.25 ppm (see Table 2). In
such cases, approaches such as Chenomx that use reference information of the underlying
metabolites have a clear advantage as they also allow the deconvolution of exactly overlap-
ping signals based on additional non-overlapping signals of the metabolites in question.

4. Materials and Methods
4.1. Datasets

Latin square design A Latin-square design consisting of 10 samples was prepared
to evaluate the experimental performance of the deconvolution algorithm. For the 10
samples, solutions of acetic acid, alanine, betaine, citric acid, creatinine, ethanolamine,
glycine, histidine, taurine and trimethylamine-N-oxide, were geometrically diluted
from 5000 to 10 uL, whereby the overall substance concentration in each sample was
kept constant.

Human urine and plasma specimens The used urine and blood plasma specimens were ob-
tained from participants in the German Chronic Kidney Disease (GCKD)
study [24,25], which was executed in accordance with the Declaration of Helsinki and reg-
istered in the national registry for clinical studies (DRKS 00003971). All study procedures
and protocols were approved by the ethics committees of all participating institutions
(Friedrich-Alexander-University Erlangen-Nuremberg, Medical Faculty of the Rheinisch-
Westfalische Technische Hochschule Aachen, Charité-University Medicine Berlin, Medical
Center-University of Freiburg, Medizinische Hochschule Hannover, Medical Faculty of
the University of Heidelberg, Friedrich-Schiller-University Jena, Medical Faculty of the
Ludwig-Maximilians-University Munich, Medical Faculty of the University of Wiirzburg).
The study was carried out in accordance with relevant guidelines and regulations. Written
declarations of informed consent had been obtained from all study participants before
inclusion. All specimens were stored at —80 °C until preparation of NMR samples.

Mouse urine specimens Spot urine specimens were collected from male C57BI/6] mice
(Charles River Laboratories, Sulzfeld, Germany). All experimental procedures were con-
ducted according to the German law for animal care and were approved by the local
authorities (registration number provided by the ethic committee of the Regierung von
Unterfranken, 55.2.2.2532.2-1107).

4.2. NMR Sample Preparation

For preparation of NMR samples, 400 pL of either one of the 10 metabolite mixtures
of the Latin square design or of the human urine or EDTA plasma specimens were mixed
with 200 pL of 0.1 M phosphate buffer, pH 7.4, which contained in addition 3.9 mM boric
acid to impair the growth of bacteria in the sample and 50 uL of 0.75 (wt) trimethylsilyl-
propanoic acid (TSP) in deuterium oxide (D;0) as internal reference standard. For both
human urine and EDTA plasma in addition 10 pL of 81.97 mmol/L formic acid (FA) were
added as a second internal reference standard that is not prone to protein binding. For
preparation of the mouse urine specimens, 30 pL of urine were mixed with 370 pL of
pure water before addition of the same amounts of buffer and reference substance as de-
scribed above for the Latin square design. All chemicals were obtained from Sigma-Aldrich,
Taufkirchen, Germany.

4.3. NMR Measurements

Spectra of human plasma and urine specimens from patients with chronic kidney dis-
ease were acquired employing a 1D 'H Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence
to achieve effective suppression of macromolecular signals. For the Latin-square design
and mouse urine samples a 1D 'H NOESY pulse sequence was employed for optimal sup-
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pression of the water signal. All NMR experiments were performed at 298 K on a 600 MHz
Bruker Avance III spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) using a
triple resonance (1H, 3¢, 15N, 2H lock) cryogenic probe with z-gradients in combination
with a Bruker SampleJet sample changer (Bruker BioSpin GmbH, Rheinstetten, Germany).
Prior to measurement, thermal equilibration of the samples was permitted for 300 s before
automatically locking, tuning, matching and shimming the probe. For all measurements a
relaxation delay of 4 s was used. The acquisition time amounted to 3.1 and 2.7 s for the 1D
CPMG and NOE spectra, respectively.

4.4. Preprocessing

Spectra were semi-automatically Fourier-transformed to 128 k real data points, phase
corrected and baseline optimized. Next, prior to spectral deconvolution, the remaining
water artifact was removed and all intensities were converted to their absolute values.
Furthermore, a 2,5-Mean Smoothing was performed to handle the presence of noise, which
otherwise might lead to additional maxima (for more information see Section 4.5.1). In our
implementation, each intensity value was replaced by the mean value of itself and its two
adjacent neighbors on either side. This procedure was repeated twice.

4.5. Deconvolution with Lorentz Curves

The deconvolution was realized by constructing an individual Lorentz curve for

each signal:
A
Y = A e RN 1)

with the area under the curve A - 7, the half width at the half height (HWHH) A, and the
frequency position of the peak maximum xy. To compute these parameters for each signal
a peak selection procedure and a parameter approximation method are required.

4.5.1. Peak Selection

For the deconvolution of an NMR spectrum, the frequency position of each signal
needs to be known. Therefore, an automated curvature-based signal selection procedure
was realized as proposed by [18]. To this end, a search for peak triplets consisting of three
points per signal is performed. First, the second derivative of the spectrum is computed to
obtain the inflection points. If y”/(x) < 0and y”(x +1) > y”(x) < y”(x — 1), then x depicts
a local maximum of the spectrum, i.e., the center point of a peak triplet. Second, the left
and right points for each peak triplet are defined by nearest zero crossings, local maxima
or plateaus of the second derivative. By this, all signal positions, even of partly overlapped
signals will be determined. Figure 8a shows as an example the results of the implemented
peak selection procedure for a part of a spectrum of human blood plasma. For the removal
of noise, a score is calculated for each peak triplet and if its value is higher than the sum of
the mean and ¢ times the deviation of the signal free region, then the peak depicts a real
metabolite signal and is kept for further analysis. Here, J is a user-set threshold parameter
that should be carefully checked by manual inspection. Furthermore, the presence of noise
may also cause the occurrence of additional peak triplets on the flanks of real signals. To
solve this issue, preprocessing with a 2,5 Mean Smoothing approach was performed (see
also Section 4.4).

4.5.2. Parameter Approximation Method

After application of the automatic peak selection procedure the frequency positions of
the peak triplets for the metabolite signals are known. Next, the parameters A, A and xg
need to be calculated for each signal, with A, A and x( denoting a scaling factor, the half
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line width at half height of the peak and the position of the peak maximum, respectively.
An analytical approach calculates them by solving the linear equation system:

A
Y(Hiept) = A 37 (X1eft — %0)? i’
A
Y(Xmigare) = A A2 + (Xmiddie — X0)? X
A
y(xright) =A ?

. AZ + (xright - XO)2

The system consists of three Lorentz equations for the three points (Xjet, Xiddies Xright)
of each peak triplet, which allows the computation of the three unknown parameters
of each Lorentz curve (initial Lorentz curves are illustrated in Figure 8b). The resulting
formula of the linear equation system was redetermined with Mathematica from Wolfram
Research v. 12.2, (https:/ /www.wolfram.com/mathematica/, 2 December 2020).

As the determination of the initial set of parameters considers each Lorentz curve
separately, the superposition of the calculated Lorentz curves gives a spectrum of higher
intensity than the original spectrum. Hence, a height adjustment is conducted in an
iterative process, which adjusts the intensity values for each point of the peak triplets
(xlgft, Xmiddles Xright) and recalculates the parameters A, A and x( until the minimum de-
viation between the sum of computed Lorentz curves and the experimental spectrum
is obtained as determined by the minimal mean squared error. Individually optimized
Lorentz curves after 10 iterations are shown in Figure 8c, while the sum of the optimized
curves is illustrated in Figure 8d.
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Figure 8. Deconvolution of the frequency region of the overlapping methyl groups of lactate and threonine in a 1D 'H
spectrum of human blood plasma. (a) Peak selection procedure to find the metabolite positions, (b) determination of
initial Lorentz curves for parameter approximation, (c) iterative approximation of Lorentz curves, showing results after 10
iterations and (d) superposition of final Lorentz curves to match experimental spectrum.
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To work reliably with real experimental spectra, the original algorithm [18] required
some adjustments such as taking the absolute value of the line-width parameter A. In
addition, to avoid numerical instabilities in the calculation of A, the positions of the peak
triplets are shifted to zero for computation of parameters according to the formulas given
in Equation (5).

Ox = Xieft

Xieftshift = Xieft — Ox =0 -

Xmiddle,shift = Xmiddle — Ox

Xright,shift = Xright — Ox

4.6. Quantification Through Integration

The deconvolution of a spectrum should allow for an accurate and precise determina-
tion of the individual integrals of the underlying metabolites. To this end, the area under
each optimized Lorentz curve is calculated through integration.

b b A b 1

With the upper integration border b given as the number of data points of the spectrum
(i-e., the length of the spectrum) and with the basic integral [ m dx = 1 .arctan £ and

the substitution u = 5 follows:

b b— X0 0— X0
/0 y(x)dx = A - (arctan 5~ arctan — ) (7)

In the simplest case of singlet signals corresponding to a single proton these integrals
may be directly converted to concentration values with the help of the known concentration
of a given reference signal such as TSP (or FA for blood plasma). Otherwise, multiplet
splittings and the number of contributing atoms have to be considered in addition.

4.7. Software

MetaboDecon1D was developed in R 3.6.1 (The R Foundation for Statistical Comput-
ing, 2019). A detailed description of the installation and usage is provided in the supplemen-
tary material. Furthermore, the R-package of MetaboDecon1D comes with a detailed help
function including example data. The R-package MetaboDecon1D for the automated decon-
volution of 1D NMR spectra can be downloaded from: https://www.uni-regensburg.de/
medicine/functional-genomics/staff/ prof-wolfram-gronwald /software /index.html. Fora
typical 1D spectrum of human urine the computation time is approximately 3 min on a
standard PC.

5. Conclusions

In conclusion, with MetaboDecon1D we provide an R-package for the reliable fully
automated deconvolution of 1D NMR spectra that should be generally applicable. Com-
pared to existing approaches it is especially advantageous in cases where no reference
spectra are available and/or in cases of strong signal overlap as was demonstrated on
several examples.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11070452/s1.
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1D one-dimensional
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NMR nuclear magnetic resonance
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