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with genotype‑by‑environment interactions 
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to genetic improvement of disease resilience
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Abstract 

Background:  Genotype-by-environment interactions for a trait can be modeled using multiple-trait, i.e. character-
state, models, that consider the phenotype as a different trait in each environment, or using reaction norm models 
based on a functional relationship, usually linear, between phenotype and a quantitative measure of the quality of 
the environment. The equivalence between character-state and reaction norm models has been demonstrated for 
a single trait. The objectives of this study were to extend the equivalence of the reaction norm and character-state 
models to a multiple-trait setting and to both genetic and environmental effects, and to illustrate the application of 
this equivalence to the design and optimization of breeding programs for disease resilience.

Methods:  Equivalencies between reaction norm and character-state models for multiple-trait phenotypes were 
derived at the genetic and environmental levels, which demonstrates how multiple-trait reaction norm parameters 
can be derived from multiple-trait character state parameters. Methods were applied to optimize selection for a mul-
tiple-trait breeding goal in a target environment based on phenotypes collected in a healthy and disease-challenged 
environment, and to optimize the environment in which disease-challenge phenotypes should be collected.

Results and conclusions:  The equivalence between multiple-trait reaction norm and multiple-trait character-state 
parameters allow genetic improvement for a multiple-trait breeding goal in a target environment to be optimized 
without recording phenotypes and estimating parameters for the target environment.
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Background
In animal breeding, genotype-by-environment inter-
actions (GxE) have traditionally been modelled by 
considering that a phenotype recorded in a specific envi-
ronment is a different genetic trait compared to the same 
phenotype recorded in a different environment. In these 
cases, GxE can be quantified based on the genetic cor-
relation between the trait evaluated in different environ-
ments [1]. However, if the environmental conditions that 
affect a phenotype can be quantified in terms of one or 

several continuous variables, GxE can also be modeled 
using random regression models [2] by modelling the 
phenotype as a polynomial function of these continuous 
variables. In evolutionary biology, the latter are referred 
to as reaction norm models, while multiple-trait mod-
els for GxE are referred to as character-state models [3]. 
Reaction norm models enable modelling and prediction 
of breeding values and phenotypes across a range of envi-
ronments, while predictions for character-state models 
are limited to the environments in which phenotypes 
have been evaluated. This enables reaction norm models 
to be used to optimize breeding programs in terms of the 
best environment(s) in which to record phenotypes, in 
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order to maximize the rate of genetic improvement in a 
target environment [4].

Van Tienderen and Koelewijn [5] and de Jong and 
Bijma [3] demonstrated the mathematical equivalence 
between the reaction norm model and the character-state 
model for the specific environments that the character-
state model is defined for. This equivalence can be used 
to derive parameters for a reaction norm model when 
only estimates of genetic parameters from a character-
state model are available, which would be the case when 
phenotypes are available for only a small number of dis-
crete environments. Alternatively, this equivalence can 
be used to derive genetic parameters for specific envi-
ronments when estimates of reaction norm parameters 
are available, e.g. based on random regression models 
[2, 6]. For this purpose, linear reaction norms have been 
used most extensively, with the slope of the phenotypic 
or breeding value of the trait quantifying the change in 
the phenotype as a function of the environment, which is 
referred to as phenotypic plasticity in evolutionary biol-
ogy [3] and macro-environmental sensitivity [7], robust-
ness, or resilience [8] in animal breeding.

The equivalence between the reaction norm and char-
acter state models has been limited to a single trait [3, 5], 
which is the most relevant case in evolutionary biology, 
since selection is on the single trait of fitness. However, in 
animal and plant breeding, selection is typically on mul-
tiple traits, which each can have their own reaction norm 
model. In addition, most reaction norm models only con-
sider a reaction norm for the genetic component of phe-
notype, although random environmental components of 
phenotype can also be subject to reaction norms. Thus, 
the first objective of this study was to extend the equiva-
lence of the reaction norm and character-state models to 
a multiple-trait setting and to both genetic and environ-
mental effects.

A second objective was to illustrate the application of 
these methods to the design and optimization of multiple 
trait nucleus breeding programs that are typical for swine 
and poultry breeding, in the presence of GxE resulting 
from disease. In such breeding programs, phenotype 
recording is typically in the high-health environment of 
the nucleus. To accommodate GxE, phenotype record-
ing in a commercial-type environment would need to 
be added, as proposed in so-called combined crossbred-
purebred selection programs [9], which, in addition to 
GxE, also account for potential differences in the genetic 
basis of traits in crossbreds versus purebreds [10]. For 
this purpose, choice of the type of commercial environ-
ment becomes important and an extreme commercial 
environment in terms of severity of disease could be 
considered. An example of the latter would be the natu-
ral polymicrobial disease challenge that was described by 

Putz et  al. [11]. Note that the nucleus and disease chal-
lenge environments could represent the extremes of the 
range of commercial environments that are the target 
of the breeding program. Thus, the second objective of 
this study was to use multi-trait reaction norm models 
to optimize selection for a target environment based on 
phenotype recording in a high-health (i.e. nucleus) and 
a disease challenge environment, with the target being 
either a single environment or a range of environments. 
The third and final objective was to illustrate the use 
of the methods to optimize the choice of the recording 
environment.

Related studies have been conducted by Kolmodin 
and Bijma [4] and Mulder [12]. Kolmodin and Bijma [4] 
showed that the target environment may not be the opti-
mal recording environment. However, they considered 
only a single trait and a single recording environment. 
Mulder [12] considered a situation where both the  data 
recording and the target  environments consisted of a 
normally distributed range of environments. Again, only 
a single trait was considered. The present study consid-
ers two recording environments and either a single or a 
range of target environments, as well as multiple traits.

Methods
Equivalence between character‑state and reaction norm 
models
In a genetic reaction norm model, the impact of the envi-
ronment on the breeding value of an individual for trait i 
in environment j , gij , is modeled as:

where, xkij , for k = 0 . . .m , are covariates that character-
ize the environment, representing different environmen-
tal factors (e.g. temperature, humidity), or the average 
performance of the contemporary group, and/or their 
polynomial expansions [5], and γki is the individual’s ran-
dom regression breeding value associated with covari-
ate xkij , with variance–covariance structure captured by 
the m×m matrix var(γi ). Note that γ0i is the individual’s 
intercept breeding value for trait i , i.e. for an environ-
ment with environmental covariates equal to 0. A similar 
reaction norm model can be applied to each term in the 
standard quantitative genetic model for an individual’s 
phenotype for trait i in environment j:
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where mij is the mean phenotype for trait i in environ-
ment j and eij is the individual’s random environmental 
effect for trait i in environment j:

for the mean:

where µki are fixed regression coefficients associated with 
covariate xkij;

for the random environmental effect:

where εki are random environmental regression coef-
ficients associated with covariate xkij , with variance–
covariance structure captured by the m×m matrix 
var(εi ). Note that the reaction norm covariates for the 
mean, the breeding value, and the random environmental 
effects do not have to be the same.

Breeding values of an individual for trait i in J  envi-
ronments, each considered as a different trait in the 
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character-state model, can be represented by a multi-
environment reaction norm model as follows:

This results in the following equivalence between the 
variance–covariance structure of multi-environment 
breeding values in the character-state model and the 
variance–covariance structure of breeding values in the 
reaction norm model:

This is the single-trait relationship between charac-
ter-state and reaction model parameters derived previ-
ously [5]. A similar relationship holds for the random 
environmental effects:

These single-trait relationships can be expanded to I 
traits in J  environments, for a total of I × J  character-
states and I ×m reaction norm variables. For the vec-
tor of breeding values for I  traits in J  environments, we 
get:

(4)
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with the following relationship between the 
(I × J )× (I × J ) variance–covariance matrix for the 
character-state model and the (I ×m)× (I ×m) vari-
ance–covariance matrix for the reaction norm model:

with

Similarly, for the random environmental effects for I 
traits in J  environments:

and

with
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Optimizing genetic improvement for a target environment 
using linear reaction norms
The above equivalences between character-state and 
reaction norm parameters can be used to design and 
optimize genetic improvement for a target environment. 
For illustration, a case is considered here where genetic 
selection occurs in a nucleus herd but phenotypes are 
recorded in both the high-health nucleus ( N  ) and in a 
chosen ‘challenge’ ( C ) environment. The objective is to 
maximize genetic improvement for a target environment 
( T  ) that may be different from the nucleus and the chal-
lenge environments. As input, character-state param-
eters (heritabilities, phenotypic standard deviations, and 
genetic and phenotypic correlations) are available for 
phenotypes observed in the nucleus and challenge envi-
ronments, considering each phenotype to be a different 
trait in the two environments. To convert these to reac-
tion norm parameters, consider the following linear reac-
tion norm model for phenotype for trait i in environment 
j:

where µi is the mean for trait i , βi is the fixed slope for 
trait i , xij is the environmental covariate for trait i in 
environment j , γ0i is the breeding value for the intercept 
for trait i , γ1i is the breeding value for the slope for trait 
i , ε0i is the residual for trait i , and ε1i is the slope residual 
for trait i.

Without loss of generality, the environmental covari-
ates can be scaled such that they are 0 in the nucleus 
( xiN = 0) and 1 in the challenge environment ( xiC = 1). 
Then, the model for phenotype for trait i in the nucleus 
is:

and the model for phenotype for trait j in the challenge 
environment is:

Thus, the model for the breeding value for trait i in 
the nucleus is: giN = γ0i , and the model for the breed-
ing value for trait i in the challenge environment is: 
giC = γ0i + γ1i.

Thus, the breeding value for the slope of the reaction 
norm for trait i is: γ1i = giC − giN.

Then, the model for the breeding value for trait i in the 
target environment can be written as: 

Substituting γ1i = giC − giN results in

yij = µi + βjxij + γ0i + γ1ixij + ε0i + ε1ixij ,

yiN = µi + γ0i + ε0i,

yiC = µi + βj + γ0i + γ1i + ε0i + ε1i.

giT = γ0i + γ1ixiT .

(13)giT = (1− xiT )giN + xiT giC .
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Thus, selecting for giT is equivalent to selecting for 
(1− xiT )giN + xiT giC . This relationship can be used 
to convert a breeding goal based on traits defined for 
the target environment into a breeding goal based 
on traits in the nucleus and challenge environments. 
I.e., the term viT giT in the breeding goal for the tar-
get environment, where viT is the economic value of 
trait i in the target environment, can be replaced by 
(1− xiT )viT giN + xiT viT giC . Thus, a breeding goal with 
an economic value of viT for giT is equivalent to a breed-
ing goal based on giN and giC , with economic values 
equal to viT (1− xiT ) and viT xiT , respectively. Thus, effec-
tively, the economic values for the trait observed in the 
nucleus and the challenge environments are weighted by 
the relative value of the environmental covariate for that 
trait in the target environment.

Following the same arguments, a multi-trait breeding 
goal based on I traits in the target environment can be 
written as:

where gj is the vector of breeding values for the I traits 
in environment j ( j = T ,N , orC ), xT is a vector of envi-
ronmental covariates, with elements xiT for each trait i 
in environment T  , vT is the vector of economic values, 
with elements viT for trait i in the target environment, 1 
is a vector of 1s, and ◦ is the Hadamard (element-wise) 
product.

Using these same relationships, with selection on 
phenotypes recorded in the nucleus and challenge 
environments, genetic change for trait i in the target 
environment, �giT , can also be derived from genetic 
change for trait i in the nucleus, �giN , and in the chal-
lenge environment, �giC , as:

(14)
HT = v

′

TgT = [(1− xT )◦vT ]
′gN + [xT ◦ vT ]

′gC ,

(15)�giT = (1− xiT )�giN + xiT�giC .

Thus, with phenotypes recorded in the nucleus and 
challenge environments but not in the target environ-
ment, selection of nucleus individuals to maximize 
response for the breeding goal in the target environ-
ment can be derived based on a breeding program that 
is defined on the basis of genetic traits in the nucleus and 
challenge environments. Standard selection index theory, 
as implemented in the SelAction software [13], can be 
used for this purpose. Note that this requires estimates of 
character-state genetic parameters among and between 
all traits observed in the nucleus and the challenge 
environment but does not require explicit estimates of 
genetic parameters in the target environment, as these 
are implicit to the assumed linear reaction norm model.

This approach can also be extended to a target that 
encompasses a range of environments. For example, if 
the market that the breeding program targets includes 
J  environments, with each environment having a pro-
portional relevance to the breeding program denoted 
by fJ for j = 1, . . . , J  , environmental covariates xij, and 
economic values vij , then the breeding goal to target for 
selection in the nucleus is:

where f  is a vector of size J  , f ′ = [f1, f2, . . . , fJ ] , V is an 
I × J  matrix with economic values for each environ-
ment j , V = [v1, v2, . . . , vJ ] , X is an I × J  matrix with 
environmental covariates for each environment k , 
X = [x1, x2, . . . , xJ ] , and 1 is a I × J  matrix of 1s.

Example
To illustrate the method, consider a sire line purebred 
nucleus breeding program in pigs, with selection for a 
breeding goal consisting of growth rate and mortality. 
Both traits are recorded in the high-health nucleus and 
in a challenge facility, where (crossbred) paternal half-
sibs of purebred selection candidates are subjected to a 

(16)HT = [f ◦ (1− X) ◦ V]′gN + [f ◦ X ◦ V]′gC ,

Table 1  Trait parameters for average daily gain (ADG, kg/day) and mortality rate (MORT, %) in the nucleus (N), challenge (C), and target 
(T) environments

Parameters in the target environment were derived using the reaction norm model

–: not observed

Trait Phenotypic (below diagonal) and genetic (above diagonal) correlations, and 
heritabilities (on diagonal)

Trait mean Phenotypic SD Economic 
value ($/
unit)

ADGN MORTN ADGC MORTC ADGT MORTT

ADGN 0.25 − 0.20 0.60 − 0.20 0.864 − 0.225 0.90 0.135 181

MORTN − 0.13 0.03 – 0.40 − 0.221 0.637 5 21.8 − 1

ADGC – − 0.20 0.25 − 0.40 0.921 − 0.395 0.75 0.175 262

MORTC – – − 0.25 0.07 − 0.347 0.961 20 40.0 − 1

ADGT – – – – 0.25 − 0.358 0.825 0.175 219

MORTT – – – – – 0.057 12.5 40.0 − 1
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polymicrobial natural disease challenge, e.g. as described 
by [11] and [14]. Phenotypes recorded in the nucleus and 
challenge facility are considered separate but correlated 
traits. Assumed trait parameters are in Table 1. Although 
mortality is recorded as a binary trait, it is treated as a 
continuous variable here for simplicity and illustration.

The economic value for growth rate (average daily 
gain, ADG) was derived based on the following simple 
cost function for raising grow-finish pigs from 15  kg to 
the 120  kg market weight: profit/pig = − 1.42(120–15)/
ADG, where 1.42 is the cost per day per pig, including 
housing and feed. Taking the first derivative of this func-
tion results in the following economic value for growth 
rate as a function of the mean growth rate in the given 
environment, µADG : vADG =1.49/µ2

ADG
 . Note that in this 

example, the economic value of growth rate depends on 
the trait mean and, therefore, differs as a function of the 
environmental covariate. The economic value for mor-
tality was assumed to be independent of the population 
mean and set equal to − $1 per pig per percent increase 
in mortality rate.

For the breeding program in the closed nucleus, each 
discrete generation, 75 boars are each mated to 10 sows, 
for two litters per sow, each litter producing five male 
and five female selection candidates. Thus, proportions 
selected are 1/(10 * 10) = 0.01 for males and 1/10 = 0.1 for 
females. To produce progeny for the challenge facility, the 
75 boars are also each mated to ten maternal sows, for 
two litters each, producing ten progeny per litter, for 200 
progeny per boar. The program SelAction [13] was used 
to predict asymptotic rates of genetic gain from selection 
in the nucleus for the breeding goal in the target environ-
ment, and when phenotypes on growth rate and mor-
tality were recorded either in the nucleus alone or also 
in the challenge facility. Selection of nucleus males and 
females was on an index of multiple-trait pseudo best 
linear unbiased predictions of estimated breeding val-
ues (BLUP EBV) [15] derived using own phenotypes, the 
average phenotypes of nine full sibs and of 190 paternal 
half-sibs, and the BLUP EBV of the sire, dam, and mates 
of the sire for growth rate and mortality in the nucleus. 
With availability of challenge data, the average perfor-
mances in the challenge facility of 200 paternal half-sibs 
for growth rate and mortality in the challenge environ-
ment were added, as well as the BLUP EBV of the sire, 
dam, and mates of the sire for these traits.

Results
Derivation of genetic parameters for the target 
environment
For the above example, linear reaction norm models were 
assumed for both the genetic and environmental effects 
on phenotype. The environmental covariates (i.e. 

challenge load for growth rate and mortality) were scaled 
to be 0 in the nucleus and 1 in the challenge environ-
ment, resulting in the following covariate matrix for both 
the genetic and environmental reaction norm models for 
growth rate and mortality in the nucleus and challenge 
environments, with the order of traits and environments 

as in Table 1: X =







1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1






.

This matrix can be used to translate the genetic and 
environmental variance–covariance matrices for the 
intercept and slope variables of the reaction norm 
model ( var(γ) and var(ε) ) to those of the character-state 
model ( var(g) and var(e) ) based on Eqs. (8) and (11) as: 
var(g) = Xvar(γ)X′ and var(e) = Xvar(ε)X′ . Note that 
the latter requires values for all elements of var(e) , some 
of which are not observable (Table 1) because an animal 
can only be evaluated in one environment. Here, for sim-
plicity, the unobserved environmental correlations were 
set equal to the genetic correlations. Note that, when an 
individual can be phenotyped in only one environment, 
only environmental correlations between phenotypes 
recorded in the same environment matter. In the exam-
ple, variance–covariance matrices at the character-state 
level are available for the nucleus and challenge environ-
ments. These can be converted to variance–covariance 
matrices at the reaction norm level by inverting Eqs. (8) 
and (11) as:

Based on the reaction norm model parameters, char-
acter-state parameters can be derived for any level of 
the reaction norm covariates. This allows, e.g., genetic 
parameters and genetic progress in a target environ-
ment to be evaluated, with selection on either pheno-
types collected in only the nucleus, or phenotypes 
collected in both the nucleus and the challenge envi-
ronments. For example, for a target environment that is 
intermediate to the nucleus and challenge environ-
ments for both growth rate and mortality, the genetic 
variance–covariance matrix can be derived from the 

var(γ) = X−1var
�

g
�

X
′−1

=







0.0046 −0.0510 0.0035 −0.1400

−0.0510 14.3 −0.0647 16.0

0.0035 −0.0647 0.0077 −0.3704

−0.1400 16.0 −0.3704 112.0






,

var(ε) = X−1var(e)X
′−1

=







0.0137 −0.3168 0.0106 −0.8838

−0.3168 460.8 −0.8838 331.2

0.0106 −0.8838 0.0230 −1.3796

−0.8838 331.2 −1.3796 1488.0






.



Page 7 of 12Dekkers ﻿Genetics Selection Evolution           (2021) 53:93 	

genetic variance–covariance matrix of the reaction 
norm model, using the following reaction norm covari-

ate matrix: XT =















1 0 0 0

0 1 0 0

1 0 1 0

0 1 0 1

1 0 0.5 0

0 1 0 0.5















 , which is equal to X 

augmented with a row for ADGT  and MORTT  . This 
results in the following genetic variance–covariance 
matrix for growth rate and mortality in the nucleus, 
challenge, and target environments:

var
�

gT
�

= XT var(γ)X
′

T =















0.0046 −0.0510 0.0035 −0.1400 0.0041 −0.0955

−0.0510 14.3 −0.0647 16.0 −0.0578 15.1

0.0035 −0.0647 0.0077 −0.3704 0.0056 −0.2176

−0.1400 16.0 −0.3704 112.0 −0.2552 64.0

0.0041 −0.0578 0.0056 −0.2552 0.0048 −0.1565

−0.0955 15.1 −0.2176 64.0 −0.1565 39.6















.

Resulting parameters for growth rate and mortality in 
the target environment are in Table  1. Figure  1 shows 
how the genetic parameters for growth rate and mor-
tality in the target environment change as a function of 
the reaction norm covariates for the target environ-
ment. In this example the reaction norm covariate in 
the target environment was assumed to be the same for 
growth rate and mortality, but this is not necessary. For 
example, if the target environment is more severe for 
growth rate than mortality, the last two rows of XT 

could be set to be: 
[

1 0 0.6 0

0 1 0 0.5

]

.
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Fig. 1  Genetic parameters (genetic correlations, r, of traits in the target with traits in the nucleus and challenge environments, and the ratio of the 
genetic standard deviation, SD, of traits in the target versus the challenge environment) as a function of the target environment, for A average daily 
gain, and B mortality rate. The x-axis represents the reaction norm covariate in the target environment, ranging from the nucleus environment (0) to 
the challenge environment (1)
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challenge environment. The x-axis represents the reaction norm covariate in the target environment, ranging from the nucleus environment (0) to 
the challenge environment (1)
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Optimizing genetic improvement for the target 
environment
Based on the equivalence of breeding goals in Eq.  (14), 
genetic gain for a breeding goal defined in a target envi-
ronment with phenotype recording in the nucleus and 
challenge environments can either be derived by mod-
eling a 6-trait breeding program (i.e. growth rate and 
mortality in 3 environments) for the target environ-
ment breeding goal HT = v

′

TgT , using the associated 
genetic parameters, as derived above from the reac-
tion norm model, or by modelling a 4-trait breeding 
program (i.e. growth rate and mortality in the nucleus 
and challenge environments) for the following breed-
ing goal: HT = [(1− xT )◦vT ]

′gN + [xT◦vT ]
′gC . In the 

latter case, genetic gains in the target environment can 
be derived as a weighted average of genetic gains in the 
nucleus and challenge environments based on Eq. (15):

For the example, with the target environment being 
intermediate to the nucleus and challenge environments 
for both growth rate and mortality, vectors of economic 
values for the equivalent 4-trait breeding goal become: 
([

1

1

]

−

[

0.5

0.5

])

◦

[

219

−1

]

=

[

109.5

−0.5

]

 for gN  and 
[

0.5

0.5

]

◦

[

219

−1

]

=

[

109.5

−0.5

]

 for gC , and genetic gains for 

traits in the target environment are 

�gT =

([

1

1

]

−

[

0.5

0.5

])′

◦�gN +

[

0.5

0.5

]′

◦�gC.

Figure  2 shows the rate of genetic gain for growth 
rate and mortality in the nucleus, challenge, and target 

�gT = (1− xT ) ◦�gN + xT◦�gC .

environments for different target environments, when 
the objective is to maximize the rate of genetic improve-
ment for the breeding goal in the target environment, 
both without and with phenotypes recorded in the chal-
lenge environment. Each result was based on running 
SelAction for the 4-trait model (growth rate and mor-
tality in the nucleus and challenge environments), with 
economic values as derived above for the given reaction 
norm covariates for the target environment, and genetic 
gain in the target environment derived as a weighted 
average of genetic gains in the nucleus and challenge 
environment based on Eq. (15).

Figure 3 shows the impact of adding phenotype record-
ing in the challenge environment on response in the 
breeding goal. Adding data from the challenge environ-
ment had little benefit when the nucleus was the target 
environment because of the low genetic correlations 
between traits in the challenge and the nucleus environ-
ment but increased as the target environment moved 
closer to the challenge environment. When the challenge 
environment was the target, gain in the breeding goal 
increased by over 47% by adding data from the challenge 
environment. Figure  3 also shows the impact of adding 
data from the challenge environment on response in the 
breeding goal at the nucleus and challenge environments, 
when maximizing gain in the breeding goal defined at the 
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Fig. 3  Percentage increase in genetic gain in the breeding goal in 
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from adding phenotype recording in the challenge environment 
when the target environment is the breeding objective. The x-axis 
represents the reaction norm covariate in the target environment, 
ranging from the nucleus environment (0) to the challenge 
environment (1)
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target environment. As expected, adding data from the 
challenge environment reduced response in the breeding 
goal at the nucleus when the target environment differed 
from the nucleus environment, by over 30% when the 
challenge environment is the target environment.

Optimizing choice of the recording environment
The developed methods can also be used to determine 
the optimal environment in which to record phenotypes 
to maximize genetic improvement for a target environ-
ment, with or without availability of phenotypes from 
the nucleus. To evaluate this scenario, given that genetic 
parameters are available for traits in the nucleus and the 
original challenge environment, SelAction can be set 
up with six traits, i.e. growth rate and mortality in the 
nucleus, the original challenge environment, and the 
recording environment, designated with subscript R, 
with economic values on traits in the nucleus and chal-
lenge environment weighted by reaction norm covariates 
for the target environment, as before, and genetic gain in 
the target environment derived based on genetic gains 
in the nucleus and the challenge environment, as before. 
This does require genetic parameters for the record-
ing environment, which can be derived using a reaction 
norm covariate matrix XR that is the same as XT but with 
the last two rows replaced by covariates for the recording 
environment.

Figure  4 shows results of such analyses for recording 
environments ranging from xR = 0 (i.e. the nucleus envi-
ronment) to xR = 1.4 , i.e. an even more severe challenge 
than the original challenge environment ( xC = 1 ). The 
target environment was at xT = 0.5 , as before. Results 
show that rates of genetic gain in the target environment 
increased with increasing severity of the recording envi-
ronment but at a decreasing rate. Importantly, recording 
at the target environment did not result in the greatest 
rates of improvement  in the target environment. How-
ever, recording under more severe environments than 
the target environment did not result in substantial addi-
tional rates of genetic gain  in the target environment. 
These results are, of course, driven by the specific genetic 
and economic parameters used here but illustrate the 
information that can be gained from these analyses to 
determine the most desirable data recording strategy.

Discussion
In this study, relationships between character-state 
and reaction norm models were extended to multiple 
traits and multiple environments. These relationships 
enable a smooth transition from character-state to reac-
tion norm models, or vice versa, when modelling GxE. 
This is important because data may only be available 
from a limited set of discrete environments, in which 

case the method enables genetic parameters for unob-
served environments to be derived from parameters 
estimated for the observed environments. Alternatively, 
data may be available across a continuous range of envi-
ronments, such that reaction norm parameters can be 
derived directly, but the breeding program is limited to 
data recording in only certain environments. In this case, 
reaction norm parameters can be used to derive char-
acter-state parameters for the chosen environments in 
order to optimize those choices. The example illustrates 
how the relationship between the reaction norm and 
character-state models can be used to address a num-
ber of questions that are relevant in animal (and plant) 
breeding. In the following, some issues related to the use 
of reaction norms for these purposes will be discussed.

Choice of environmental variables
Key requirements for the use of reaction norm models 
are that (i) a quantitative measure of the quality of the 
environment is available and (ii) the functional relation-
ship of that environmental variable with phenotype for 
the trait of interest is known. Ideally, the environmental 
factor that drives phenotypic plasticity or GxE is used 
as the environmental variable [16]. However, the nature 
of this factor is often not known, let alone its functional 
relationship with phenotype. In addition, more than one 
environmental factor may be the driver of phenotypic 
plasticity [16]. Finally, the drivers of phenotypic plasticity 
may differ between traits.

In the absence of knowledge of the true drivers of phe-
notypic plasticity, in practice, a proxy for the quality of 
the environment is often used in reaction norm models. 
Fikse et al. [17] investigated the use of alternates of herd-
level quantifications of management, genetic composi-
tion, and climate to identify the most suitable variables 
for reaction norm analyses of lactation yield in dairy cat-
tle. Other studies have used estimates of the average phe-
notype in a given environment as a proxy, as originally 
proposed by Yates and Cochran [18] and known as Fin-
lay–Wilkinson regression in the plant breeding literature 
[19]. Gienapp [16] showed that the use of a proxy that is 
poorly correlated with the true driver of phenotypic plas-
ticity can lead to downward biases in estimates of plas-
ticity or GxE, but that such biases are not present when 
the environment-specific mean of the trait is used as the 
proxy, as it implicitly captures all environmental effects 
on phenotype. Several studies have shown that the best 
environmental variable can differ between traits and that 
the best proxy for a given trait may be the environment-
specific mean for another trait or for a combination of 
traits, rather than the mean for the trait itself [20].

When estimating environment-specific means, it is 
important to remove possible confounding between 
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environmental and genetic effects on phenotype. One 
solution is to use estimates of contemporary group 
effects from a mixed linear genetic model for BLUP EBV, 
as  has been applied in many animal breeding applica-
tions of reaction norm models [21]. However, Su et  al. 
[22] showed that ignoring the uncertainty of the resulting 
estimates as a covariate in random regression reaction 
norm models can result in biased estimates and proposed 
a one-step hierarchical reaction norm model to over-
come this issue.

Functional relationship between environmental variables 
and phenotype
In terms of the functional relationship between the envi-
ronmental variable and phenotype, a simple linear rela-
tionship is commonly used in reaction norm models. 
And, if the environment-specific mean of the trait is used 
as the environmental variable, a linear relationship with 
phenotype is expected. However, a linear relationship 
may not be best for the random genetic and environmen-
tal effects, as the aim is to model the variance–covariance 
structure rather than the phenotypic value of the trait.

Several studies have investigated the use of non-linear 
reaction norms. Fikse et  al. [17] found that quadratic 
reaction norm covariates of some environmental vari-
ables significantly improved the fit of the model for some 
traits in dairy cattle. Carvalheiro et  al. [23] found that 
quadratic and spline reaction norm models based on 
estimates of contemporary group effects outperformed 
the linear reaction norm models for post-weaning weight 
gain in beef cattle. However, although non-linear reac-
tion norms may provide a better fit to the data, they com-
plicate interpretation and implementation of results. In 
some cases, a transformation of the environmental vari-
able could simplify the reaction norm to a linear fit.

Non-linear reaction norms are accommodated in the 
methods developed here; if reaction norm parameters are 
known or estimated, they can be used to derive param-
eters for any given set of environments, using Eq.  (9). 
Estimation of non-linear reaction norm parameters can, 
however, be a challenge, especially across traits.

Estimation of reaction norm parameters
Random regression models can be used to estimate 
parameters for reaction norm models if phenotypes are 
available from multiple quantifiable environments, as 
described previously. Multiple-trait random regression 
models (e.g. [24, 25]) would need to be implemented to 
obtain the parameters required to implement multiple-
trait breeding programs. In many applications of random 
regression models to estimate reaction norm parameters, 

reaction norms are only implemented at the genetic level 
and residual variance is either assumed homogeneous or 
estimated for multiple environmental classes. Meyer [26] 
and Schnyder et al. [27] showed how heterogenous resid-
ual variance could be modelled on a continuous basis 
using variance functions and fitted in a random regres-
sion model.

Alternatively, if variance–covariance estimates from 
character-state models are available across several dis-
crete environments ( v̂ar

(

g
)

 ), these can be used to derive 
or estimate the variance–covariance matrix for the reac-
tion norm parameters ( ̂var(γ) ) using Eq. (9), as was done 
in the example used here. If the rank of ( v̂ar

(

g
)

 is equal 
to the rank of X , then estimates for the reaction norm 
model can be derived as: v̂ar(γ) = X

′−1v̂ar
(

g
)

X−1 . If 
the chosen rank of X is smaller than the rank of v̂ar

(

g
)

 , 
reduced rank covariance functions [28, 29] can be used 
to estimate v̂ar(γ) . In addition to reducing complexity, 
a reduced rank covariance function may provide more 
accurate estimates because it smooths out estimation 
errors that are inherent to v̂ar

(

g
)

 [29]. Estimates for the 
reaction norm model cannot be derived from estimates 
of a character-state model if the rank of v̂ar

(

g
)

 is less 
than the rank of X.

Estimates of the variance–covariance structure of ran-
dom environmental reaction norms can be obtained in 
a similar manner from character-state model estimates. 
However, in character-state models, environmental 
covariances between environments are often not estima-
ble because an individual may only obtain a phenotype 
in one environment. For a single trait observed in mul-
tiple environments, variance functions could be fitted to 
estimates of the residual variance in each environment, 
as described by Meyer [26]. For multiple-trait breeding 
programs, however, co-variance functions for residuals 
between traits within environment are also needed.

Note that estimates of reaction norm models for resid-
ual effects are not needed to model genetic gain in a 
target environment based on data collected in the envi-
ronments for which character-state parameter estimates 
are available, i.e. the nucleus and challenge environment 
in the example. However, when evaluating phenotype 
recording in alternate environments, reaction norm esti-
mates of the residual variance–covariance structure are 
required.

In the example, unobserved environmental correla-
tions were set equal to their corresponding genetic cor-
relations. If individuals are phenotyped in only one 
environment, only environmental correlations among 
traits within an environment matter and impact predic-
tions of response to selection, including response in the 
target environment. However, the values assumed for 
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the unobserved environmental correlations (i.e. between 
traits in the nucleus and the challenge environment) 
do affect the environmental reaction norm parameters 
and, therefore, environmental correlations computed in 
another recording environment. Thus, assumptions made 
about unobserved environmental correlations could 
affect optimization of the recording environment based 
on the reaction norm models. The impact of this is, how-
ever, expected to be limited.

In all analyses, parameter estimates (heritabilities and 
genetic and environmental correlations, as well as the 
environmental covariates) were assumed to be known 
without error. The impact of errors in parameter esti-
mates needs further evaluation. The impact of errors in 
parameters of the character-state model will be exacer-
bated for estimates of parameters in unobserved environ-
ments through the reaction norm models, in particular 
for environments that are outside the range of observed 
environments.

Conclusions
Equivalencies between reaction norm and character-
state models for multiple-trait phenotypes were success-
fully derived at both the genetic and environmental level. 
These equivalencies allow multiple-trait reaction norm 
parameters to be derived from multiple-trait character 
state parameters, and vice versa. The developed methods 
can be used to optimize genetic improvement programs 
for a multiple-trait breeding goal in a target environment 
without recording phenotypes and estimating parameters 
for the target environment.
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