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Abstract
JSim is a simulation system for developing models, designing experiments, and
evaluating hypotheses on physiological and pharmacological systems through
the testing of model solutions against data. It is designed for interactive,
iterative manipulation of the model code, handling of multiple data sets and
parameter sets, and for making comparisons among different models running
simultaneously or separately. Interactive use is supported by a large collection
of graphical user interfaces for model writing and compilation diagnostics,
defining input functions, model runs, selection of algorithms solving ordinary
and partial differential equations, run-time multidimensional graphics,
parameter optimization (8 methods), sensitivity analysis, and Monte Carlo
simulation for defining confidence ranges. JSim uses Mathematical Modeling
Language (MML) a declarative syntax specifying algebraic and differential
equations. Imperative constructs written in other languages (MATLAB,
FORTRAN, C++, etc.) are accessed through procedure calls. MML syntax is
simple, basically defining the parameters and variables, then writing the
equations in a straightforward, easily read and understood mathematical form.
This makes JSim good for teaching modeling as well as for model analysis for
research.   For high throughput applications, JSim can be run as a batch job. 
JSim can automatically translate models from the repositories for Systems
Biology Markup Language (SBML) and CellML models. Stochastic modeling is
supported. MML supports assigning physical units to constants and variables
and automates checking dimensional balance as the first step in verification
testing. Automatic unit scaling follows, e.g. seconds to minutes, if needed. The
JSim Project File sets a standard for reproducible modeling analysis: it includes
in one file everything for analyzing a set of experiments: the data, the models,
the data fitting, and evaluation of parameter confidence ranges. JSim is open
source; it and about 400 human readable open source
physiological/biophysical models are available at
http://www.physiome.org/jsim/.
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Introduction
The modeling of biological processes starts with defining the 
hypothesis to be tested in an experiment. To make scientific pro-
gress, Platt (Platt, 1964) emphasized defining at least two distinct 
hypotheses and then designing an experiment with the power to 
clearly distinguish between these hypotheses. By so doing, at least 
one of the hypotheses must then be rejected: the rejection marks a 
stepping-stone in science. If a hypothesis is not rejected then it remains 
as a potential working hypothesis, the target of further experimenta-
tion that eventually will lead to its rejection or improvement.

The virtue of the mathematically-defined hypothesis is that it is 
clear and precise, and therefore susceptible to contradiction. Argu-
ably, one should use mathematical “in numero experimentation” to 
define the critical laboratory experiment. Given that the experiment 
tests whether or not the working hypothesis is compatible with 
experimental data, then failure to fit leads to rejection. Revision of 
the conjecture follows: science is advanced.

The hypothesis testing cycle is an iterative procedure: design hypoth-
esis (and alternative hypotheses) → execute experiment → evaluate 
goodness of fit of model to data → either reject the hypothesis and 
restart, or, alternatively, → accept the model as the current working 
hypothesis and assess the parameters for the specific situation. The 
working model serves as the current belief until deeper thinking 
leads to an alternative hypothesis and one restarts the cycle. This 
philosophical and procedural point of view, more or less guaranteed 
to make efficient progress in the field, creates definable results step 
by step, and gives investigators a sense of satisfactory success.

As in physics, models are posed in order to gain deeper understanding. 
Cause-and-effect models of biological systems are usually determin-
istic; they are fundamentally different from observationally-based 
probabilistic associations. The desire is to represent sequences of opera-
tions within a dynamic system leading to, and explaining, the observed 
data (Coatrieux & Bassingthwaighte, 2006; Bassingthwaighte 
et al., 2006a). Standard statistical methods are not central to decid-
ing whether or not to reject the hypothesis, but are indeed very 
helpful in assessing goodness of fit, estimating confidence ranges 
and co-variances among parameters, and in guiding the investigator 
in identifying errors or in finding ways to simplify the model.

Over the years we have developed sets of tools to serve these pro-
cesses. In this article we describe the features of a simulation analy-
sis system, JSim; it is the product of evolutionary improvements 
in the hypothesis testing cycle. The central goals are to facilitate 
attempts to fit models to data, and to support the efficient devel-
opment of computational models that describe and explain the 
behavior of biological systems (Bassingthwaighte & Goresky, 
1984; Bassingthwaighte et al., 2005; Beard et al., 2005).

Our perspective is embedded in JSim: it is an open-source simu-
lation analysis platform, freely downloadable, running on Linux, 
Macintosh, and Windows, providing tools for the steps in the mod-
eling analysis of data. There is a naturally occurring sequence of 
steps to take when one starts with an unanalyzed data set and has 
the goal of modeling the cause and effect relationships. We have 

found it useful to follow a simplified summary: The THIRTEEN 
STEPS:

The THIRTEEN STEPS in the modeling process
These are proposed as a guide. The ordering is not rigid, but it is 
wise to cover all of the steps in one’s mind when starting and again 
when finishing up a study. Using the steps in the order listed here 
almost always works well.

(1) When starting with existing experimental data, plot and display 
the data so that one can rapidly review and compare multiple data 
sets. This also prepares for comparing with later model results.

(2) Develop the model, the mathematical formulation of the hypoth-
esis. One may start with one or more existing models or modules 
of a similar nature (retrieved from a model repository or archival 
format) and modify it. Construct illustrations of model structure to 
aid the conceptual approach.

(3) Verify unitary balance in the model equations, an easy first 
check for model self-consistency.

(4) Select appropriate methods for solving model equations (e.g. 
differential equation solvers).

(5) Display model solutions graphically and in text listings. Inspect.

(6) Verify the mathematical accuracy of solutions. Check that results 
are not dependent on temporal or spatial step sizes, that mass or 
charge is appropriately conserved, and that limiting cases match 
analytical solutions.

(7) Explore model behavior over wide ranges of parameter values in 
state-space. (We think of “state space” as being the N-dimensional 
space enclosing the ranges of values of all of the parameters within 
which the model is correct numerically and sensible scientifically.)

(8) Perform sensitivity analyses, examining the fractional change in 
model solutions with fractional change in each parameter.

(9) Adjust parameters to fit model solution to data, manually or 
using an optimizer. Start from different places in parameter space 
and vary the optimization method to test solution uniqueness.

(10) Assess goodness of model fit to data. Plot residual differences 
to expose systematic biases.

(11) Examine parameter correlations to identify highly correlated 
parameters and reduce the number of free parameters in optimiza-
tions. Reoptimize.

(12) Evaluate parameter confidence ranges. The sensitivities at the 
“best fit”, expressed as the local curvature of the optimization cost 
function give a practical estimate. This can be refined using a Monte 
Carlo evaluation of parameter likelihoods as probability density 
functions.

(13) Preserve the source code, multiple data sets, multiple analyses 
and parameter sets, the settings (for initial and boundary conditions, 
parameter scans, displays, solver choices, optimizers, Monte Carlo, 
etc.), the graphs of results, the investigator’s notes and descriptions 
of procedures, plots, etc., all in a single, reproducible, exportable 
package. Share this package openly with collaborators, reviewers, 
and the public, a moral and perhaps ethical requirement when the 
support comes from public funds.
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stage of verification of the model’s mathematical implementation 
by making sure that every equation has unitary balance. Modeling 
taking account of the anatomical quantitative constraints is now rec-
ognized as critical and is facilitated by the automated unit checking 
(Vinnakota & Bassingthwaighte, 2004). The second phase of compi-
lation parses the details of the equations and sequences them for effi-
cient computation. For an example, a cardiovascular-respiratory system 
model (Neal & Bassingthwaighte, 2007), ran under JSim exactly 300 
times faster than a Matlab-Simulink version of the identical model 
(Howard Chizeck/Stephen Hawley: personal communication).

MML (Mathematical Modeling Language) is the declarative mod-
eling language developed for JSim and used for composing models. 
Its archival version is XMML, in the XML style of SBML and 
CellML. In MML, one writes mathematical equations directly 
into the code, and the MML compiler handles converting the set 
of equations into a sequence of computations. Since the equation 
representation is closely related to the conceptual formulation of 
the model, MML models are easily understood, and pieces of the 
model are readily interpretable as particular processes. The fact that 
one can write several models into a single MML program allows 
one to compare competing hypotheses (models). Having a standard 
layout for graphs and for ASCII text output of model solutions is 
convenient. For special purposes, as for a model to be used in clini-
cal practice or teaching, an alternative graphical user interface spe-
cifically designed for the model can be readily substituted for the 
default layout. If a particular model absolutely requires procedural 
code, this can be developed in C, or Fortran or Java, and invoked as 
part of the model computation.

JSim problem domain
JSim is a general purpose simulation and data analysis software sys-
tem. It handles a wide range of mathematical problems including al-
gebraic equations, ordinary differential equations, and parabolic, hy-
perbolic and elliptic partial differential equations. It contains 8 ODE 
and 3 PDE solvers implementing a variety of algorithms which allow 
the flexibility to strike a balance between accuracy and computa-
tional speed. It performs time series analyses including forward and 
backwards Fourier transforms. MML can handle multi-dimensional 
PDEs but the solvers currently implemented support only two dimen-
sions (typically time and one spatial dimension). For two spatial 
dimensions the problem needs to be formulated into either ODE 
nodes or PDEs in one spatial dimension linked by ODEs in the other 
spatial dimension. JSim does not support complex numbers or matrix 
notation and associated matrix operators; in JSim all matrices must 
be written explicitly as a set of equations.

JSim can be used in any discipline where mathematical equations 
are used for modeling and analyzing data. JSim was originally devel-
oped to model and analyze physiological phenomena and many of 
the built-in tools were developed to handle physiological problems. 
But all of the JSim tools can be applied to any other scientific dis-
cipline. JSim excels at analyzing time course and spatial domain 
data in complex systems (Beard & Bassingthwaighte, 2000; Beard 
et al., 2005; Bassingthwaighte et al., 2006b; Suenson et al., 1974; 
Safford & Bassingthwaighte, 1977). Examples include modeling 
pharmacokinetic/dynamic (PK/PD), radiological (CT, PET, MRI) 
and multiple indicator dilution (MID) data.

Interpretation of analyses
What one wants primarily from modeling analysis is insight into 
mechanisms. JSim is efficient for model development and testing. 
The fitting of experimental data by model solutions does not provide 
proof that the model is correct. It says merely that the model can 
serve as a descriptor under limited range of circumstances, namely 
those examined in the experimentation. Validity is never provable. 
Likewise, causation may be identified, but deeper levels may exist 
to be revealed later.

What does the model predict? Every model, with a little ingenuity, 
can be queried. What would be the responses to different inputs? 
How would the system respond if a component were missing or 
damaged? Predictions then form the basis for the design of the next 
experimental test. Correct predictions, failing to invalidate the model, 
do strengthen the confidence in the model but only to the degree com-
mensurate with the comprehensiveness of the particular prediction.

Background
JSim is the latest in a series of modeling/data analysis programs 
dating back to SimCon (Knopp et al., 1970) (named for Simulation 
Control). SimCon provided a text and graphics interface to models 
written in Fortran. Between 1967 and 1993, the basic methods of 
data analysis (e.g. function generators, loops, sensitivity, optimiza-
tion) were developed and refined within the SimCon framework. 
In 1993, SimCon was replaced by XSim (King et al., 1995), which 
implemented the same functionality under X-Windows on several 
Unix-like operating systems (SunOS, IRIX, Linux, AIX). XSim 
also added custom graphic model interfaces, on-demand expres-
sion graphing, worlds-within-worlds graphics (Harris et al., 1994), 
remote (client-server) computation and limited multi-processing. 
JSim development efforts began in 1999 and augmented the func-
tionality developed in SimCon and XSim by adding simplified 
model specification (using the MML modeling language), facilities for 
data analysis and for distribution of results and of models (using pro-
ject files), popular desktop and laptop support (Windows, Macintosh 
& Linux) and fully integrated multiprocessing for shared memory 
systems (Raymond et al., 2003).

JSim overview
JSim is quite general, and while designed for evaluating models 
against experimental data, it also serves pure model development 
quite well. It is built around a “project file” (.proj), that may hold 
many data sets, several different models and the results of multi-
ple types of analyses testing models against the data and against 
each other. JSim’s handling of ODEs (ordinary differential equa-
tions) suits it for traditional compartmental modeling and SBML 
(Hucka et al., 2003), CellML (Cuellar et al., 2003), and pharma-
cokinetic (PK) models in general. Solving PDEs (partial differ-
ential equations) hugely expands the range of processes that can 
be modeled in physiology and clinical medicine (Goresky, 1963; 
Bassingthwaighte, 1974), biophysics, and PKPD modeling (Roberts 
& Rowland, 1986). JSim handles spatial diffusion (Barta et al., 
2000; Safford & Bassingthwaighte, 1977) and convection-diffusion 
problems. From soon after its release in 1999, JSim provided 
automated unit consistency checking in all equations and also auto-
mated unit conversion (such as minutes to seconds) in calculations 
(Chizeck et al., 2009). This pair of features automates the first 
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JSim’s Mathematical Modeling Language, MML
JSim uses the Mathematical Modeling Language (MML) to describe 
models. When JSim imports other model formats (e.g. SBML, 
CellML, Antimony), it translates them to MML. MML is a con-
cise, ASCII text language for defining parameters and variables and 
for writing the equations describing a model. MML is a declarative 
language (as opposed to procedural or imperative languages such as 
MATLAB, Java, Python, and FORTRAN), meaning that, in MML, 
equations represent mathematical equality, rather than providing a 
directive to calculate the left-hand side variable from the expression 
on the right. In MML, it makes no difference if terms in an equation 
appear on the left or right hand side. Such equations are a direct 
representation of the mathematical ideas in a model rather than a 
procedural formulation. This improves readability and allows for 
more extensive consistency checks than procedural formulations. 
The MML compiler checks to ensure that all variables are com-
pletely, but not overly, specified – a check unavailable in procedural 
languages. The compiler sequences the calculations based on the 
dependencies of the variables to be computed, thus eliminating 
order-of-operations errors that are possible in procedural languages. 
MML variables are (optionally) labeled with physical units, ena-
bling the compiler to reject equations with unitary imbalances; this 
also allows the automated insertion of appropriate unit conversion 
factors when needed (Chizeck et al., 2009) (e.g. mmHg to kPa). 
This relieves the modeler of the burden of adding unit conversion 
factors (another potential source of error) and aids readability, since 
equations need not be cluttered with conversion factors. MML’s design 
supports the model development and unit balance aspects of mode-
ling steps 2 and 3 above. An example of MML code is shown below 
as Box 1, which codes a “progress curve”, the concentration-time 
curves for hypoxanthine to xanthine to uric acid catalyzed by the 
enzyme xanthine oxidase through the two oxidation steps. MML 
code for partial differential equations is given in Box 2.

Numeric solvers
MML is designed without reference to the numerical algorithms 
that will be used for simulation. Rather, the user selects the numeri-
cal methods in the JSim run time user interface. At present JSim 
provides 8 algorithms for solving ODEs (Table 1) and 3 for PDEs 
(Table 2). Numerical methods for stochastic simulation are variants 
on the Gillespie algorithm (Gillespie, 1977). JSim’s solvers support 
modeling steps 4 to 6 above.

To solve differential equations one needs initial conditions, and 
JSim’s parser (precompiler) demands these, as in Box 1. Partial 
differential equations require also boundary conditions, as seen in 
the code for a two-region convection-diffusion-permeation-reaction 
model (Box 2).

Function generators
Many physiological systems or components (e.g. one for the uptake 
of a metabolite) can be considered as operators. The operator takes 
an input function (e.g. inflowing solute concentration) and pro-
duces an output function (e.g. outflowing solute and metabolite 
concentrations). Model behavior can be tested by using various input 
waveforms (e.g. as in Box 2 “extern real Cin(t)”) described by 

JSim “function generators”. These might be time series signals of 
diverse form (pulses, pulse combinations, sines, shaped sawtooth), 
probability density functions (Gaussian, exponential, Poisson, log-
normal, gamma variate, random walk, etc.), or come directly from 
experimental data. When the system is linear (output area equals 
input) and stationary (response same at another time), then the output 
is the convolution of the operator’s transfer function (the response 
to an infinitely short pulse input) with the input function. Users 
select input functions at run time for testing numerical algorithms for 
correctness (verification testing), for model exploration (behavioral 
analysis) or for analyzing data as for steps 6 and 7 in our “13-Step” 
process.

Table 1. JSim ODE solvers.

Auto Starts with Dopri5, if Dopri5 fails, switches to Radau

Dopri5
Dormand-Prince explicit Runge-Kutta method of 
order 5(4) for non-stiff equations (Hairer et al., 1993)

Radau
Implicit Runge-Kutta method (Radau IIA) of 
variable order (switches automatically between 
orders 5, 9, and 13) (Hairer & Wanner, 1996)

KM
Five stage, 4th order accurate Merson-modified 
Runge-Kutta method with adaptive steps (Merson, 1957)

Fehlberg
Fifth order accurate Runge-Kutta-Fehlberg Method 
with adaptive stepsize, also known as RK45 
(Fehlberg, 1969)

Euler
Explicit forward Euler Method, first order accurate 
(Euler, 1768–1770; LeVeque, 2007)

RK2
Two-stage explicit Runge-Kutta method, 2nd order 
accurate (LeVeque, 2007)

RK4
Classical Runge-Kutta explicit 4th order four-stage 
method (LeVeque, 2007)

CVode
CVODE, a publicly available stiff ODE solver (Cohen 
& Hindmarsh, 1995)

Table 2. JSim PDE solvers.

LSFEA

Lagrangian Sliding Fluid Element Algorithm 
(Bassingthwaighte, 1974; Bassingthwaighte et al., 
1992; Poulain et al., 1997). The convecting step is 
solved separately from the other processes

MacCormack
2nd order accurate finite difference method 
for solving hyperbolic differential equations 
(MacCormack, 1969)

TOMS731
Finite element discretization akin to a nonlinear 
Galerkin method 2nd order accurate in space 
(Blom & Zegeling, 1994)
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Figure 1. Capillary-tissue exchange unit. Fluid flows with velocity 
Fcap*L/Vcap along the capillary from the entrance at x = 0 to the exit 
at x = L, and exchanges across the capillary wall into a stagnant 
extravascular region with conductance PS, the permeability-surface 
area product. The input is a bolus of solute, Cin(t), entering the 
capillary with the flow, Fcap. Axial gradients along the capillary are 
diminished by diffusion, Dp and Disf. Tissue consumption occurs at 
rate Gisf*Cisf. This is a simplified version of models used for indicator 
dilution studies and PET clinical studies (Beard & Bassingthwaighte, 
2000; Bassingthwaighte et al., 1989; Bassingthwaighte et al., 1992; 
Bassingthwaighte et al., 2006b).

Box 1. Model code for a reaction sequence (Model #320 at www.physiome.org).

// Model Name: MM2irrev (From reference JBBass13, data of Escribano (Escribano et al., 1988))
/* Brief Description: The “MM2irrev” program codes a sequential pair of irreversible Michaelis-
Menten enzymatic reactions, Hx → Xa → Ua, wherein the one enzyme, xanthine oxidase, serves 
both steps. Hx and Xa compete for its active site. */

import nsrunit; unit conversion on;

math MM2irrev {

  realDomain t sec; t.min=0; t.max=5000.0; t.delta=1.00; // t is independent variable

// PARAMETERS: (denoted param(t) if time-variable) (all changeable at run-time)

     real Vhmax = 1.84 uM/s;       // Vmax for enzymatic conversion of Hx -> Xa

     real Kmh = 3.67 uM;            // Km for assumed instant binding of Hx to enzyme

     real Vxmax = 1.96 uM/s;      // Vmax for Xa -> Ua

     real Kmx = 5.94 uM;          // Km for assumed instant binding of Xa to enzyme

     real Hzero = 46.3 uM, Xzero = 0 uM, Uzero = 0 uM; // initial conditions

// VARIABLES (specified as functions of time by (t) appended in defining the name)

     real H(t) uM;          // concentration of Hx (HypoXanthine)

     real X(t) uM;          // concentration of Xa (Xanthine)

     real U(t) uM;          // concentration of Ua (Uric acid)

// INITIAL CONDITIONS (t.min can differ from t = 0 sec.)

     when (t=t.min){ H= Hzero; X = Xzero; U = Uzero;}

// SYSTEM OF EQUATIONS (3 ODEs) (Derivative dH/dt written as H:t)

    H:t = - (Vhmax*H/Kmh) / (1 + H/Kmh + X/Kmx);                                // Hx→Xa

    X:t = ((Vhmax*H/Kmh) - (Vxmax*X/Kmx)) / (1 + H/Kmh + X/Kmx);    // Xa→

    U:t = (Vxmax*X/Kmx) / (1 + H/Kmh + X/Kmx);                                   // →Ua

} // PROGRAM END

Model behavioral analysis and visualization
We will use a simple convection-diffusion reaction model 
(Bassingthwaighte, 1974; Bassingthwaighte & Goresky, 1984) to 
illustrate some facilities for visualizing model solutions and the 
effect of varying parameter values on them. The system is dia-
grammed in Figure 1 and the code is provided in Box 2.

Plot pages
JSim provides several mechanisms for visualization, providing 
insight about model dynamics. The most basic are plot pages, each 
of which may contain line, scatter, contour and colormap plots. 
One may plot experimental data and model solutions (from one 
or more models), scaled automatically or manually, linear or loga-
rithmic, plotted as they are being computed or displayed or edited 
later. Multiple plot page configurations are stored in each project, 
enabling reproducible analysis (e.g. all the data and graphs for a 
particular journal article). JSim plot pages support modeling steps 
1, 5, 6, 7, 8 and 10 above (display of experimental data and model 
solutions, verify solution accuracy, explore model behavior, display 
of sensitivity curves and assessments of goodness of fit).

Page 6 of 17

F1000Research 2013, 2:288 Last updated: 23 JAN 2014

http://www.physiome.org


Box 2. Code for a 2-region Blood-Tissue Exchange Model.

// MODEL NUMBER: 0190 at www.physiome.org (Bassingthwaighte, 1974)

// MODEL NAME: BTEX20simple

// SHORT DESCRIPTION: Simple Model of an axially distributed two-region

//  capillary Blood-Tissue EXchange unit with consumption in interstitium

import nsrunit; unit conversion on;

math btex20simple {

//  INDEPENDENT VARIABLES:

realDomain t sec; t.min = 0; t.max = 30; t.delta = 0.1;

realDomain x cm; real L= 0.1 cm, Ngrid = 31; x.min = 0; x.max = L; x.ct = Ngrid;

//  Parameters and Keys to Names:

real Fcap = 1 ml/(g*min),        // Capillary (cap) plasma flow

   Vcap = 0.05 ml/g,                // Capillary Volume

   Visf = 0.15 ml/g,                   // Interstitial Fluid (isf) Volume

   PS = 1 ml/(g*min),                // Permeability-surface area product: cap <--> isf

   Gisf = 0 ml/(g*min),               // consumption rate in isf region (Gulosity)

   Dcap = 1.0e-5 cm^2/sec,     // cap axial diffusion coefficient

   Disf = 1.0e-6 cm^2/sec;      // isf axial diffusion coefficient

// Inflow Concentration, Input Function:

extern real Cin(t) mM;

// Concentration Variables:

real Ccap(t,x) mM,     // capillary concentration at position x

     Cisf(t,x) mM,        // isf concentration at position x

     Cout(t) mM;        // Outflow Concentration from capillary at x=L

// Boundary Conditions: (Note total flux BC for inflowing region.)

when (x=x.min) { (-Fcap*L/Vcap)*(Ccap-Cin)+Dcap*Ccap:x = 0; Cisf:x = 0; }

when (x=x.max) { Ccap:x = 0; Cisf:x = 0; Cout = Ccap; } // reflecting boundary

// Initial Conditions:

when (t=t.min) { Ccap = 0; Cisf = 0; } // sets initial concentrations to zero

// Partial Differential Equations: Ccap:t is dCcap/dt in JSim’s MML (ODE or PDE)

   Ccap:t = -Fcap*L*Ccap:x/Vcap + Dcap*Ccap:x:x + PS*(Cisf-Ccap)/Vcap; // dCcap/dt

   Cisf:t = -Gisf*Cisf/Visf	   + Disf*Cisf:x:x    + PS*(Ccap-Cisf)/Visf; // dCisf/dt

} //program end

LOOPS: Iterating solutions to exhibit behavior
Model loops are a feature for behavioral analysis that plot data 
from a family of model runs using a user-chosen sequence of 
parameter values. For example, Figure 2, “looping over”, i.e. making 
a sequence of changes in a parameter value for the membrane perme-
ability in a tracer uptake model yields a family of plots showing 
how outflow tracer concentration curves would vary with varying 
permeability. The curves, of course, depend upon the settings for 
the other parameters of the model, so the looping sequence should 
be initiated under widely divergent conditions in order to under-
stand the “conditions” (the regions of state space) where the chosen 
parameter may have little influence or maximum influence. JSim’s 
loops facility support modeling steps 6 and 7 above (verify solution 
accuracy, explore model state space). A convenient feature of the 

LOOPS function is that the user can stop the solution, automatically 
starting the next one, whenever desired, speeding up the review of 
solutions. This is especially important in large models with long 
computation times.

Nested plots
Nested plots (Figure 3) are JSim’s version of worlds-within-worlds 
graphics (Harris et al., 1994). Each nested plot is a 2-dimensional 
array of plots, each of which represents the form of a set of model 
solutions with a pair of distinct parameter value. Nested plots enable 
simultaneous visualization of the effect of up to six independently 
varying parameters. JSim nested plots support modeling steps 
6–8 above (verify accuracy, explore model state space, sensitivity 
analysis).
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Figure 2. Using LOOPS to explore parameter influences. With 
the permeability surface area product (PS) = 0 (taller solid curve) 
the outflow concentration-time curve, Cout, represents the response 
function via the vascular space alone. The mean transit time for 
this is Vcap/Fcap. With finite PS there is extraction of solute during 
transcapillary passage, shown by the successive diminutions of the 
heights of the initial peaks as PS increases. At low PSs the form of 
the outflow starts as a reduced version of the curve with PS = 0; in 
this state the flux into the tissue is purely “barrier limited”. When PS 
is 4 or greater ml/(g*min), the sixth curve, the initial peak is no longer 
discernable; at yet higher PSs a second peak arises, and at PSs 
above 128 ml/(g*min) increasing the PS further has no effect on the 
shape of the outflow curve; in this state the exchange flux is purely 
“flow-limited”, where changing the flow shifts Cout, but changing PS 
does not.

Figure 3. Nested plots. Behavior of the two-region model when 
varying capillary permeability, PS, and tissue consumption, Gisf. 
Each panel is a contour plot with the position between the capillary 
entrance at x=0 to the exit at x=0.1 cm on the abscissa, and time, 
t, on the ordinate. At each time step (ordinate) the horizontal line 
from 0 to 20 is colored (using color profile “rainbow” in this case) in 
accord with the concentration at each point in x. Convection moves 
the entering solute along the tube from left to right to larger x on this 
graph. With successive times the colored horizontal lines construct 
a shaped profile above the x-t plane; contour lines with units in mM 
are superimposed. The columns from left to right show contours 
with PS increasing by factors of 5 (see labels at top of column) from 
PS = 0.3 to 37.5 ml/(g*min). The consumption Gisf increases from 0.2 in 
the bottom row by factors of 5 to the top row with Gisf = 25 ml/(g*min); 
see labels on right ordinate. With low PS, leftmost column, very little 
of the solute escapes into the tissue, so the injected bolus remains 
relatively compact even while undergoing some diffusional spread 
(Dcap = Disf = 10-4 cm2/sec), and the influence of the consumption 
is negligible since so little enters the ISF. With increasing PS more 
solute enters the ISF where it is consumed. With high PS and high 
Gisf, the right uppermost panel, the solute is all consumed before 
it can reach the capillary exit at the right edge of the panel. [This 
plot is set up under “Project”, “Add”, “New Nested Plot” using 
LOOPS, inner and outer, to set the values for the parameters, and 
on the NestedPlot, then clicking on “XY plot” to choose “contour”. 
Instructions are under Running JSim – Data Analysis – Nested plots: 
www/physiome.org/jsim/docs/User.html].

Sensitivity analysis
By “sensitivity analysis” we mean the examination of the influences 
of individual parameters on the model responses under a wide 
variety of conditions. The sensitivity function, S(t) is the change 
in magnitude, dQ, of variable Q, to a small change in a parameter 
value, dP. It may be expressed in a normalized form, (dQ/Q)/(dP/P), 
or unnormalized form, dQ/dP. As an example consider the same 
model as was explored in Figure 3. Figure 4 shows the sensitivities 
of the outflow concentration of a solute to a change in interstitial 
fluid volume (V

isf
) or capillary wall conductance (PS) following an 

injection of that solute at the capillary entrance. The upper panel 
shows the outflow concentration without parameter perturbation. 
The middle panel plots the unnormalized sensitivity functions, and 
the bottom plot shows the normalized sensitivity functions (with the 
early part of the curves removed when C

out
 is negligible). Increas-

ing PS will lower the height of C
out

 for the first 10 seconds with the 
greatest reduction at the peak of C

out
 at ~8 seconds (due to greater 

flux of metabolite into the ISF); after 10 seconds, the height of C
out

 
will be increased (back flux of metabolite from ISF). Increasing V

isf
 

has the effect of lowering C
out

 for the first 24 seconds, then raising 
it after 24 seconds. JSim’s sensitivity analysis supports modeling 
step 7 above.

Optimization
Manual parameter adjustment to fit the model to experimental data 
is encouraged as a means of gaining insight into model behavior. 
Automated parameter optimization is usually much faster; eight 
methods are provided (See Table 3); we recommend testing several 
in order to test speed and reliability with respect to the particular 
types of data and model. Given that some parameters are known or 
highly constrained, one may obtain the best model fit to the data for 
a particular subset of model parameters, and one may also, for some 
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Figure 4. Sensitivity analysis using the same model as in Box 2 and Figure 2 and Figure 3. Upper panel: Model solution for outflow from 
capillary. Parameters were as in Box 2, the default parameters. Middle panel: Sensitivity function, df/dp, the change in Cout with a 1% increase 
in the capillary wall conductance (PS), black curve or the interstitial volume (Visf). Lower panel: Normalized sensitivity function, (df/f)/(dp/p), 
the fractional change in Cout divided by the fractional change in each parameter, again for a 1% change in the parameter value.

Table 3. JSim’s optimizers.

Simplex A bounded, non-linear steepest-descent algorithm (Dantzig et al., 1995)

GGopt

Derivative-free non-linear optimizer. Uses adjustable mesh and linear least 
squares to find smoothed values of function, gradient and Hessian at center 
of mesh. Values drive a descent method that estimates optimal parameters, 
but is unbounded (Bassingthwaighte et al., 1988)

GridSearch
A bounded, parallel algorithm. Operates via progressively restricted search 
of parameter space on a regularly spaced grid of N points per dimension 
(Kolda et al., 2003)

NelderMead Unbounded, steepest descent similar to Simplex (Nelder & Mead, 1965)

NL2SOL
An adaptive nonlinear least-squares algorithm (Dennis et al., 1981; Dennis & 
Schnabel, 1983). Unbounded

SENSOP
A weighted nonlinear least squares optimizer using a variant of the 
Levenberg-Marquardt method to calculate the direction and the length of the 
step change in the parameter vector (Chan et al., 1993). Bounded

SimAnneal
Simulated annealing for finding the global optimum of a function in a large 
multi-dimensional parameter search space which is first randomly sampled 
with step-size decreasing with time (Kirkpatrick et al., 1983)

Genetic

Genetic algorithms are a family of algorithms that generate a population of 
candidate solutions selecting the best solutions in each iteration to “mutate” 
and “cross over”, creating a new generation of solutions in an iterative 
process (Holland, 1992)
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but not all of the optimizers, constrain the range for each parameter 
value, applying scientific judgment. Optimization helps in find-
ing systematic misfits to the data (and the possible rejection of the 
hypothesis), and in estimating parameter values.

The optimizer works to minimize an objective function, usually 
a weighted sum of squares of the differences between the model 
solution and the experimental data at each observation time or spatial 
position. This may require freeing up most parameters for opti-
mization to make sure that an assumed constraint isn’t creating a 
biased solution. JSim provides a graph of residuals (the differences 
between model and data); sign tests and other statistical appraisals 
of the residuals as a function of time help to distinguish system-
atic from random deviations. JSim’s optimization facilities support 
modeling steps 9–12 above (fitting solutions, assessing goodness 
of fit, examining parameter correlations, evaluating confidence 
limits).

Parameter confidence ranges
Model fitting to the data is never unique but is guided by the weight-
ing of the observed data points and the noise in the data. Parameter 
estimates are not exact, but merely estimated, and even possibly 
biased by the user’s choice of the weights on individual data points. 
How to obtain a “best fit” of model function to data is always, in 
a sense, a personal choice. Guidelines include weighting inversely 
to the likely standard deviation of each data point, or unweighting 
outliers. Viewing the graph of residuals (the differences between 
data and model) is most helpful in identifying systematic misfits.

Ignoring how one got to the point of “best fit”, one desires an evalu-
ation of the parameter values. If the optimized parameters do gener-
ate outputs that closely match the experimental data, the question 
becomes what confidence can be placed on these estimates. One 
simple method is to optimize using several different numerical 
method, i.e. different optimization algorithms and different weight-
ing schemes, to see how much the “best fit” parameter estimates 
change. Other methods of estimating parameter confidence limits 
include using the Jacobian and using Monte Carlo methods.

Using the Jacobian: The Jacobian matrix is the matrix of the sen-
sitivity functions for all the parameters open to optimization, as 
calculated at the location of the minimized objective function, the 
“best fit”. This matrix, which JSim calculates after each optimiza-
tion provides the basis for determining correlations among param-
eters, and the confidence limits (standard deviations and expected 
ranges based on Gaussian assumptions). The calculation assumes 
symmetry and linearity, and so makes only local calculations, and 
gives no guarantee that the “best fit” is a global best fit. While get-
ting to the “best fit” point in parameter space is data-dependent, 
this confidence range estimation procedure is not at all, for it is 
estimated solely from the shapes of the local sensitivity functions. 
Thus it behooves one to get the differing estimates obtained from 
different optimizers, different numbers of parameters searched, and 
even to move the parameter “best fit” values a little away from the 
optimizer’s choice and recalculate the confidence ranges.

Using a Monte Carlo method: A more robust, but more demand-
ing, confidence limit calculation uses Monte Carlo methods. The 

procedure is to 1) Select a noise profile for each experimental data 
point, ideally based on what you believe the real noise is, e.g. 5% 
proportional Gaussian random noise. 2) Generate a perturbation for 
each experimental data point by drawing randomly from the selected 
noise profile. 3) Re-optimize the model against the new set of per-
turbed data points to obtain another estimate for each parameter. 4) 
Repeat steps 2 and 3 many times (e.g. 1000). From these results, 
one obtains a histogram of estimates for each optimized parameter, 
and robust confidence limits can be drawn directly from these histo-
grams without assuming symmetry and linearity as in the Jacobian 
method. JSim displays these histograms to show the distributions 
of parameter estimates in full detail, and 2-parameter scatter plots 
to show covariance. (JSim’s confidence limit calculations support 
modeling step 12 above.)

Network graphs
JSim’s model “browser” provides a visual representation of model 
variables as “nodes” and their dependencies or connectivity with 
each other as connecting lines or “edges”. See Figure 5. The graphs 
can be selected to include model parameters, or selected classes of 
variables, e.g. pressures, strains, concentrations. This capability is 
based on work by Yngve (Yngve et al., 2007). JSim’s model browser 
supports modeling step 2 above (development of the model).

Implementation
JSim is implemented in the Java computer language (Gosling & 
McGilton, 2003). The major factors affecting this choice are Java’s 
platform independent GUI (allowing Windows, Macintosh and Linux 
versions to be developed in a single code base), object-oriented 
features and garbage collection (simplifying complex coding), 
advanced utilities (associative arrays, dynamic linking, remote pro-
cedure calls), strong type checking (allowing many common coding 
errors to be caught at compile time) and robust exception mecha-
nism (simplifying coding and enabling a virtually crash-proof GUI). 
Native code (C and Fortran) is used in certain restricted circum-
stances using the Java Native Interface (JNI) (Liang, 1999) to reduce 
computational overhead (transcendental functions, 2D array access) 
and the availability of legacy code libraries (ODE, PDE and optimi-
zation numerical methods).

The MML language is parsed using JLex scanner generator and the 
CUP parser generator (Appel, 1998). These tools, similar to the clas-
sic Unix lex and yacc (Aho et al., 1988), were among the few parser 
generation tools available for Java when JSim was first developed. 
Using a formal parser generator allows MML to be concise, intuitive, 
consistent and extensible. MML’s declarative structure is an intui-
tive expression of a model’s underlying mathematics (simplifying 
the modeler’s learning) and allows the overall structure of the model 
to be examined for mathematical correctness (detecting overspecifi-
cation or underspecification) in a way that is not possible with a pro-
cedural specification. Units and unit checking (Chizeck et al., 2009) 
were added to MML soon after its initial design to further improve 
model conciseness and assure unit balance in the equations as a first 
step in verifying that the mathematics is rendered correctly by the 
numerics.

MML is compiled into Java model computational code for run-time 
execution. This results in faster model execution (in comparison to 
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Figure 5. Connectivity graph for a modified version of the model program in Box 1. For Hx→Xa→Ua, the oxidation of hypoxanthine to 
xanthine to uric acid, catalyzed by xanthine oxidase. The connectivity is shown for a dual solution version of the code for fitting two different 
sets of experimental data simultaneously with a common group of parameters so as to obtain a minimally biased set of parameter confidence 
ranges.

table-driven computations) and allows more flexible model com-
putational structure (multiple time sweeps, indexed loops). JSim 
models run asynchronously to the GUI in contrast to most simula-
tors which alternate computational and graphical update steps. This 
approach dramatically improves performance and user response, 
especially when remote computation is used. JSim’s remote com-
putation is implemented using Java Remote Method Invocation 
(RMI) (Harold, 1997), providing reliable access to networked 
computational servers. This approach also isolates the JNI methods 
(above) in the computational engine, allowing the JSim GUI to run 
as a pure Java browser applet. JSim multiprocessing is implemented 
using Java threads (Oaks & Wong, 2004) providing excellent per-
formance and seamless integration with the Java memory manage-
ment and exception mechanisms (providing application stability). 
MML code is stored as XMML for distribution, and has automated 
translators into XMML, SBML, CellML, and with limitations into 
Matlab (Smith et al., 2013).

Reproducibility
The issue of reproducibility, or should we say the all-too-frequent 
failures of attempts to reproduce published results, are beginning 
to be recognized as a critical problem in advancing the biological 
sciences. It is easy to understand biological studies, with inherently 
great variability in materials and analysis procedures, should be less 
exact than those in the physical sciences, but it is not so forgivable 
that reproducing mathematical models of biological systems is a 
major problem. The two major repositories of published biologi-
cal models, Biomodels (http://www.ebi.ac.uk/biomodels-main/) 
using SBML (www.sbml.org) and CellML (models.cellml.org), 
together have about 1000 curated models: there were errors in the 
publications requiring corrections in all but 5 of these, before the 
models could be demonstrated to run appropriately. These models 
all used algebraic, ODEs, or differential-algebraic equations and so 
must be regarded as relatively simple computationally compared 
to finite-element models or spatially dependent models. That only 
0.5% of the not very complex models were reproducible is truly 
alarming, and demonstrates the lack of dedication to making scien-
tific advances useful to others. Some open access journals, such as 
F1000Research, are aiming to improve this sad state, by requiring 

open source code to be deposited, hopefully along with the data 
that provide tests of the model hypotheses. A Special Section in 
Science (Stone & Jasny, 2013) is devoted to the issues of open 
access, addressing open access, peer review, the changing publish-
ing scenario, and encouraging broader methods of communication. 
F1000s founder, Victor Tracz, is featured as the “Seer of Science 
Publishing”, prodding us to do better.

Project files
JSim project files store a set of codes for models, illustrative figures 
or diagrams, parameter sets, multiple data sets, the settings for loop-
ing, sensitivities, behavioral analysis, and optimizations, plot page 
configurations, and for project notes. Many models in the Physiome 
Repository (most of which are JSim-based) have experimental data 
in the project files for validation testing. Project files support the 
reproduction of a set of simulations and analyses for their shar-
ing across JSim’s supported platforms (Windows, Mac OS, Linux). 
Project files support the modeling steps 1 and 13 above (from 
importation of data, to preservation and distribution of analyses). 
The MML, XMML and all the data and analyses are preserved in an 
ASCII format; thus the files tend to be small. The models described 
above take < 100 kB; large models with several hundred ODEs 
take up < 500 kB even with large time series of physiological data. 
These files are all human readable, and ready to run when opened 
in JSim. They contain everything used by the program: the notes, 
the source code, and the control parameters for all the steps in the 
analysis. They are editable in any word processor, but one avoids 
doing that since it is easier to enter code and notes under JSim and 
not risk disturbing the format in the XMML file that JSim reads.

There are many models on the Physiome Repository (www.physi-
ome.org) with multiple data sets, model fits to data, and optimiza-
tion results. Examples are that of Kuikka et al. on glucose uptake by 
myocardium (Kuikka et al., 1986), [models 163 and 173], xanthine 
oxidase reactions (Bassingthwaighte & Chinn, 2013), [model 324], 
and lung endothelial serotonin uptake (Jardine & Bassingthwaighte, 
2013), [model 198]. All the JSim project files are stored in a Con-
current Versions System (CVS) archive so that the latest versions, as 
well as older versions, are always available. The models themselves 
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and Monte Carlo analysis allow students to perform analyses which 
would ordinarily be too difficult and time consuming for them to 
do on their own.

Future developments
Modular modeling
JSim has provided support for modular modeling from its inception 
(Bassingthwaighte, 2000) using both mathematical and biological 
approaches, but now, with the developing recognition that models 
are more consistently understandable and more amenable to modular 
construction when they are annotated using identified ontology 
systems, libraries of modules present great opportunity for efficient 
construction of complex model systems. A module can be thought 
of as a self-contained model of an element of the larger system model 
and represents a specific physical, chemical or phenomenological 
process. A model might use multiple instances of the same module, 
for example, differently parameterized Michaelis-Menten type 
enzymatic reactions used for different reactants. One can build 
large models from a variety of modules representing physical or 
chemical processes such as the flux via a cell membrane transporter 
or ion channel or an enzymatic reaction, or a transcription regula-
tory pathway (Beard et al., 2005) incorporating knowledge of their 
connectivities. Allowing the modeler to draw pre-existing modules 
from a repository or extract them from previously developed models 
and enables the modeler to create new models quickly for hypoth-
esis testing, a key to Physiome development (Bassingthwaighte et al., 
2009). Below are two approaches to implementing modular mod-
eling within JSim.

Modular Program Constructor (MPC): MPC focuses on using 
easily understood directives to extract generically coded JSim 
MML equations from files, changing the names of the generic vari-
ables to ontologically informative names and assembling the result-
ing code into new equations (Raymond & Bassingthwaighte, 2011). 
For example, MPC can take MML code representing a single tissue 
exchange region (26 lines), and generate a whole organ heterogene-
ous model for convection, diffusion, and reaction with 20 regions 
(1698 lines). See http://www.physiome.org/jsim/models/webmodel/
NSR/MPC/. MPC currently runs outside of JSim but is planned for 
incorporation into a future JSim release.

Modular construction with SemSim: Precise semantic identi-
fication of variables and parameters is a prerequisite to merging of 
preconstructed submodels or modules into integrated systems or 
multiscale models. A future release of JSim will incorporate the 
tools for annotating models and their computational elements 
against biomedical ontologies and knowledge bases (Rubin et al., 
2006). These annotations will make it easier for users to search 
the Physiome Model repository and to identify the biological 
phenomena modeled. Formatted according to the semantic simu-
lation (SemSim) framework (Gennari et al., 2011), these annota-
tions will also make it possible for tools to decompose and merge 
models in a more automated fashion, and allow the modeler to 
work at a biological, rather than computational level of abstrac-
tion (Beard et al., 2012). For example, selection of an ion pump, 
such as the NaKATPase, would bring up a set of modules from 
which the modeler would choose the version suited to the particular 

are copyrighted but researchers are given the freedom to download, 
modify, and to construct new models from them so long as original 
authorship is acknowledged.

Modeling over the web
The archived JSim models at www.physiome.org can be run over 
the web, with complete freedom to vary the parameters, modify the 
code, compile and run, import one’s own data for analysis, and save 
a modified and augmented file to one’s own computer for further 
use. (Models based on MATLAB or FORTRAN, a small fraction of 
the repository, cannot be run over the web but can be downloaded).

Summary
JSim is a tool for hypothesis exploration and for analyzing data. 
Many of the steps in data analysis are built into JSim. It’s declara-
tive modeling language, automatic unit balance checking, and built-
in tools for solving ODEs, PDEs, and implicit equations greatly 
facilitate generating mathematically and physiologically consist-
ent models. The built-in optimizers and associated statistical data 
reporting, along with behavior tools, such as parameter looping and 
sensitivity analysis, allow one to verify and explore model behavior 
in the context of experimental data and simulated data from previ-
ous models. With the ability to save these model ‘explorations’ as 
parameter sets within the JSim project file anyone can easily create 
a modeling and data analysis package that is easy to reproduce and 
distribute to others.

As a research tool, JSim has been developed and refined to accel-
erate the processes of modeling and data analysis. Adherence to 
quality standards augments efficiency (Smith et al., 2007). The time 
savings don’t simply reduce the time necessary to get to a result, 
they also end up improving the quality of the science in two ways. 
First, when it only takes a few seconds to tweak a model, re-run it, 
and view the results, researchers are more likely to explore many 
“what if” scenarios and develop a deeper understanding of model 
behavior, and in turn, a deeper understanding of the system being 
modeled. Second, researchers are more likely to do better verifica-
tion checks and higher-level analyses if they are easy to do. When a 
few mouse clicks are all it takes to change solvers, time step sizes, 
optimization parameters, or even perform a complex Monte Carlo 
analysis to assess parameter correlations and confidence intervals, 
researchers are more likely to actually do those critical numerical 
checks and to take the model analysis beyond simply reporting a 
single parameter value.

In addition to its use as a research tool, JSim is also very useful as 
a teaching tool. JSim has been used in classes for high school, under-
graduate, and graduate students, as well as many workshops for 
faculty members. The fact that JSim is open source, quick to down-
load and install, as well as executable over the web, means that it is 
easily available to students. The simplicity of JSim’s model speci-
fication language, where users can focus on writing and working 
with the mathematical equations themselves rather than controlling 
program flow, means that students with no programming experi-
ence can rapidly begin to understand, create, and modify JSim mod-
els. Furthermore, JSim’s interactive plotting interface and the easy 
access it provides to sophisticated analysis tools such as sensitivity 
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 23 January 2014Referee Report:
This manuscript provides an introduction to, and description of, the JSim modelling system. The authors
highlight the general purpose utility of this platform through the use of specific application examples, that
are easily understood and followed by the reader and potential JSim users. This manuscript provides all
appropriate links and examples that readers would require to get up and running with the JSim software.

This paper is well written, with just a few points that the authors may want to consider in future revisions of
the manuscript.

The authors touch briefly on reuse of existing models/projects and the use of a CVS repository to
archive the history of model development, as well as the discussion on modular modelling in the
future developments section. The basis for this modularity and reuse seems to result in the
development of a new, monolithic MML document for the assembled model. It might be useful to
see if there are features in either JSim or MML that allow dynamic links to the source modules to be
maintained allowing users to alternate sources or versions of the source modules (rather than the
cut-and-paste style described in the manuscript).
 
In addition to the versioning of the JSim input data (experimental data, MML, projects, etc.), it is
often the case that a specific piece of work requires some minimum version of the software itself. I
wonder if there is any link between project files and JSim releases? For example, are users
browsing the Physiome Repository able to determine if they need to update their version of JSim
prior to loading a project file (or if in fact the software handles this internally).
 
The manuscript would benefit from a more thorough comparison of JSim to alternative tools, or at
least some links to specific tools being contrasted in the article.
 
There is no description of how spatial geometries (finite element meshes or finite difference
grids) are defined in JSim. Are the evolving standards for such descriptions (e.g., FieldML or
SBML-spatial) being used or are there plans to use such? A comparison with approaches taken by
tools like the Virtual Cell or Chaste might be useful.
 
The authors make no reference to the adoption or interchange with the SED-ML standard. It would
be useful to discuss any plans in this regard. Similarly, the evolving COMBINE archive format has a
large overlap in aims with the JSim project file and the authors might want to comment on any
plans to make use of that archiving format or contributions in that direction.
 

In some parts of the manuscript (e.g., the caption for figure 3) the description of the
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In some parts of the manuscript (e.g., the caption for figure 3) the description of the
modelling/simulation example seems a bit excessive, and detracts from the primary focus of the
article.

Minor comments
Page 5, column 1, first paragraph: Antimony is mentioned as a model import source format, but
that format is not defined previously.
 
Page 10, column 1, third paragraph: "...using several different numerical method," missing 's' on
method.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 Steven Niederer
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Approved: 10 January 2014

 10 January 2014Referee Report:
The paper “JSim, an open-source modelling system for data analysis” provides a succinct update on the
functionality and utility of the modelling platform JSim. The paper provides a concise description and link
between the JSim community modelling philosophy and how this is facilitated by the JSim software
platform. The complete description of the JSim environment will be of interest to the modelling community
and this manuscript highlights much of the functionality that they require.  

This publication could be improved by addressing:
As described in the article, the platform JSim has been developed over a period of over 40 years.
Previous articles on JSim have been published and this article would be strengthened by
highlighting the new features / functionality added to the platform since the previous JSim article.
 
The article, as exemplified in the abstract, focuses on the technical functionality of JSim. If JSim
can be readily set up or used by people who wish to analyse their experimental data with models,
for example experimental researchers, as opposed to developing new models, then it would be
worth highlighting this in the abstract and text.
 
The article does not discuss or review alternate simulation platforms (for example COR, OpenCell,
Continuity, CHASTE, SBML simulation environments). For new users wishing to make an informed
decision it would be useful to highlight the differences between JSim and alternate platforms.

Minor comments
In the introduction, the statement that mathematical models provide clear and precise hypothesis
that are susceptible to contradiction and that failure to fit leads to rejection needs to be more
nuanced, particularly in the case of biology where comparisons are often made between
deterministic models and variable experimental results.
 
It is not clear in the loop section if JSim supports nested loops, this could be clarified.
 
It would be of interest to provide some indicative performance measures. For example if simulating
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It would be of interest to provide some indicative performance measures. For example if simulating
a cardiac action potential will JSim solve faster or slower than real time on a conventional desktop.
 
The authors could comment on the utility or potential for adoption of new mark-up languages for
spatial problems (FieldML) or problem definition formats (SED-ML).
 
It would be interesting for the authors to comment on how or if they have verified the JSim code
stack.  

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:
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