
F1000Research

Article Status Summary

Referee Responses

, King's College LondonSteven Niederer

UK

, University of AucklandDavid Nickerson

New Zealand

Latest Comments

No Comments Yet

2

1

RESEARCH ARTICLE

 JSim, an open-source modeling system for data analysis [v1; ref
status: indexed, http://f1000r.es/2fk]
Erik Butterworth, Bartholomew E. Jardine, Gary M. Raymond, Maxwell L. Neal, James
B. Bassingthwaighte
Dept. of Bioengineering, University of Washington, Seattle, WA 98195, USA

Abstract
JSim is a simulation system for developing models, designing experiments, and
evaluating hypotheses on physiological and pharmacological systems through
the testing of model solutions against data. It is designed for interactive,
iterative manipulation of the model code, handling of multiple data sets and
parameter sets, and for making comparisons among different models running
simultaneously or separately. Interactive use is supported by a large collection
of graphical user interfaces for model writing and compilation diagnostics,
defining input functions, model runs, selection of algorithms solving ordinary
and partial differential equations, run-time multidimensional graphics,
parameter optimization (8 methods), sensitivity analysis, and Monte Carlo
simulation for defining confidence ranges. JSim uses Mathematical Modeling
Language (MML) a declarative syntax specifying algebraic and differential
equations. Imperative constructs written in other languages (MATLAB,
FORTRAN, C++, etc.) are accessed through procedure calls. MML syntax is
simple, basically defining the parameters and variables, then writing the
equations in a straightforward, easily read and understood mathematical form.
This makes JSim good for teaching modeling as well as for model analysis for
research. For high throughput applications, JSim can be run as a batch job.
JSim can automatically translate models from the repositories for Systems
Biology Markup Language (SBML) and CellML models. Stochastic modeling is
supported. MML supports assigning physical units to constants and variables
and automates checking dimensional balance as the first step in verification
testing. Automatic unit scaling follows, e.g. seconds to minutes, if needed. The
JSim Project File sets a standard for reproducible modeling analysis: it includes
in one file everything for analyzing a set of experiments: the data, the models,
the data fitting, and evaluation of parameter confidence ranges. JSim is open
source; it and about 400 human readable open source
physiological/biophysical models are available at
http://www.physiome.org/jsim/.

Referees

v1
published
30 Dec 2013

 1 2

report report

 30 Dec 2013, :288 (doi: 10.12688/f1000research.2-288.v1)First Published: 2
 30 Dec 2013, :288 (doi: 10.12688/f1000research.2-288.v1)Latest Published: 2

v1

Page 1 of 17

F1000Research 2013, 2:288 Last updated: 23 JAN 2014

http://f1000r.es/2fk
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.2-288.v1&domain=pdf&date_stamp=2013-12-30

F1000Research

 James B. Bassingthwaighte ()Corresponding author: jbb2@uw.edu
 Butterworth E, Jardine BE, Raymond GM (2013) JSim, an open-source modeling system for data analysis [v1; refHow to cite this article: et al.

status: indexed,] 2013, :288 (doi: 10.12688/f1000research.2-288.v1)http://f1000r.es/2fk F1000Research 2
 © 2013 Butterworth E et al. This is an open access article distributed under the terms of the ,Copyright: Creative Commons Attribution Licence

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the
article are available under the terms of the (CC0 1.0 Public domain dedication).Creative Commons Zero "No rights reserved" data waiver

 The development of JSim has been supported by NIH grants HL9719 (PI: JBB), RR1243 (JBB), EB1273 (JBB), HL073598 (PI:Grant information:
R. Corley), EB8407(JBB), and GM094503 (PI: D. Beard) and NSF grant 0506477(JBB).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 Competing Interests: No competing interests were disclosed.

 30 Dec 2013, :288 (doi: 10.12688/f1000research.2-288.v1) First Published: 2
 23 Jan 2014, :288 (doi: 10.12688/f1000research.2-288.v1)First Indexed: 2

Page 2 of 17

F1000Research 2013, 2:288 Last updated: 23 JAN 2014

http://f1000r.es/2fk
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/publicdomain/zero/1.0/

Introduction
The modeling of biological processes starts with defining the
hypothesis to be tested in an experiment. To make scientific pro-
gress, Platt (Platt, 1964) emphasized defining at least two distinct
hypotheses and then designing an experiment with the power to
clearly distinguish between these hypotheses. By so doing, at least
one of the hypotheses must then be rejected: the rejection marks a
stepping-stone in science. If a hypothesis is not rejected then it remains
as a potential working hypothesis, the target of further experimenta-
tion that eventually will lead to its rejection or improvement.

The virtue of the mathematically-defined hypothesis is that it is
clear and precise, and therefore susceptible to contradiction. Argu-
ably, one should use mathematical “in numero experimentation” to
define the critical laboratory experiment. Given that the experiment
tests whether or not the working hypothesis is compatible with
experimental data, then failure to fit leads to rejection. Revision of
the conjecture follows: science is advanced.

The hypothesis testing cycle is an iterative procedure: design hypoth-
esis (and alternative hypotheses) → execute experiment → evaluate
goodness of fit of model to data → either reject the hypothesis and
restart, or, alternatively, → accept the model as the current working
hypothesis and assess the parameters for the specific situation. The
working model serves as the current belief until deeper thinking
leads to an alternative hypothesis and one restarts the cycle. This
philosophical and procedural point of view, more or less guaranteed
to make efficient progress in the field, creates definable results step
by step, and gives investigators a sense of satisfactory success.

As in physics, models are posed in order to gain deeper understanding.
Cause-and-effect models of biological systems are usually determin-
istic; they are fundamentally different from observationally-based
probabilistic associations. The desire is to represent sequences of opera-
tions within a dynamic system leading to, and explaining, the observed
data (Coatrieux & Bassingthwaighte, 2006; Bassingthwaighte
et al., 2006a). Standard statistical methods are not central to decid-
ing whether or not to reject the hypothesis, but are indeed very
helpful in assessing goodness of fit, estimating confidence ranges
and co-variances among parameters, and in guiding the investigator
in identifying errors or in finding ways to simplify the model.

Over the years we have developed sets of tools to serve these pro-
cesses. In this article we describe the features of a simulation analy-
sis system, JSim; it is the product of evolutionary improvements
in the hypothesis testing cycle. The central goals are to facilitate
attempts to fit models to data, and to support the efficient devel-
opment of computational models that describe and explain the
behavior of biological systems (Bassingthwaighte & Goresky,
1984; Bassingthwaighte et al., 2005; Beard et al., 2005).

Our perspective is embedded in JSim: it is an open-source simu-
lation analysis platform, freely downloadable, running on Linux,
Macintosh, and Windows, providing tools for the steps in the mod-
eling analysis of data. There is a naturally occurring sequence of
steps to take when one starts with an unanalyzed data set and has
the goal of modeling the cause and effect relationships. We have

found it useful to follow a simplified summary: The THIRTEEN
STEPS:

The THIRTEEN STEPS in the modeling process
These are proposed as a guide. The ordering is not rigid, but it is
wise to cover all of the steps in one’s mind when starting and again
when finishing up a study. Using the steps in the order listed here
almost always works well.

(1) When starting with existing experimental data, plot and display
the data so that one can rapidly review and compare multiple data
sets. This also prepares for comparing with later model results.

(2) Develop the model, the mathematical formulation of the hypoth-
esis. One may start with one or more existing models or modules
of a similar nature (retrieved from a model repository or archival
format) and modify it. Construct illustrations of model structure to
aid the conceptual approach.

(3) Verify unitary balance in the model equations, an easy first
check for model self-consistency.

(4) Select appropriate methods for solving model equations (e.g.
differential equation solvers).

(5) Display model solutions graphically and in text listings. Inspect.

(6) Verify the mathematical accuracy of solutions. Check that results
are not dependent on temporal or spatial step sizes, that mass or
charge is appropriately conserved, and that limiting cases match
analytical solutions.

(7) Explore model behavior over wide ranges of parameter values in
state-space. (We think of “state space” as being the N-dimensional
space enclosing the ranges of values of all of the parameters within
which the model is correct numerically and sensible scientifically.)

(8) Perform sensitivity analyses, examining the fractional change in
model solutions with fractional change in each parameter.

(9) Adjust parameters to fit model solution to data, manually or
using an optimizer. Start from different places in parameter space
and vary the optimization method to test solution uniqueness.

(10) Assess goodness of model fit to data. Plot residual differences
to expose systematic biases.

(11) Examine parameter correlations to identify highly correlated
parameters and reduce the number of free parameters in optimiza-
tions. Reoptimize.

(12) Evaluate parameter confidence ranges. The sensitivities at the
“best fit”, expressed as the local curvature of the optimization cost
function give a practical estimate. This can be refined using a Monte
Carlo evaluation of parameter likelihoods as probability density
functions.

(13) Preserve the source code, multiple data sets, multiple analyses
and parameter sets, the settings (for initial and boundary conditions,
parameter scans, displays, solver choices, optimizers, Monte Carlo,
etc.), the graphs of results, the investigator’s notes and descriptions
of procedures, plots, etc., all in a single, reproducible, exportable
package. Share this package openly with collaborators, reviewers,
and the public, a moral and perhaps ethical requirement when the
support comes from public funds.

Page 3 of 17

F1000Research 2013, 2:288 Last updated: 23 JAN 2014

stage of verification of the model’s mathematical implementation
by making sure that every equation has unitary balance. Modeling
taking account of the anatomical quantitative constraints is now rec-
ognized as critical and is facilitated by the automated unit checking
(Vinnakota & Bassingthwaighte, 2004). The second phase of compi-
lation parses the details of the equations and sequences them for effi-
cient computation. For an example, a cardiovascular-respiratory system
model (Neal & Bassingthwaighte, 2007), ran under JSim exactly 300
times faster than a Matlab-Simulink version of the identical model
(Howard Chizeck/Stephen Hawley: personal communication).

MML (Mathematical Modeling Language) is the declarative mod-
eling language developed for JSim and used for composing models.
Its archival version is XMML, in the XML style of SBML and
CellML. In MML, one writes mathematical equations directly
into the code, and the MML compiler handles converting the set
of equations into a sequence of computations. Since the equation
representation is closely related to the conceptual formulation of
the model, MML models are easily understood, and pieces of the
model are readily interpretable as particular processes. The fact that
one can write several models into a single MML program allows
one to compare competing hypotheses (models). Having a standard
layout for graphs and for ASCII text output of model solutions is
convenient. For special purposes, as for a model to be used in clini-
cal practice or teaching, an alternative graphical user interface spe-
cifically designed for the model can be readily substituted for the
default layout. If a particular model absolutely requires procedural
code, this can be developed in C, or Fortran or Java, and invoked as
part of the model computation.

JSim problem domain
JSim is a general purpose simulation and data analysis software sys-
tem. It handles a wide range of mathematical problems including al-
gebraic equations, ordinary differential equations, and parabolic, hy-
perbolic and elliptic partial differential equations. It contains 8 ODE
and 3 PDE solvers implementing a variety of algorithms which allow
the flexibility to strike a balance between accuracy and computa-
tional speed. It performs time series analyses including forward and
backwards Fourier transforms. MML can handle multi-dimensional
PDEs but the solvers currently implemented support only two dimen-
sions (typically time and one spatial dimension). For two spatial
dimensions the problem needs to be formulated into either ODE
nodes or PDEs in one spatial dimension linked by ODEs in the other
spatial dimension. JSim does not support complex numbers or matrix
notation and associated matrix operators; in JSim all matrices must
be written explicitly as a set of equations.

JSim can be used in any discipline where mathematical equations
are used for modeling and analyzing data. JSim was originally devel-
oped to model and analyze physiological phenomena and many of
the built-in tools were developed to handle physiological problems.
But all of the JSim tools can be applied to any other scientific dis-
cipline. JSim excels at analyzing time course and spatial domain
data in complex systems (Beard & Bassingthwaighte, 2000; Beard
et al., 2005; Bassingthwaighte et al., 2006b; Suenson et al., 1974;
Safford & Bassingthwaighte, 1977). Examples include modeling
pharmacokinetic/dynamic (PK/PD), radiological (CT, PET, MRI)
and multiple indicator dilution (MID) data.

Interpretation of analyses
What one wants primarily from modeling analysis is insight into
mechanisms. JSim is efficient for model development and testing.
The fitting of experimental data by model solutions does not provide
proof that the model is correct. It says merely that the model can
serve as a descriptor under limited range of circumstances, namely
those examined in the experimentation. Validity is never provable.
Likewise, causation may be identified, but deeper levels may exist
to be revealed later.

What does the model predict? Every model, with a little ingenuity,
can be queried. What would be the responses to different inputs?
How would the system respond if a component were missing or
damaged? Predictions then form the basis for the design of the next
experimental test. Correct predictions, failing to invalidate the model,
do strengthen the confidence in the model but only to the degree com-
mensurate with the comprehensiveness of the particular prediction.

Background
JSim is the latest in a series of modeling/data analysis programs
dating back to SimCon (Knopp et al., 1970) (named for Simulation
Control). SimCon provided a text and graphics interface to models
written in Fortran. Between 1967 and 1993, the basic methods of
data analysis (e.g. function generators, loops, sensitivity, optimiza-
tion) were developed and refined within the SimCon framework.
In 1993, SimCon was replaced by XSim (King et al., 1995), which
implemented the same functionality under X-Windows on several
Unix-like operating systems (SunOS, IRIX, Linux, AIX). XSim
also added custom graphic model interfaces, on-demand expres-
sion graphing, worlds-within-worlds graphics (Harris et al., 1994),
remote (client-server) computation and limited multi-processing.
JSim development efforts began in 1999 and augmented the func-
tionality developed in SimCon and XSim by adding simplified
model specification (using the MML modeling language), facilities for
data analysis and for distribution of results and of models (using pro-
ject files), popular desktop and laptop support (Windows, Macintosh
& Linux) and fully integrated multiprocessing for shared memory
systems (Raymond et al., 2003).

JSim overview
JSim is quite general, and while designed for evaluating models
against experimental data, it also serves pure model development
quite well. It is built around a “project file” (.proj), that may hold
many data sets, several different models and the results of multi-
ple types of analyses testing models against the data and against
each other. JSim’s handling of ODEs (ordinary differential equa-
tions) suits it for traditional compartmental modeling and SBML
(Hucka et al., 2003), CellML (Cuellar et al., 2003), and pharma-
cokinetic (PK) models in general. Solving PDEs (partial differ-
ential equations) hugely expands the range of processes that can
be modeled in physiology and clinical medicine (Goresky, 1963;
Bassingthwaighte, 1974), biophysics, and PKPD modeling (Roberts
& Rowland, 1986). JSim handles spatial diffusion (Barta et al.,
2000; Safford & Bassingthwaighte, 1977) and convection-diffusion
problems. From soon after its release in 1999, JSim provided
automated unit consistency checking in all equations and also auto-
mated unit conversion (such as minutes to seconds) in calculations
(Chizeck et al., 2009). This pair of features automates the first

Page 4 of 17

F1000Research 2013, 2:288 Last updated: 23 JAN 2014

JSim’s Mathematical Modeling Language, MML
JSim uses the Mathematical Modeling Language (MML) to describe
models. When JSim imports other model formats (e.g. SBML,
CellML, Antimony), it translates them to MML. MML is a con-
cise, ASCII text language for defining parameters and variables and
for writing the equations describing a model. MML is a declarative
language (as opposed to procedural or imperative languages such as
MATLAB, Java, Python, and FORTRAN), meaning that, in MML,
equations represent mathematical equality, rather than providing a
directive to calculate the left-hand side variable from the expression
on the right. In MML, it makes no difference if terms in an equation
appear on the left or right hand side. Such equations are a direct
representation of the mathematical ideas in a model rather than a
procedural formulation. This improves readability and allows for
more extensive consistency checks than procedural formulations.
The MML compiler checks to ensure that all variables are com-
pletely, but not overly, specified – a check unavailable in procedural
languages. The compiler sequences the calculations based on the
dependencies of the variables to be computed, thus eliminating
order-of-operations errors that are possible in procedural languages.
MML variables are (optionally) labeled with physical units, ena-
bling the compiler to reject equations with unitary imbalances; this
also allows the automated insertion of appropriate unit conversion
factors when needed (Chizeck et al., 2009) (e.g. mmHg to kPa).
This relieves the modeler of the burden of adding unit conversion
factors (another potential source of error) and aids readability, since
equations need not be cluttered with conversion factors. MML’s design
supports the model development and unit balance aspects of mode-
ling steps 2 and 3 above. An example of MML code is shown below
as Box 1, which codes a “progress curve”, the concentration-time
curves for hypoxanthine to xanthine to uric acid catalyzed by the
enzyme xanthine oxidase through the two oxidation steps. MML
code for partial differential equations is given in Box 2.

Numeric solvers
MML is designed without reference to the numerical algorithms
that will be used for simulation. Rather, the user selects the numeri-
cal methods in the JSim run time user interface. At present JSim
provides 8 algorithms for solving ODEs (Table 1) and 3 for PDEs
(Table 2). Numerical methods for stochastic simulation are variants
on the Gillespie algorithm (Gillespie, 1977). JSim’s solvers support
modeling steps 4 to 6 above.

To solve differential equations one needs initial conditions, and
JSim’s parser (precompiler) demands these, as in Box 1. Partial
differential equations require also boundary conditions, as seen in
the code for a two-region convection-diffusion-permeation-reaction
model (Box 2).

Function generators
Many physiological systems or components (e.g. one for the uptake
of a metabolite) can be considered as operators. The operator takes
an input function (e.g. inflowing solute concentration) and pro-
duces an output function (e.g. outflowing solute and metabolite
concentrations). Model behavior can be tested by using various input
waveforms (e.g. as in Box 2 “extern real Cin(t)”) described by

JSim “function generators”. These might be time series signals of
diverse form (pulses, pulse combinations, sines, shaped sawtooth),
probability density functions (Gaussian, exponential, Poisson, log-
normal, gamma variate, random walk, etc.), or come directly from
experimental data. When the system is linear (output area equals
input) and stationary (response same at another time), then the output
is the convolution of the operator’s transfer function (the response
to an infinitely short pulse input) with the input function. Users
select input functions at run time for testing numerical algorithms for
correctness (verification testing), for model exploration (behavioral
analysis) or for analyzing data as for steps 6 and 7 in our “13-Step”
process.

Table 1. JSim ODE solvers.

Auto Starts with Dopri5, if Dopri5 fails, switches to Radau

Dopri5
Dormand-Prince explicit Runge-Kutta method of
order 5(4) for non-stiff equations (Hairer et al., 1993)

Radau
Implicit Runge-Kutta method (Radau IIA) of
variable order (switches automatically between
orders 5, 9, and 13) (Hairer & Wanner, 1996)

KM
Five stage, 4th order accurate Merson-modified
Runge-Kutta method with adaptive steps (Merson, 1957)

Fehlberg
Fifth order accurate Runge-Kutta-Fehlberg Method
with adaptive stepsize, also known as RK45
(Fehlberg, 1969)

Euler
Explicit forward Euler Method, first order accurate
(Euler, 1768–1770; LeVeque, 2007)

RK2
Two-stage explicit Runge-Kutta method, 2nd order
accurate (LeVeque, 2007)

RK4
Classical Runge-Kutta explicit 4th order four-stage
method (LeVeque, 2007)

CVode
CVODE, a publicly available stiff ODE solver (Cohen
& Hindmarsh, 1995)

Table 2. JSim PDE solvers.

LSFEA

Lagrangian Sliding Fluid Element Algorithm
(Bassingthwaighte, 1974; Bassingthwaighte et al.,
1992; Poulain et al., 1997). The convecting step is
solved separately from the other processes

MacCormack
2nd order accurate finite difference method
for solving hyperbolic differential equations
(MacCormack, 1969)

TOMS731
Finite element discretization akin to a nonlinear
Galerkin method 2nd order accurate in space
(Blom & Zegeling, 1994)

Page 5 of 17

F1000Research 2013, 2:288 Last updated: 23 JAN 2014

Figure 1. Capillary-tissue exchange unit. Fluid flows with velocity
Fcap*L/Vcap along the capillary from the entrance at x = 0 to the exit
at x = L, and exchanges across the capillary wall into a stagnant
extravascular region with conductance PS, the permeability-surface
area product. The input is a bolus of solute, Cin(t), entering the
capillary with the flow, Fcap. Axial gradients along the capillary are
diminished by diffusion, Dp and Disf. Tissue consumption occurs at
rate Gisf*Cisf. This is a simplified version of models used for indicator
dilution studies and PET clinical studies (Beard & Bassingthwaighte,
2000; Bassingthwaighte et al., 1989; Bassingthwaighte et al., 1992;
Bassingthwaighte et al., 2006b).

Box 1. Model code for a reaction sequence (Model #320 at www.physiome.org).

// Model Name: MM2irrev (From reference JBBass13, data of Escribano (Escribano et al., 1988))
/* Brief Description: The “MM2irrev” program codes a sequential pair of irreversible Michaelis-
Menten enzymatic reactions, Hx → Xa → Ua, wherein the one enzyme, xanthine oxidase, serves
both steps. Hx and Xa compete for its active site. */

import nsrunit; unit conversion on;

math MM2irrev {

 realDomain t sec; t.min=0; t.max=5000.0; t.delta=1.00; // t is independent variable

// PARAMETERS: (denoted param(t) if time-variable) (all changeable at run-time)

 real Vhmax = 1.84 uM/s; // Vmax for enzymatic conversion of Hx -> Xa

 real Kmh = 3.67 uM; // Km for assumed instant binding of Hx to enzyme

 real Vxmax = 1.96 uM/s; // Vmax for Xa -> Ua

 real Kmx = 5.94 uM; // Km for assumed instant binding of Xa to enzyme

 real Hzero = 46.3 uM, Xzero = 0 uM, Uzero = 0 uM; // initial conditions

// VARIABLES (specified as functions of time by (t) appended in defining the name)

 real H(t) uM; // concentration of Hx (HypoXanthine)

 real X(t) uM; // concentration of Xa (Xanthine)

 real U(t) uM; // concentration of Ua (Uric acid)

// INITIAL CONDITIONS (t.min can differ from t = 0 sec.)

 when (t=t.min){ H= Hzero; X = Xzero; U = Uzero;}

// SYSTEM OF EQUATIONS (3 ODEs) (Derivative dH/dt written as H:t)

 H:t = - (Vhmax*H/Kmh) / (1 + H/Kmh + X/Kmx); // Hx→Xa

 X:t = ((Vhmax*H/Kmh) - (Vxmax*X/Kmx)) / (1 + H/Kmh + X/Kmx); // Xa→

 U:t = (Vxmax*X/Kmx) / (1 + H/Kmh + X/Kmx); // →Ua

} // PROGRAM END

Model behavioral analysis and visualization
We will use a simple convection-diffusion reaction model
(Bassingthwaighte, 1974; Bassingthwaighte & Goresky, 1984) to
illustrate some facilities for visualizing model solutions and the
effect of varying parameter values on them. The system is dia-
grammed in Figure 1 and the code is provided in Box 2.

Plot pages
JSim provides several mechanisms for visualization, providing
insight about model dynamics. The most basic are plot pages, each
of which may contain line, scatter, contour and colormap plots.
One may plot experimental data and model solutions (from one
or more models), scaled automatically or manually, linear or loga-
rithmic, plotted as they are being computed or displayed or edited
later. Multiple plot page configurations are stored in each project,
enabling reproducible analysis (e.g. all the data and graphs for a
particular journal article). JSim plot pages support modeling steps
1, 5, 6, 7, 8 and 10 above (display of experimental data and model
solutions, verify solution accuracy, explore model behavior, display
of sensitivity curves and assessments of goodness of fit).

Page 6 of 17

F1000Research 2013, 2:288 Last updated: 23 JAN 2014

http://www.physiome.org

Box 2. Code for a 2-region Blood-Tissue Exchange Model.

// MODEL NUMBER: 0190 at www.physiome.org (Bassingthwaighte, 1974)

// MODEL NAME: BTEX20simple

// SHORT DESCRIPTION: Simple Model of an axially distributed two-region

// capillary Blood-Tissue EXchange unit with consumption in interstitium

import nsrunit; unit conversion on;

math btex20simple {

// INDEPENDENT VARIABLES:

realDomain t sec; t.min = 0; t.max = 30; t.delta = 0.1;

realDomain x cm; real L= 0.1 cm, Ngrid = 31; x.min = 0; x.max = L; x.ct = Ngrid;

// Parameters and Keys to Names:

real Fcap = 1 ml/(g*min), // Capillary (cap) plasma flow

 Vcap = 0.05 ml/g, // Capillary Volume

 Visf = 0.15 ml/g, // Interstitial Fluid (isf) Volume

 PS = 1 ml/(g*min), // Permeability-surface area product: cap <--> isf

 Gisf = 0 ml/(g*min), // consumption rate in isf region (Gulosity)

 Dcap = 1.0e-5 cm^2/sec, // cap axial diffusion coefficient

 Disf = 1.0e-6 cm^2/sec; // isf axial diffusion coefficient

// Inflow Concentration, Input Function:

extern real Cin(t) mM;

// Concentration Variables:

real Ccap(t,x) mM,  // capillary concentration at position x

 Cisf(t,x) mM,   // isf concentration at position x

 Cout(t) mM;   // Outflow Concentration from capillary at x=L

// Boundary Conditions: (Note total flux BC for inflowing region.)

when (x=x.min) { (-Fcap*L/Vcap)*(Ccap-Cin)+Dcap*Ccap:x = 0; Cisf:x = 0; }

when (x=x.max) { Ccap:x = 0; Cisf:x = 0; Cout = Ccap; } // reflecting boundary

// Initial Conditions:

when (t=t.min) { Ccap = 0; Cisf = 0; } // sets initial concentrations to zero

// Partial Differential Equations: Ccap:t is dCcap/dt in JSim’s MML (ODE or PDE)

 Ccap:t = -Fcap*L*Ccap:x/Vcap + Dcap*Ccap:x:x + PS*(Cisf-Ccap)/Vcap; // dCcap/dt

 Cisf:t = -Gisf*Cisf/Visf	  + Disf*Cisf:x:x   + PS*(Ccap-Cisf)/Visf; // dCisf/dt

} //program end

LOOPS: Iterating solutions to exhibit behavior
Model loops are a feature for behavioral analysis that plot data
from a family of model runs using a user-chosen sequence of
parameter values. For example, Figure 2, “looping over”, i.e. making
a sequence of changes in a parameter value for the membrane perme-
ability in a tracer uptake model yields a family of plots showing
how outflow tracer concentration curves would vary with varying
permeability. The curves, of course, depend upon the settings for
the other parameters of the model, so the looping sequence should
be initiated under widely divergent conditions in order to under-
stand the “conditions” (the regions of state space) where the chosen
parameter may have little influence or maximum influence. JSim’s
loops facility support modeling steps 6 and 7 above (verify solution
accuracy, explore model state space). A convenient feature of the

LOOPS function is that the user can stop the solution, automatically
starting the next one, whenever desired, speeding up the review of
solutions. This is especially important in large models with long
computation times.

Nested plots
Nested plots (Figure 3) are JSim’s version of worlds-within-worlds
graphics (Harris et al., 1994). Each nested plot is a 2-dimensional
array of plots, each of which represents the form of a set of model
solutions with a pair of distinct parameter value. Nested plots enable
simultaneous visualization of the effect of up to six independently
varying parameters. JSim nested plots support modeling steps
6–8 above (verify accuracy, explore model state space, sensitivity
analysis).

Page 7 of 17

F1000Research 2013, 2:288 Last updated: 23 JAN 2014

http://www.physiome.org

Figure 2. Using LOOPS to explore parameter influences. With
the permeability surface area product (PS) = 0 (taller solid curve)
the outflow concentration-time curve, Cout, represents the response
function via the vascular space alone. The mean transit time for
this is Vcap/Fcap. With finite PS there is extraction of solute during
transcapillary passage, shown by the successive diminutions of the
heights of the initial peaks as PS increases. At low PSs the form of
the outflow starts as a reduced version of the curve with PS = 0; in
this state the flux into the tissue is purely “barrier limited”. When PS
is 4 or greater ml/(g*min), the sixth curve, the initial peak is no longer
discernable; at yet higher PSs a second peak arises, and at PSs
above 128 ml/(g*min) increasing the PS further has no effect on the
shape of the outflow curve; in this state the exchange flux is purely
“flow-limited”, where changing the flow shifts Cout, but changing PS
does not.

Figure 3. Nested plots. Behavior of the two-region model when
varying capillary permeability, PS, and tissue consumption, Gisf.
Each panel is a contour plot with the position between the capillary
entrance at x=0 to the exit at x=0.1 cm on the abscissa, and time,
t, on the ordinate. At each time step (ordinate) the horizontal line
from 0 to 20 is colored (using color profile “rainbow” in this case) in
accord with the concentration at each point in x. Convection moves
the entering solute along the tube from left to right to larger x on this
graph. With successive times the colored horizontal lines construct
a shaped profile above the x-t plane; contour lines with units in mM
are superimposed. The columns from left to right show contours
with PS increasing by factors of 5 (see labels at top of column) from
PS = 0.3 to 37.5 ml/(g*min). The consumption Gisf increases from 0.2 in
the bottom row by factors of 5 to the top row with Gisf = 25 ml/(g*min);
see labels on right ordinate. With low PS, leftmost column, very little
of the solute escapes into the tissue, so the injected bolus remains
relatively compact even while undergoing some diffusional spread
(Dcap = Disf = 10-4 cm2/sec), and the influence of the consumption
is negligible since so little enters the ISF. With increasing PS more
solute enters the ISF where it is consumed. With high PS and high
Gisf, the right uppermost panel, the solute is all consumed before
it can reach the capillary exit at the right edge of the panel. [This
plot is set up under “Project”, “Add”, “New Nested Plot” using
LOOPS, inner and outer, to set the values for the parameters, and
on the NestedPlot, then clicking on “XY plot” to choose “contour”.
Instructions are under Running JSim – Data Analysis – Nested plots:
www/physiome.org/jsim/docs/User.html].

Sensitivity analysis
By “sensitivity analysis” we mean the examination of the influences
of individual parameters on the model responses under a wide
variety of conditions. The sensitivity function, S(t) is the change
in magnitude, dQ, of variable Q, to a small change in a parameter
value, dP. It may be expressed in a normalized form, (dQ/Q)/(dP/P),
or unnormalized form, dQ/dP. As an example consider the same
model as was explored in Figure 3. Figure 4 shows the sensitivities
of the outflow concentration of a solute to a change in interstitial
fluid volume (V

isf
) or capillary wall conductance (PS) following an

injection of that solute at the capillary entrance. The upper panel
shows the outflow concentration without parameter perturbation.
The middle panel plots the unnormalized sensitivity functions, and
the bottom plot shows the normalized sensitivity functions (with the
early part of the curves removed when C

out
 is negligible). Increas-

ing PS will lower the height of C
out

 for the first 10 seconds with the
greatest reduction at the peak of C

out
 at ~8 seconds (due to greater

flux of metabolite into the ISF); after 10 seconds, the height of C
out

will be increased (back flux of metabolite from ISF). Increasing V

isf

has the effect of lowering C
out

 for the first 24 seconds, then raising
it after 24 seconds. JSim’s sensitivity analysis supports modeling
step 7 above.

Optimization
Manual parameter adjustment to fit the model to experimental data
is encouraged as a means of gaining insight into model behavior.
Automated parameter optimization is usually much faster; eight
methods are provided (See Table 3); we recommend testing several
in order to test speed and reliability with respect to the particular
types of data and model. Given that some parameters are known or
highly constrained, one may obtain the best model fit to the data for
a particular subset of model parameters, and one may also, for some

20
15

10
5

20
15

10
5

20
15

Ti
m

e,
 t,

 s
ec

on
ds

G
isf=25.0

G
isf=5.0

Tissue C
onsum

ption, G
isf

G
isf=1.0

G
isf=0.2

10
5

20
15

10
5

0

0 0.05

Capillary permeability, PS
PS=0.3 PS=1.5 PS=7.5 PS=37.5

0.05
Position along the capillary from entrance, 0, to exit, 0.1 cm.

0.05 0.050.1 0.1 0.1 0.1

Page 8 of 17

F1000Research 2013, 2:288 Last updated: 23 JAN 2014

http://www/physiome.org/jsim/docs/User.html

Figure 4. Sensitivity analysis using the same model as in Box 2 and Figure 2 and Figure 3. Upper panel: Model solution for outflow from
capillary. Parameters were as in Box 2, the default parameters. Middle panel: Sensitivity function, df/dp, the change in Cout with a 1% increase
in the capillary wall conductance (PS), black curve or the interstitial volume (Visf). Lower panel: Normalized sensitivity function, (df/f)/(dp/p),
the fractional change in Cout divided by the fractional change in each parameter, again for a 1% change in the parameter value.

Table 3. JSim’s optimizers.

Simplex A bounded, non-linear steepest-descent algorithm (Dantzig et al., 1995)

GGopt

Derivative-free non-linear optimizer. Uses adjustable mesh and linear least
squares to find smoothed values of function, gradient and Hessian at center
of mesh. Values drive a descent method that estimates optimal parameters,
but is unbounded (Bassingthwaighte et al., 1988)

GridSearch
A bounded, parallel algorithm. Operates via progressively restricted search
of parameter space on a regularly spaced grid of N points per dimension
(Kolda et al., 2003)

NelderMead Unbounded, steepest descent similar to Simplex (Nelder & Mead, 1965)

NL2SOL
An adaptive nonlinear least-squares algorithm (Dennis et al., 1981; Dennis &
Schnabel, 1983). Unbounded

SENSOP
A weighted nonlinear least squares optimizer using a variant of the
Levenberg-Marquardt method to calculate the direction and the length of the
step change in the parameter vector (Chan et al., 1993). Bounded

SimAnneal
Simulated annealing for finding the global optimum of a function in a large
multi-dimensional parameter search space which is first randomly sampled
with step-size decreasing with time (Kirkpatrick et al., 1983)

Genetic

Genetic algorithms are a family of algorithms that generate a population of
candidate solutions selecting the best solutions in each iteration to “mutate”
and “cross over”, creating a new generation of solutions in an iterative
process (Holland, 1992)

.1
5

.1
.0

5C
ou

t,
m

M
dC

ou
t /

 d
P

ar
dC

ou
t/d

P
ar

 /
C

ou
t/P

ar
0

0
.2

-0
.2

0

0

0

0

-1
1

5

5

5

10

Outflow dilution, Count, mM

Absolute Sensitivity

Relative Sensitivity

Time, t, seconds

10

10

15

15

15

20

20

20

25

1: Cout mM

1: Cout:PS MM/(ml/(g*min))

1: (Cout:PS)*PS/Cout

2: Cout:Visf mM/(ml/g)

2: (Cout:Visf)*Visf/Cout

25

3: 0

3: 0

25

30

30

30

Page 9 of 17

F1000Research 2013, 2:288 Last updated: 23 JAN 2014

but not all of the optimizers, constrain the range for each parameter
value, applying scientific judgment. Optimization helps in find-
ing systematic misfits to the data (and the possible rejection of the
hypothesis), and in estimating parameter values.

The optimizer works to minimize an objective function, usually
a weighted sum of squares of the differences between the model
solution and the experimental data at each observation time or spatial
position. This may require freeing up most parameters for opti-
mization to make sure that an assumed constraint isn’t creating a
biased solution. JSim provides a graph of residuals (the differences
between model and data); sign tests and other statistical appraisals
of the residuals as a function of time help to distinguish system-
atic from random deviations. JSim’s optimization facilities support
modeling steps 9–12 above (fitting solutions, assessing goodness
of fit, examining parameter correlations, evaluating confidence
limits).

Parameter confidence ranges
Model fitting to the data is never unique but is guided by the weight-
ing of the observed data points and the noise in the data. Parameter
estimates are not exact, but merely estimated, and even possibly
biased by the user’s choice of the weights on individual data points.
How to obtain a “best fit” of model function to data is always, in
a sense, a personal choice. Guidelines include weighting inversely
to the likely standard deviation of each data point, or unweighting
outliers. Viewing the graph of residuals (the differences between
data and model) is most helpful in identifying systematic misfits.

Ignoring how one got to the point of “best fit”, one desires an evalu-
ation of the parameter values. If the optimized parameters do gener-
ate outputs that closely match the experimental data, the question
becomes what confidence can be placed on these estimates. One
simple method is to optimize using several different numerical
method, i.e. different optimization algorithms and different weight-
ing schemes, to see how much the “best fit” parameter estimates
change. Other methods of estimating parameter confidence limits
include using the Jacobian and using Monte Carlo methods.

Using the Jacobian: The Jacobian matrix is the matrix of the sen-
sitivity functions for all the parameters open to optimization, as
calculated at the location of the minimized objective function, the
“best fit”. This matrix, which JSim calculates after each optimiza-
tion provides the basis for determining correlations among param-
eters, and the confidence limits (standard deviations and expected
ranges based on Gaussian assumptions). The calculation assumes
symmetry and linearity, and so makes only local calculations, and
gives no guarantee that the “best fit” is a global best fit. While get-
ting to the “best fit” point in parameter space is data-dependent,
this confidence range estimation procedure is not at all, for it is
estimated solely from the shapes of the local sensitivity functions.
Thus it behooves one to get the differing estimates obtained from
different optimizers, different numbers of parameters searched, and
even to move the parameter “best fit” values a little away from the
optimizer’s choice and recalculate the confidence ranges.

Using a Monte Carlo method: A more robust, but more demand-
ing, confidence limit calculation uses Monte Carlo methods. The

procedure is to 1) Select a noise profile for each experimental data
point, ideally based on what you believe the real noise is, e.g. 5%
proportional Gaussian random noise. 2) Generate a perturbation for
each experimental data point by drawing randomly from the selected
noise profile. 3) Re-optimize the model against the new set of per-
turbed data points to obtain another estimate for each parameter. 4)
Repeat steps 2 and 3 many times (e.g. 1000). From these results,
one obtains a histogram of estimates for each optimized parameter,
and robust confidence limits can be drawn directly from these histo-
grams without assuming symmetry and linearity as in the Jacobian
method. JSim displays these histograms to show the distributions
of parameter estimates in full detail, and 2-parameter scatter plots
to show covariance. (JSim’s confidence limit calculations support
modeling step 12 above.)

Network graphs
JSim’s model “browser” provides a visual representation of model
variables as “nodes” and their dependencies or connectivity with
each other as connecting lines or “edges”. See Figure 5. The graphs
can be selected to include model parameters, or selected classes of
variables, e.g. pressures, strains, concentrations. This capability is
based on work by Yngve (Yngve et al., 2007). JSim’s model browser
supports modeling step 2 above (development of the model).

Implementation
JSim is implemented in the Java computer language (Gosling &
McGilton, 2003). The major factors affecting this choice are Java’s
platform independent GUI (allowing Windows, Macintosh and Linux
versions to be developed in a single code base), object-oriented
features and garbage collection (simplifying complex coding),
advanced utilities (associative arrays, dynamic linking, remote pro-
cedure calls), strong type checking (allowing many common coding
errors to be caught at compile time) and robust exception mecha-
nism (simplifying coding and enabling a virtually crash-proof GUI).
Native code (C and Fortran) is used in certain restricted circum-
stances using the Java Native Interface (JNI) (Liang, 1999) to reduce
computational overhead (transcendental functions, 2D array access)
and the availability of legacy code libraries (ODE, PDE and optimi-
zation numerical methods).

The MML language is parsed using JLex scanner generator and the
CUP parser generator (Appel, 1998). These tools, similar to the clas-
sic Unix lex and yacc (Aho et al., 1988), were among the few parser
generation tools available for Java when JSim was first developed.
Using a formal parser generator allows MML to be concise, intuitive,
consistent and extensible. MML’s declarative structure is an intui-
tive expression of a model’s underlying mathematics (simplifying
the modeler’s learning) and allows the overall structure of the model
to be examined for mathematical correctness (detecting overspecifi-
cation or underspecification) in a way that is not possible with a pro-
cedural specification. Units and unit checking (Chizeck et al., 2009)
were added to MML soon after its initial design to further improve
model conciseness and assure unit balance in the equations as a first
step in verifying that the mathematics is rendered correctly by the
numerics.

MML is compiled into Java model computational code for run-time
execution. This results in faster model execution (in comparison to

Page 10 of 17

F1000Research 2013, 2:288 Last updated: 23 JAN 2014

Figure 5. Connectivity graph for a modified version of the model program in Box 1. For Hx→Xa→Ua, the oxidation of hypoxanthine to
xanthine to uric acid, catalyzed by xanthine oxidase. The connectivity is shown for a dual solution version of the code for fitting two different
sets of experimental data simultaneously with a common group of parameters so as to obtain a minimally biased set of parameter confidence
ranges.

table-driven computations) and allows more flexible model com-
putational structure (multiple time sweeps, indexed loops). JSim
models run asynchronously to the GUI in contrast to most simula-
tors which alternate computational and graphical update steps. This
approach dramatically improves performance and user response,
especially when remote computation is used. JSim’s remote com-
putation is implemented using Java Remote Method Invocation
(RMI) (Harold, 1997), providing reliable access to networked
computational servers. This approach also isolates the JNI methods
(above) in the computational engine, allowing the JSim GUI to run
as a pure Java browser applet. JSim multiprocessing is implemented
using Java threads (Oaks & Wong, 2004) providing excellent per-
formance and seamless integration with the Java memory manage-
ment and exception mechanisms (providing application stability).
MML code is stored as XMML for distribution, and has automated
translators into XMML, SBML, CellML, and with limitations into
Matlab (Smith et al., 2013).

Reproducibility
The issue of reproducibility, or should we say the all-too-frequent
failures of attempts to reproduce published results, are beginning
to be recognized as a critical problem in advancing the biological
sciences. It is easy to understand biological studies, with inherently
great variability in materials and analysis procedures, should be less
exact than those in the physical sciences, but it is not so forgivable
that reproducing mathematical models of biological systems is a
major problem. The two major repositories of published biologi-
cal models, Biomodels (http://www.ebi.ac.uk/biomodels-main/)
using SBML (www.sbml.org) and CellML (models.cellml.org),
together have about 1000 curated models: there were errors in the
publications requiring corrections in all but 5 of these, before the
models could be demonstrated to run appropriately. These models
all used algebraic, ODEs, or differential-algebraic equations and so
must be regarded as relatively simple computationally compared
to finite-element models or spatially dependent models. That only
0.5% of the not very complex models were reproducible is truly
alarming, and demonstrates the lack of dedication to making scien-
tific advances useful to others. Some open access journals, such as
F1000Research, are aiming to improve this sad state, by requiring

open source code to be deposited, hopefully along with the data
that provide tests of the model hypotheses. A Special Section in
Science (Stone & Jasny, 2013) is devoted to the issues of open
access, addressing open access, peer review, the changing publish-
ing scenario, and encouraging broader methods of communication.
F1000s founder, Victor Tracz, is featured as the “Seer of Science
Publishing”, prodding us to do better.

Project files
JSim project files store a set of codes for models, illustrative figures
or diagrams, parameter sets, multiple data sets, the settings for loop-
ing, sensitivities, behavioral analysis, and optimizations, plot page
configurations, and for project notes. Many models in the Physiome
Repository (most of which are JSim-based) have experimental data
in the project files for validation testing. Project files support the
reproduction of a set of simulations and analyses for their shar-
ing across JSim’s supported platforms (Windows, Mac OS, Linux).
Project files support the modeling steps 1 and 13 above (from
importation of data, to preservation and distribution of analyses).
The MML, XMML and all the data and analyses are preserved in an
ASCII format; thus the files tend to be small. The models described
above take < 100 kB; large models with several hundred ODEs
take up < 500 kB even with large time series of physiological data.
These files are all human readable, and ready to run when opened
in JSim. They contain everything used by the program: the notes,
the source code, and the control parameters for all the steps in the
analysis. They are editable in any word processor, but one avoids
doing that since it is easier to enter code and notes under JSim and
not risk disturbing the format in the XMML file that JSim reads.

There are many models on the Physiome Repository (www.physi-
ome.org) with multiple data sets, model fits to data, and optimiza-
tion results. Examples are that of Kuikka et al. on glucose uptake by
myocardium (Kuikka et al., 1986), [models 163 and 173], xanthine
oxidase reactions (Bassingthwaighte & Chinn, 2013), [model 324],
and lung endothelial serotonin uptake (Jardine & Bassingthwaighte,
2013), [model 198]. All the JSim project files are stored in a Con-
current Versions System (CVS) archive so that the latest versions, as
well as older versions, are always available. The models themselves

Hzero
H H5

X5

U5

Vhmax

Vxmax

Kmx

Kmh

X

U

t

H(t.min) H5(t.min)

X(t.min) X5(t.min)

U(t.min) U5(t.min)

Xzero Xzero5

Uzero

Hzero5

Uzero5

Page 11 of 17

F1000Research 2013, 2:288 Last updated: 23 JAN 2014

http://www.ebi.ac.uk/biomodels-main/
http://www.sbml.org
http://www.physiome.org
http://www.physiome.org

and Monte Carlo analysis allow students to perform analyses which
would ordinarily be too difficult and time consuming for them to
do on their own.

Future developments
Modular modeling
JSim has provided support for modular modeling from its inception
(Bassingthwaighte, 2000) using both mathematical and biological
approaches, but now, with the developing recognition that models
are more consistently understandable and more amenable to modular
construction when they are annotated using identified ontology
systems, libraries of modules present great opportunity for efficient
construction of complex model systems. A module can be thought
of as a self-contained model of an element of the larger system model
and represents a specific physical, chemical or phenomenological
process. A model might use multiple instances of the same module,
for example, differently parameterized Michaelis-Menten type
enzymatic reactions used for different reactants. One can build
large models from a variety of modules representing physical or
chemical processes such as the flux via a cell membrane transporter
or ion channel or an enzymatic reaction, or a transcription regula-
tory pathway (Beard et al., 2005) incorporating knowledge of their
connectivities. Allowing the modeler to draw pre-existing modules
from a repository or extract them from previously developed models
and enables the modeler to create new models quickly for hypoth-
esis testing, a key to Physiome development (Bassingthwaighte et al.,
2009). Below are two approaches to implementing modular mod-
eling within JSim.

Modular Program Constructor (MPC): MPC focuses on using
easily understood directives to extract generically coded JSim
MML equations from files, changing the names of the generic vari-
ables to ontologically informative names and assembling the result-
ing code into new equations (Raymond & Bassingthwaighte, 2011).
For example, MPC can take MML code representing a single tissue
exchange region (26 lines), and generate a whole organ heterogene-
ous model for convection, diffusion, and reaction with 20 regions
(1698 lines). See http://www.physiome.org/jsim/models/webmodel/
NSR/MPC/. MPC currently runs outside of JSim but is planned for
incorporation into a future JSim release.

Modular construction with SemSim: Precise semantic identi-
fication of variables and parameters is a prerequisite to merging of
preconstructed submodels or modules into integrated systems or
multiscale models. A future release of JSim will incorporate the
tools for annotating models and their computational elements
against biomedical ontologies and knowledge bases (Rubin et al.,
2006). These annotations will make it easier for users to search
the Physiome Model repository and to identify the biological
phenomena modeled. Formatted according to the semantic simu-
lation (SemSim) framework (Gennari et al., 2011), these annota-
tions will also make it possible for tools to decompose and merge
models in a more automated fashion, and allow the modeler to
work at a biological, rather than computational level of abstrac-
tion (Beard et al., 2012). For example, selection of an ion pump,
such as the NaKATPase, would bring up a set of modules from
which the modeler would choose the version suited to the particular

are copyrighted but researchers are given the freedom to download,
modify, and to construct new models from them so long as original
authorship is acknowledged.

Modeling over the web
The archived JSim models at www.physiome.org can be run over
the web, with complete freedom to vary the parameters, modify the
code, compile and run, import one’s own data for analysis, and save
a modified and augmented file to one’s own computer for further
use. (Models based on MATLAB or FORTRAN, a small fraction of
the repository, cannot be run over the web but can be downloaded).

Summary
JSim is a tool for hypothesis exploration and for analyzing data.
Many of the steps in data analysis are built into JSim. It’s declara-
tive modeling language, automatic unit balance checking, and built-
in tools for solving ODEs, PDEs, and implicit equations greatly
facilitate generating mathematically and physiologically consist-
ent models. The built-in optimizers and associated statistical data
reporting, along with behavior tools, such as parameter looping and
sensitivity analysis, allow one to verify and explore model behavior
in the context of experimental data and simulated data from previ-
ous models. With the ability to save these model ‘explorations’ as
parameter sets within the JSim project file anyone can easily create
a modeling and data analysis package that is easy to reproduce and
distribute to others.

As a research tool, JSim has been developed and refined to accel-
erate the processes of modeling and data analysis. Adherence to
quality standards augments efficiency (Smith et al., 2007). The time
savings don’t simply reduce the time necessary to get to a result,
they also end up improving the quality of the science in two ways.
First, when it only takes a few seconds to tweak a model, re-run it,
and view the results, researchers are more likely to explore many
“what if” scenarios and develop a deeper understanding of model
behavior, and in turn, a deeper understanding of the system being
modeled. Second, researchers are more likely to do better verifica-
tion checks and higher-level analyses if they are easy to do. When a
few mouse clicks are all it takes to change solvers, time step sizes,
optimization parameters, or even perform a complex Monte Carlo
analysis to assess parameter correlations and confidence intervals,
researchers are more likely to actually do those critical numerical
checks and to take the model analysis beyond simply reporting a
single parameter value.

In addition to its use as a research tool, JSim is also very useful as
a teaching tool. JSim has been used in classes for high school, under-
graduate, and graduate students, as well as many workshops for
faculty members. The fact that JSim is open source, quick to down-
load and install, as well as executable over the web, means that it is
easily available to students. The simplicity of JSim’s model speci-
fication language, where users can focus on writing and working
with the mathematical equations themselves rather than controlling
program flow, means that students with no programming experi-
ence can rapidly begin to understand, create, and modify JSim mod-
els. Furthermore, JSim’s interactive plotting interface and the easy
access it provides to sophisticated analysis tools such as sensitivity

Page 12 of 17

F1000Research 2013, 2:288 Last updated: 23 JAN 2014

http://www.physiome.org/jsim/models/webmodel/NSR/MPC/
http://www.physiome.org/jsim/models/webmodel/NSR/MPC/
http://www.physiome.org

sharing. TOPETJ (The Open Pacing, Electrophysiology, and Therapy Journal).
2010; 3: 66–74.

	 Bassingthwaighte JB, Chinn TM: Reexamining Michaelis-Menten enzyme
kinetics for xanthine oxidase. Adv Physiol Educ. 2013; 37(1): 37–48.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Beard DA, Bassingthwaighte JB: The fractal nature of myocardial blood flow emerges
from a whole-organ model of arterial network. J Vasc Res. 2000; 37(4): 282–296.
PubMed Abstract | Publisher Full Text

	 Beard DA, Bassingthwaighte JB, Greene A: Computational modeling of physiological
systems. Physiol Genomics. 2005; 23(1): 1–3.
PubMed Abstract | Publisher Full Text

	 Beard DA, Neal ML, Tabesh-Saleki N, et al.: Multiscale modeling and data
integration in the virtual physiological rat project. Ann Biomed Eng. 2012;
40(11): 2365–2378.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Blom JG, Zegeling RUU: Algorithm 731: A moving-grid interface for systems
of one-dimensional time-dependent partial differential equations. ACM
Transactions on Mathematical Software (TOMS). 1994; 2(2): 194–214.
Publisher Full Text

	 Chan IS, Goldstein AA, Bassingthwaighte JB: SENSOP: a derivative-free solver
for non-linear least squares with sensitivity scaling. Ann. Biomed. Eng. 1993;
21(6): 621–631.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Chizeck HJ, Butterworth E, Bassingthwaighte JB: Error detection and unit conversion.
Automated unit balancing in modeling interface systems. IEEE Eng Med Biol.
2009; 28(3): 50–58.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Coatrieux JL, Bassingthwaighte JB: Special Issue on the Physiome and Beyond.
Proc IEEE. 2006; 94: 671–677.
Reference Source

	 Cohen SD, Hindmarsh AC: CVODE, a stiff/nonstiff solver in C 1995, UCRL-
JC-121014, (Cohen et al. ver. 2.4 Jul 2002).
Reference Source

	 Cuellar AA, Lloyd CM, Nielsen PF, et al.: An Overview of CellML 1.1, a Biological
Model Description Language. SIMULATION. 2003; 79(12): 740–747.
Publisher Full Text

	 Dantzig GB, Orden A, Wolfe P: The generalized simplex method for minimizing
a linear form under linear inequality restraints. Pacific J Math. 1955; 5(2):
183–195.
Reference Source

	 Dennis JE, Gay DM, Welsch RE: NL2SOL: An adaptive nonlinear least-squares
algorithm. ACM Trans Math Softw. 1981; 7(3): 348–368.
Publisher Full Text

	 Dennis JE, Schnabel RB: Numerical methods for unconstrained optimization
and nonlinear equation. N. Y.: Prentice-Hall, 1983; 378.
Reference Source

	 Escribano J, Garcia-Canovas F, Garcia-Carmona F: A kinetic study of

	 Aho A, Sethi R, Ullman J: Compilers: Principles, Techniques and Tools. Addison-
Wesley. 1988.
Reference Source

	 Appel AW: Modern Compiler Implementation in Java. Cambridge University
Press. 1998.
Reference Source

	 Barta E, Sideman S, Bassingthwaighte JB: Facilitated diffusion and membrane
permeation of fatty acid in albumin solutions. Ann Biomed Eng. 2000; 28(3):
331–345.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Bassingthwaighte JB: A concurrent flow model for extraction during
transcapillary passage. Circ Res. 1974; 35(3): 483–503.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Bassingthwaighte JB, Goresky CA: Modeling in the analysis of solute and water
exchange in the microvasculature. In: Handbook of Physiology. Sect. 2, The
Cardiovascular System. Vol IV The Microcirculation, edited by Renkin EM and
Michel CC. Bethesda, MD: Am Physiol Soc. 1984; pp 549–626.

	 Bassingthwaighte JB, Chan IS, Goldstein AA, et al.: GGOPT: an unconstrained
non-linear optimizer. Comput Methods Programs Biomed. 1988; 26(3): 275–281.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Bassingthwaighte JB, Wang CY, Chan IS: Blood-tissue exchange via transport
and transformation by capillary endothelial cells. Circ Res. 1989; 65(4):
997–1020.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Bassingthwaighte JB, Chan IS, Wang CY: Computationally efficient algorithms
for convection-permeation-diffusion models for blood-tissue exchange.
Ann Biomed Eng. 1992; 20(6): 687–725.
PubMed Abstract

	 Bassingthwaighte JB: Strategies for the Physiome Project. Ann Biomed Eng.
2000; 28(8): 1043–1058.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Bassingthwaighte JB, Chizeck HJ, Atlas LE, et al.: Multiscale modeling of cardiac
cellular Energetics. In: The Communicative Cardiac Cell. edited by Sideman S,
Beyar R and Landesberg A. Ann New York Acad Sci. 2005; 1047: 395–424.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Bassingthwaighte JB, Chizeck HJ, Atlas LE: Strategies and Tactics in Multiscale
Modeling of Cell-to-Organ Systems. Proc IEEE Inst Electr Electron Eng. 2006;
94(4): 819–830.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Bassingthwaighte JB, Raymond GR, Ploger JD, et al.: GENTEX, a general multiscale
model for in vivo tissue exchanges and intraorgan metabolism. Philos Trans A
Math Phys Eng Sci. 2006; 364(1843): 1423–1442.
PubMed Abstract | Publisher Full Text

	 Bassingthwaighte J, Noble D, Hunter P: The Cardiac Physiome: perspectives for
the future. Exp Physiol. 2009; 94(5): 597–605.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Bassingthwaighte JB: Modeling biological systems for reproducibility and

References

context, and then the code for the integrated model would be auto-
matically generated from the annotated modules in the library.

Getting started with JSim
Information for download and installation, running JSim, and writing
JSim MML models can be found at http://www.physiome.org/jsim/.
Software is also permanently available from: 10.5281/zenodo.7635.

Author contributions
All authors contributed to the design and organization of the
paper and its writing and editing. EB was the developer of the JSim
engine and GUI. GR implemented numerical methods for numeri-
cal solvers and optimizers. BJ worked on the website and model
coding, formatting and installation. MN developed large systems
models and the methods of ontology annotation. JB was the overall
systems designer and composed the integrated manuscript.

Competing interests
No competing interests were disclosed.

Grant information
The development of JSim has been supported by NIH grants
HL9719 (PI: JBB), RR1243 (JBB), EB1273 (JBB), HL073598 (PI:
R. Corley), EB8407(JBB), and GM094503 (PI: D. Beard) and NSF
grant 0506477(JBB).

The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Acknowledgements
The authors would like to thank M. Bindschadler and H. Sauro for
helpful discussions and feedback regarding the manuscript. Tom J.
Knopp, Dennis U. Anderson, and Richard B. King contributed to
the simulation methods used in the preceding simulation systems,
SIMCON and XSIM, that were incorporated into JSim.

Page 13 of 17

F1000Research 2013, 2:288 Last updated: 23 JAN 2014

http://www.ncbi.nlm.nih.gov/pubmed/23471247
http://dx.doi.org/10.1152/advan.00107.2012
http://www.ncbi.nlm.nih.gov/pmc/articles/3776473
http://www.ncbi.nlm.nih.gov/pubmed/10965227
http://dx.doi.org/10.1159/000025742
http://www.ncbi.nlm.nih.gov/pubmed/16179418
http://dx.doi.org/10.1152/physiolgenomics.00117.2005
http://www.ncbi.nlm.nih.gov/pubmed/22805979
http://dx.doi.org/10.1007/s10439-012-0611-7
http://www.ncbi.nlm.nih.gov/pmc/articles/3463790
http://dx.doi.org/10.1145/178365.178391
http://www.ncbi.nlm.nih.gov/pubmed/8116914
http://dx.doi.org/10.1007/BF02368642
http://www.ncbi.nlm.nih.gov/pmc/articles/3756097
http://www.ncbi.nlm.nih.gov/pubmed/21462417
http://dx.doi.org/10.1109/MEMB.2009.932477
http://www.ncbi.nlm.nih.gov/pmc/articles/3420958
http://books.google.co.in/books/about/Special_Issue_on_the_Physiome_and_Beyond.html?id=v-zQtgAACAAJ&redir_esc=y
http://computation.llnl.gov/casc/sundials/main.html
http://dx.doi.org/10.1177/0037549703040939
http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.pjm/1103044531&page=record
http://dx.doi.org/10.1145/355958.355966
http://books.google.co.in/books/about/Numerical_methods_for_unconstrained_opti.html?id=4fFQAAAAMAAJ&redir_esc=y
http://www.worldcat.org/title/compilers-principles-techniques-and-tools/oclc/832512342
http://www.cs.princeton.edu/~appel/modern/java/
http://www.ncbi.nlm.nih.gov/pubmed/10784097
http://dx.doi.org/10.1114/1.274
http://www.ncbi.nlm.nih.gov/pmc/articles/2872167
http://www.ncbi.nlm.nih.gov/pubmed/4608628
http://dx.doi.org/10.1161/01.RES.35.3.483
http://www.ncbi.nlm.nih.gov/pmc/articles/3077802
http://www.ncbi.nlm.nih.gov/pubmed/3383565
http://dx.doi.org/10.1016/0169-2607%2888%2990008-9
http://www.ncbi.nlm.nih.gov/pmc/articles/3369810
http://www.ncbi.nlm.nih.gov/pubmed/2791233
http://dx.doi.org/10.1161/01.RES.65.4.997
http://www.ncbi.nlm.nih.gov/pmc/articles/3454538
http://www.ncbi.nlm.nih.gov/pubmed/1449234
http://www.ncbi.nlm.nih.gov/pubmed/11144666
http://dx.doi.org/10.1114/1.1313771
http://www.ncbi.nlm.nih.gov/pmc/articles/3425440
http://www.ncbi.nlm.nih.gov/pubmed/16093514
http://dx.doi.org/10.1196/annals.1341.035
http://www.ncbi.nlm.nih.gov/pmc/articles/2864600
http://www.ncbi.nlm.nih.gov/pubmed/20463841
http://dx.doi.org/10.1109/JPROC.2006.871775
http://www.ncbi.nlm.nih.gov/pmc/articles/2867355
http://www.ncbi.nlm.nih.gov/pubmed/16766353
http://dx.doi.org/10.1098/rsta.2006.1779
http://www.ncbi.nlm.nih.gov/pubmed/19098089
http://dx.doi.org/10.1113/expphysiol.2008.044099
http://www.ncbi.nlm.nih.gov/pmc/articles/2854146
http://www.physiome.org/jsim/
http://dx.doi.org/10.5281/zenodo.7635
http://dx.doi.org/10.1016/0169-2607(88)90008-9

Equations. Philadelphia: Siam. 2007.
Publisher Full Text

	 Liang S: The Java Native Interface: Programmer’s Guide and Specification.
Addison-Wesley. 1999; 303.
Reference Source

	 MacCormack RW: The Effect of viscosity in hypervelocity impact cratering.
AIAA Paper. 1969; 40(5): 69–354.
Publisher Full Text

	 Merson RH: An operational method for the study of integration processes.
Proc. Symp. Data Processing , Weapons Res. Establ. Salisbury , Salisbury. 1957;
pp. 110–125.

	 Neal ML, Bassingthwaighte JB: Subject-specific model estimation of cardiac
output and blood volume during hemorrhage. Cardiovasc Eng. 2007; 7(3):
97–120.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Nelder JA, Mead R: A simplex method for function minimization. Computer
Journal. 1965; 7(4): 308–313.
Publisher Full Text

	 Oaks S, Wong H: Java Threads (Third Edition). O’Reilly. 2004.
Reference Source

	 Platt JR: Strong inference: Certain systematic methods of scientific thinking
may produce much more rapid progress than others. Science. 1964; 146(3642):
347–353.
PubMed Abstract | Publisher Full Text

	 Poulain CA, Finlayson BA, Bassingthwaighte JB: Efficient numerical methods for
nonlinear-facilitated transport and exchange in a blood-tissue exchange unit.
Ann Biomed Eng. 1997; 25(3): 547–64.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Raymond GM, Butterworth E, Bassingthwaighte JB: JSIM: Free software package
for teaching physiological modeling and research. Exper Biol. 2003; 280(5):
102.

	 Raymond GM, Bassingthwaighte JB: Automated modular model construction
using JSim. Experimental Biology. 2011; 863(9).

	 Roberts MS, Rowland M: A dispersion model of hepatic elimination: 1.
Formulation of the model and bolus considerations. J Pharmacokinet
Biopharm. 1986; 14(3): 227–260.
PubMed Abstract

	 Rubin DR, Grossman D, Neal ML, et al.: Ontology-based representation of
simulation models of physiology. AMIA Annu Symp Proc. 2006; 664–668.
PubMed Abstract | Free Full Text

	 Safford RE, Bassingthwaighte JB: Calcium diffusion in transient and steady
states in muscle. Biophys J. 1977; 20(1): 113–136.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Smith NA, Crampin EJ, Niederer SA, et al.: Computational biology of the cardiac
myocyte: proposed standards for the physiome. J Exper Biol. 2007; 210(Pt 9):
1576–1583.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Smith L, Butterworth E, Bassingthwaighte JB, et al.: SBML and CellML translation
in Antimony and JSim. Bioinformatics. 2013. (In press).
PubMed Abstract | Publisher Full Text

	 Stone R, Jasny B: Scientific Discourse: Buckling at the Seams. Science. 2013;
342(6154): 57–82. (Eight articles covering new views on improving scientific
communication and accelerating research through openness and clarity.).
Publisher Full Text

	 Suenson M, Richmond DR, Bassingthwaighte JB: Diffusion of sucrose, sodium,
and water in ventricular myocardium. Am J Physiol. 1974; 227(5): 1116–1123.
PubMed Abstract | Free Full Text

	 Vinnakota KC, Bassingthwaighte JB: Myocardial density and composition: a
basis for calculating intracellular metabolite concentrations. Am J Physiol
Heart Circ Physiol. 2004; 286(5): H1742–H1749.
PubMed Abstract | Publisher Full Text

	 Yngve G, Brinkley JF, Cook D, et al.: A model browser for biosimulation. AMIA
Annu Symp Proc. 2007; 2007: 836–840.
PubMed Abstract | Free Full Text

hypoxanthine oxidation by milk xanthine oxidase. Biochem J. 1988; 254(3):
829–833.
PubMed Abstract | Free Full Text

	 Euler L: Institutionum calculi integralis. 2007; 2: 1768–1770.
Reference Source

	 Fehlberg E: Low-order classical Runge-Kutta formulas with stepsize control
and their application to some heat transfer problems. NASA Technical
Report-315. 1969.
Reference Source

	 Gennari JH, Neal ML, Galdzicki M, et al.: Multiple ontologies in action:
Composite annotations for biosimulation models. J Biomed Inform. 2011; 44(1):
146–154.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Gillespie DT: Exact stochastic simulation of coupled chemical reactions. J Phys
Chem. 1977; 81(25): 2340–2361.
Publisher Full Text

	 Goresky CA: A linear method for determining liver sinusoidal and extravascular
volumes. Am J Physiol. 1963; 204: 626–640.
PubMed Abstract

	 Gosling J, McGilton H: The Java language environment: A white paper, 1995.
Sun Microsystems. 2003; 85.
Reference Source

	 Hairer E, Norsett SP, Wanner G: Solving Ordinary Differential Equations.
Nonstiff Problems. 2nd edition. Springer Series in Comput. Math., 1993; 8: 528.
Reference Source

	 Hairer E, Wanner G: Solving Ordinary Differential Equations. Stiff and
Differential-Algebraic Problems. 2nd edition. Springer Series in Comput. Math.,
1996; 14: 614.
Reference Source

	 Harold ER: Java Network Programming. O’Reilly. 1977.
Reference Source

	 Harris PA, Bosan S, Harris TR, et al.: Parameter identification in coronary
pressure flow models: a graphical approach. Ann Biomed Eng. 1994; 22(6):
622–637.
PubMed Abstract

	 Holland JH: Adaptation in natural and artificial Systems: an introductory
analysis with applications to biology, control, and artificial intelligence.
MIT Press. 1992; 183.
Reference Source

	 Hucka M, Finney A, Sauro HM, et al.: SBML Forum. The systems biology markup
language (SBML): a medium for representation and exchange of biochemical
network models. Bioinformatics. 2003; 19(4): 524–31.
PubMed Abstract | Publisher Full Text

	 Jardine B, Bassingthwaighte JB: Modeling serotonin uptake in the lung shows
endothelial transporters dominate over cleft permeation. Am J Physiol Lung
Cell Mol Physiol. 2013; 305(1): L42–L55.
PubMed Abstract | Publisher Full Text | Free Full Text

	 King RB, Butterworth EA, Weissman LJ, et al.: A graphical user interface for
computer simulation. FASEB J. 1995; 9: A14. (XSim).

	 Kirkpatrick S, Gelatt CD Jr, Vecchi MP: Optimization by simulated annealing.
Science. 1983; 220(4598): 671–680.
PubMed Abstract | Publisher Full Text

	 Knopp TJ, Anderson DU, Bassingthwaighte JB: SIMCON--Simulation control to
optimize man-machine interaction. Simulation. 1970; 14(2): 81–86.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Kolda TG, Lewis RM, Torczon V: Optimization by direct search: New
perspectives on some classical and modern methods. Siam Review. 2003;
45(3): 385–482.
Publisher Full Text

	 Kuikka J, Levin M, Bassingthwaighte JB: Multiple tracer dilution estimates of
D- and 2-deoxy-D-glucose uptake by the heart. Am J Physiol. 1986; 250(1 Pt 2):
H29–H42.
PubMed Abstract | Free Full Text

	 LeVeque RJ: Finite Difference Methods for Ordinary and Partial Differential

Page 14 of 17

F1000Research 2013, 2:288 Last updated: 23 JAN 2014

http://dx.doi.org/10.1137/1.9780898717839
http://books.google.co.in/books?id=NFnBRcu8DHEC&redir_esc=y
http://dx.doi.org/10.2514/6.1969-354
http://www.ncbi.nlm.nih.gov/pubmed/17846886
http://dx.doi.org/10.1007/s10558-007-9035-7
http://www.ncbi.nlm.nih.gov/pmc/articles/3629970
http://dx.doi.org/10.1093/comjnl/7.4.308
http://books.google.co.in/books/about/Java_Threads.html?id=mB_92VqJbsMC&redir_esc=y
http://www.ncbi.nlm.nih.gov/pubmed/17739513
http://dx.doi.org/10.1126/science.146.3642.347
http://www.ncbi.nlm.nih.gov/pubmed/9146808
http://dx.doi.org/10.1007/BF02684194
http://www.ncbi.nlm.nih.gov/pmc/articles/3175772
http://www.ncbi.nlm.nih.gov/pubmed/3783446
http://www.ncbi.nlm.nih.gov/pubmed/17238424
http://www.ncbi.nlm.nih.gov/pmc/articles/1839612
http://www.ncbi.nlm.nih.gov/pubmed/901900
http://dx.doi.org/10.1016/S0006-3495%2877%2985539-2
http://www.ncbi.nlm.nih.gov/pmc/articles/1473340
http://www.ncbi.nlm.nih.gov/pubmed/17449822
http://dx.doi.org/10.1242/jeb.000133
http://www.ncbi.nlm.nih.gov/pmc/articles/2866297
http://www.ncbi.nlm.nih.gov/pubmed/24215024
http://dx.doi.org/10.1093/bioinformatics/btt641
http://dx.doi.org/10.1126/science.342.6154.56
http://www.ncbi.nlm.nih.gov/pubmed/4440753
http://www.ncbi.nlm.nih.gov/pmc/articles/3024886
http://www.ncbi.nlm.nih.gov/pubmed/14693681
http://dx.doi.org/10.1152/ajpheart.00478.2003
http://www.ncbi.nlm.nih.gov/pubmed/18693954
http://www.ncbi.nlm.nih.gov/pmc/articles/2655884
http://www.ncbi.nlm.nih.gov/pubmed/3196295
http://www.ncbi.nlm.nih.gov/pmc/articles/1135157
http://books.google.co.in/books/about/Institutionum_calculi_integralis.html?id=cA8OAAAAQAAJ&redir_esc=y
http://books.google.co.in/books/about/Low_order_classical_Runge_Kutta_formulas.html?id=1t4QAQAAIAAJ&redir_esc=y
http://www.ncbi.nlm.nih.gov/pubmed/20601121
http://dx.doi.org/10.1016/j.jbi.2010.06.007
http://www.ncbi.nlm.nih.gov/pmc/articles/2989341
http://dx.doi.org/10.1021/j100540a008
http://www.ncbi.nlm.nih.gov/pubmed/13949263
http://books.google.co.in/books/about/The_Java_Language_Environment.html?id=pUJ_GwAACAAJ&redir_esc=y
http://books.google.co.in/books/about/Solving_Ordinary_Differential_Equations.html?id=F93u7VcSRyYC&redir_esc=y
http://books.google.co.in/books/about/Solving_Ordinary_Differential_Equations.html?id=UWlStQAACAAJ&redir_esc=y
http://books.google.co.in/books/about/Java_Network_Programming.html?id=NyxObrhTv5oC&redir_esc=y
http://www.ncbi.nlm.nih.gov/pubmed/7872572
http://dl.acm.org/citation.cfm?id=531075
http://www.ncbi.nlm.nih.gov/pubmed/12611808
http://dx.doi.org/10.1093/bioinformatics/btg015
http://www.ncbi.nlm.nih.gov/pubmed/23645496
http://dx.doi.org/10.1152/ajplung.00420.2012
http://www.ncbi.nlm.nih.gov/pmc/articles/3726944
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/21423785
http://dx.doi.org/10.1177/003754977001400205
http://www.ncbi.nlm.nih.gov/pmc/articles/3059310
http://dx.doi.org/10.1137/S003614450242889
http://www.ncbi.nlm.nih.gov/pubmed/3510568
http://www.ncbi.nlm.nih.gov/pmc/articles/3496757
http://dx.doi.org/10.1016/S0006-3495(77)85539-2

F1000Research

 Current Referee Status:

Referee Responses for Version 1
 David Nickerson

Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand

Approved: 23 January 2014

 23 January 2014Referee Report:
This manuscript provides an introduction to, and description of, the JSim modelling system. The authors
highlight the general purpose utility of this platform through the use of specific application examples, that
are easily understood and followed by the reader and potential JSim users. This manuscript provides all
appropriate links and examples that readers would require to get up and running with the JSim software.

This paper is well written, with just a few points that the authors may want to consider in future revisions of
the manuscript.

The authors touch briefly on reuse of existing models/projects and the use of a CVS repository to
archive the history of model development, as well as the discussion on modular modelling in the
future developments section. The basis for this modularity and reuse seems to result in the
development of a new, monolithic MML document for the assembled model. It might be useful to
see if there are features in either JSim or MML that allow dynamic links to the source modules to be
maintained allowing users to alternate sources or versions of the source modules (rather than the
cut-and-paste style described in the manuscript).

In addition to the versioning of the JSim input data (experimental data, MML, projects, etc.), it is
often the case that a specific piece of work requires some minimum version of the software itself. I
wonder if there is any link between project files and JSim releases? For example, are users
browsing the Physiome Repository able to determine if they need to update their version of JSim
prior to loading a project file (or if in fact the software handles this internally).

The manuscript would benefit from a more thorough comparison of JSim to alternative tools, or at
least some links to specific tools being contrasted in the article.

There is no description of how spatial geometries (finite element meshes or finite difference
grids) are defined in JSim. Are the evolving standards for such descriptions (e.g., FieldML or
SBML-spatial) being used or are there plans to use such? A comparison with approaches taken by
tools like the Virtual Cell or Chaste might be useful.

The authors make no reference to the adoption or interchange with the SED-ML standard. It would
be useful to discuss any plans in this regard. Similarly, the evolving COMBINE archive format has a
large overlap in aims with the JSim project file and the authors might want to comment on any
plans to make use of that archiving format or contributions in that direction.

In some parts of the manuscript (e.g., the caption for figure 3) the description of the

Page 15 of 17

F1000Research 2013, 2:288 Last updated: 23 JAN 2014

F1000Research

In some parts of the manuscript (e.g., the caption for figure 3) the description of the
modelling/simulation example seems a bit excessive, and detracts from the primary focus of the
article.

Minor comments
Page 5, column 1, first paragraph: Antimony is mentioned as a model import source format, but
that format is not defined previously.

Page 10, column 1, third paragraph: "...using several different numerical method," missing 's' on
method.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 Steven Niederer
Biomedical Engineering Department, King's College London, London, UK

Approved: 10 January 2014

 10 January 2014Referee Report:
The paper “JSim, an open-source modelling system for data analysis” provides a succinct update on the
functionality and utility of the modelling platform JSim. The paper provides a concise description and link
between the JSim community modelling philosophy and how this is facilitated by the JSim software
platform. The complete description of the JSim environment will be of interest to the modelling community
and this manuscript highlights much of the functionality that they require.

This publication could be improved by addressing:
As described in the article, the platform JSim has been developed over a period of over 40 years.
Previous articles on JSim have been published and this article would be strengthened by
highlighting the new features / functionality added to the platform since the previous JSim article.

The article, as exemplified in the abstract, focuses on the technical functionality of JSim. If JSim
can be readily set up or used by people who wish to analyse their experimental data with models,
for example experimental researchers, as opposed to developing new models, then it would be
worth highlighting this in the abstract and text.

The article does not discuss or review alternate simulation platforms (for example COR, OpenCell,
Continuity, CHASTE, SBML simulation environments). For new users wishing to make an informed
decision it would be useful to highlight the differences between JSim and alternate platforms.

Minor comments
In the introduction, the statement that mathematical models provide clear and precise hypothesis
that are susceptible to contradiction and that failure to fit leads to rejection needs to be more
nuanced, particularly in the case of biology where comparisons are often made between
deterministic models and variable experimental results.

It is not clear in the loop section if JSim supports nested loops, this could be clarified.

It would be of interest to provide some indicative performance measures. For example if simulating

Page 16 of 17

F1000Research 2013, 2:288 Last updated: 23 JAN 2014

F1000Research

It would be of interest to provide some indicative performance measures. For example if simulating
a cardiac action potential will JSim solve faster or slower than real time on a conventional desktop.

The authors could comment on the utility or potential for adoption of new mark-up languages for
spatial problems (FieldML) or problem definition formats (SED-ML).

It would be interesting for the authors to comment on how or if they have verified the JSim code
stack.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Page 17 of 17

F1000Research 2013, 2:288 Last updated: 23 JAN 2014

