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Transposable Element Expression 
in Acute Myeloid Leukemia 
Transcriptome and Prognosis
Anthony R. Colombo1, Timothy Triche Jr.2 & Giridharan Ramsingh1

Over half of the human genome is comprised of transposable elements (TE). Despite large-scale studies 
of the transcriptome in cancer, a comprehensive look at TE expression and its relationship to various 
mutations or prognosis has not been performed. We characterized the expression of TE in 178 adult 
acute myeloid leukemia (AML) patients using transcriptome data from The Cancer Genome Atlas. We 
characterized mutation specific dysregulation of TE expression using a multivariate linear model. We 
identified distinct patterns of TE expression associated with specific mutations and transcriptional 
networks. Genes regulating methylation was not associated with significant change in TE expression. 
Using an unpenalized cox regression analysis we identified a TE expression signature that predicted 
prognosis in AML. We identified 14 candidate prognostic TE transcripts (TEP) that classified AML 
as high/low-risk and this was independent of mutation-based and coding-gene expression based 
risk-stratification. TEP was able to predict prognosis in independent cohorts of 284 pediatric AML 
patients and 19 relapsed adult AML patients. This first comprehensive study of TE expression in AML 
demonstrates that TE expression can serve as a biomarker for prognosis in AML, and provides novel 
insights into the biology of AML. Studies characterizing its role in other cancers are warranted.

Approximately 50% of the genome is comprised of transposable elements (TE)1. Despite large-scale studies of the 
genome and transcriptome, the importance of TE in health has not been a focus of intense research until recently. 
TE have been implicated in cancer pathogenesis, but studies have mostly focused on their deleterious effects2–6. 
Very recently, beneficial roles of TE have been described. Induction of their expression leads to the activation of 
the viral recognition pathway and cancer cell death7,8. In addition, TE have been shown to regulate coding gene 
function9–12. Hence, they may indirectly alter the transcriptional networks to promote or inhibit cancer cell growth. 
This suggests that TE have complex and diverse functions in cancer, which has largely remained unexplored.

Prediction of prognosis using coding gene expression in cancer has been widely studied, resulting in devel-
opment of many clinical assays. The role of TE in cancer prognosis has not been explored comprehensively. 
Hypomethylation of LINE1 elements in the cancer genome has been associated with prognosis13, however the 
role of TE expression in predicting prognosis in cancer is not well known.

Regulation of TE expression remains poorly understood. Like coding genes, TE can be regulated both tran-
scriptionally and post-transcriptionally14–17. The role of coding gene mutations in altering gene regulatory 
networks is well known18, providing valuable information on the regulation of coding genes. However, how muta-
tions affect transcription of TE has not been well characterized. By understanding the changes in TE expression 
with respect to specific mutations and chromosomal alterations in cancer, we can gain novel insight into how TE 
expression is regulated by the genes that are mutated in cancer.

In this study, we performed comprehensive analyses of the expression of TE in acute myeloid leukemia (AML). 
We analyzed mutation specific alterations in TE expression and correlated their expression pattern to transcrip-
tional networks. We identified a TE expression signature that predicts prognosis in AML, paving the way for the 
development of novel prognostic TE biomarkers in AML.

Methods
Please see the Supplementary Methods for details on the methodology.
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Results
Mutation specific dysregulation of TE expression in AML.  Mutations in AML are associated with 
distinct alterations in the expression of coding genes19, providing novel insight into gene regulation. In order to 
investigate the effect of mutations on TE expression, we investigated the relationship between specific mutations 
and expression of TE in AML.

Figure 1.  Mutation specific alteration in expression of transposable elements. (A) The number of TE altered 
in expression (AE-TE) with respect to cytogenetics, mutations, and clinical factors (Hierarchical test FDR ≤0.05; 
BH adjusted; n = 178). (B) Venn diagram of AE-TE transcripts with respect to PML-RARα, MT.CO2, NPM1, 
SMC1A mutations. Identifies significant AE-TE that are disjoint or shared among the 4 mutations/chromosomal 
alterations with the highest number of TE dysregulated. (C) TE Biotype average significant dysregulation 
rates. The biotype average dysregulation rates of statistically significant TE transcript identified from multiple 
regression per covariate (hierarchical test FDR ≤0.05; BH adjusted; n = 178). The y-axis are the biotypes, the 
x-axis are the model features. (D) Altered expression summary of mutations/cytogenetics (top axis) corresponding 
to significant TE transcripts per biotype (bottom axis). Red is estimated up-regulated, and blue is estimated 
down-regulated; purple indicates an even mixture of both up and down regulated transcripts. The summary 
values considered only significant altered expression determined from multiple regression (hierarchical test 
FDR ≤0.05; BH adjusted; n = 178).
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We analyzed the transcriptome of 178 AML patients from the Cancer Genome Atlas (TCGA) project using 
Arkas20, an RNA sequence analysis pipeline using detailed annotation information for TE and ENSEMBL non-TE 
(non-TE) transcripts. We used the multivariate empirical Bayesian linear model to comprehensively study the 
effect of various mutations on the expression of TE19. Chromosomal translocation PML-RARα was associated 
with the most number (23) of altered expression of TE transcripts (AE-TE), with most showing upregulation 
(Hierarchical FDR filtering, q ≤ 0.05) (Fig. 1A). This was followed by MTCO2, NPM1, FLT3 and RUNX1 muta-
tions. Interestingly, the TE transcripts dysregulated with respect to the mutations associated with the most num-
ber of AE-TEs showed minimal overlap (Fig. 1B). Although CpG methylation has been shown to regulate the 
expression of TE7,8,16, DNMT3A and TET2 mutations instead showed some of the lowest number of AE-TE.

TE biotypes exhibited specific alteration patterns with respect to mutational status (Fig. 1C,D). The TE tran-
scripts within most TE biotypes exhibited a mix of both upregulation and down regulation with respect to muta-
tions and chromosomal alterations, suggesting diversity in the regulation of TE transcripts within TE biotypes. 
PML-RARα, MTC02 and NPM1 were mostly associated with upregulation of TE, whereas FLT3, IDH1 and NRAS 
were associated predominantly with downregulation of TE.

These findings suggest that the common mutations in AML are associated with a distinct pattern of alteration 
in TE expression.

Correlating transcriptional networks with TE expression.  TE are key regulators of coding-gene 
expression1,9,10,12,21. In order to gain insight into this in AML, we correlated the expression of TE biotypes with 
transcript networks. For this, the similarly expressed non-TE transcripts were grouped together, forming tran-
script modules as previously described by us22 (Y-axis in Fig. 2, Supplementary Table 1). The genes in the modules 
were likely to be co-regulated and/or functionally related22 (Supplementary Table 1). The modules were then 
correlated with the expression of specific TE biotypes (X-axis in Fig. 2, Supplementary Table 1). We observed 

Figure 2.  Correlating the transcript network with the expression of TE. Y-axis represents transcript ‘modules’ 
constructed by identifying non-TE transcripts based on the co-expression patterns. The X-axis denotes 
canonical TE biotypes used for correlating them. The centre figure represents the correlation matrix for the 
normalized gene ‘module’ expression and the TE type. *Indicates significant associations (pearson correlation 
p. value ≤ 0.05). The panel to the left of the Y-axis depicts significant (hierarchical test FDR <0.05; BH adjusted; 
n = 178) average dysregulation of the non-TE transcripts corresponding to each network module. For each 
module (y-axis), the Supplementary Table 1 depicts the corresponding non-TE module enrichment identifying 
the possible biological function.
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that the TE biotypes formed distinct clusters based on its association with non-TE transcript modules, indicating 
diversity among TE biotypes.

We then summarized the network by averaging each module’s mutation/chromosomal specific alterations 
(Supplemental Fig. 2). Significantly altered expression of non-TE transcripts for each module with respect to covar-
iates such as mutations/chromosomal alteration and demographics were measured (Supplementary Figure 1).  
Interestingly, PML-RARα was associated with the most (4428) alterations in the expression of non-TE transcripts 
(Supplementary Figure 1). The module alteration averages were clustered indicating dysregulation similarity 
between modules (Supplementary Figure 2). PML-RARα and RUNX1/RUNX1T1 had similar module dysregula-
tion averages (Supplementary Figure 2). This correlation matrix provided detailed information on the association 
between mutations, transcript networks, and the expression of various TE biotypes in AML.

Prediction of prognosis using TE expression in AML.  Expression of coding genes and non-coding 
genes such as microRNAs has been shown to predict the survival of many cancers including AML23,24. We inves-
tigated whether expression of TE can similarly predict prognosis in AML and if so, which TE are associated with 
good and bad prognosis.

We identified candidate TE prognosticators (TEP) through nested sampling in TCGA. The nested training 
cohort was randomly selected on an approximately 60% intra-training and 40% intra-testing split. The training 
candidates were consistently prognostic TE transcripts and were selected based on an unpenalized univariate Cox 
proportional hazard model with a significance threshold of 0.0125 and 3-fold cross validation19. The training 
candidates were validated in the corresponding intra-test cohort using a Kaplan-Meir survival plot (Wald test 
q.value < 0.05). This identified 14 TE associated with prognosis (TEP) (Fig. 3A). We randomly selected 37 (20%) 
subjects into the intra validation test cohort and identified the hazard estimates of the 14 TEP using a multivari-
ate Cox proportional hazard model. The estimated hazards of the 14 TEP were able to statistically distinguished 
patients with good and poor prognosis (Fig. 3B, Wald test = 3.62e-4, N = 37) (Supplementary Figure 3). A 3-fold 

Figure 3.  Kaplan-Meier survival plot using TEP expression in AML. (A) TE transcripts identified to predict 
prognosis in AML (TEP). The x-axis depicts the candidate TEP. The y-axis depicts the signed average of the 
estimated hazard coefficients from Cox proportional hazards model. (B) Intra-cohort validation of TEP in TCGA 
using a test cohort (N = 37). Blue is favorable risk, and red is unfavorable risk. The y-axis is survival probability 
and the x-axis is time in months. The 2 patient risk classification groups were identified from TEP (log-rank-
test, score log-rank-test, and Wald test p. value ≤ 0.05). (C) Independent validation of the TEP in pediatric AML 
using TARGET. The y-axis is survival probability, and the x-axis is time in months. (D) Independent validation of 
TEP in 19 relapsed AML patient samples. The y-axis is relapse probability, and the x-axis is time in months. The 2 
risk classification groups were determined from TEP (log-rank-test, score log-rank-test, and Wald test p. value 
<<0.05).
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cross validation yielded a mean correspondence index (c-index)25–27 of 0.6156. We examined the effects of age, 
gender, and ethnicity on TEP expression by comparing the Cox models which included demographical informa-
tion and 14 TEP to the nested Cox model with 14 TEP covariates. Age, gender, and ethnicity did not significantly 
affect the 14 TEP in the intra-validation cohort (p. value = 0.12, Supplementary Table 2).

Figure 4.  Utility of TEP expression in improving mutation based and coding gene expression based risk 
prediction. (A) Improvement in prognostication of mutation based low-risk cohort (N = 96). The x-axis is time 
in months, and the y-axis is survival probability. Kaplan-Meier sub-stratification of mutation based low risk 
patients using TEP (B) Improvement in prognostication of mutation based high-risk group (N = 82). Similar 
to (A). (C) Improvement in prognostication of cytogenetics based low-risk group (N = 137). Similar to (A). 
Low risk patients initially identified by using cytogenetics were sub-stratified using TEP. (D) Improvement in 
prognostication of cytogenetics based high-risk group (N = 41). High-risk patients initially identified by using 
cytogenetics were sub-stratified using TEP. (E) Improvement in prognostication of nonTE transcript expression 
based low-risk group (N = 99). Low risk patients initially identified from nonTE transcript expression were sub-
stratified using TEP. (D) Improvement in prognostication of non-TE transcript expression based high-risk group 
(N = 99). High-risk patients initially identified from nonTE transcript expression were sub-stratified using TEP. 
Favorable risk is blue, and unfavorable risk identified in red (log-rank-test, score log-rank-test, and Wald test p. 
value < 0.025).
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In order to further confirm the validity of the TEP in predicting prognosis in AML, we used 2 independent cohorts: 
284 pediatric AML28 patients and 19 relapsed adult AML29 patients. Similar to identifying patient compounded risk 
scores in TCGA, we generated compound covariate summary values using the TEP expression and the corresponding 
Cox hazard estimates using pediatric AML patients. The TEP were able to stratify the 284 pediatric AML patients28 
into favorable versus poor risk categories (Fig. 4C, Wald test p. value = 1.33e-06, N = 284) (Supplementary Figure 4). 
Age, gender and ethnicity did not significantly affect TEP (p. value = 0.4038, Supplementary Table 2).

The second independent validation in relapsed AML29 showed that the TEP stratified patients based on the 
differences in time to relapse between risk groups (Fig. 4D, Wald test p. value = 7.8–03, N = 19) (Supplementary 
Figure 4F). The age/gender adjusted hazard estimates for the 14 TEP were also examined in relapsed AML 
patients. Although for this smaller cohort the age/gender features did have an effect on the TEP covariates, 
the signed averages of the age/gender adjusted TEP hazard estimates were also prognostic (Wald test = 0.023, 
c-index = 0.646) (Supplementary Table 2). These results indicated the robustness of the discovery algorithm that 
predicted prognosis using TE expression in a large cancer cohort.

Figure 5.  TEP associated coding gene expression and their corresponding network module memberships. For 
each TEP, independent coding gene expression predictors were identified using penalized regression. The x-axis 
on the linear model plots depict the scaled predicted TEP expression determined by the selected coding genes, 
and the y-axis depict the scaled observed TEP expression. The adjacent bar plots show the gene network module 
membership distribution of the selected independent coding gene predictors from Fig. 2. The bar-plot x-axis 
show the module ID from Fig. 2, the y-axis is the corresponding frequency of gene predictors residing in the 
given module.
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TEP expression offers independent prognostic value.  We then wanted to identify whether the TEP 
would independently improve the cytogenetics/mutation based and/or coding-gene expression based risk strat-
ification. For this, we first used a Cox regression analysis and stratified the good-risk (N = 96) and poor-risk 
(N = 82) AML cohort using only the mutational signature. The TEP were then used to sub-stratify the low-risk 
(Fig. 4A) and high-risk groups (Fig. 4B) identified by mutational status. In the mutation based low-risk 
group TEP signature re-classified 48/96 patients to a higher-risk group (Fig. 4A, Kaplan-Meier Wald test p. 
value = 6.426e-05,3 fold cross-validated c-index = 0.58, N = 96). The TEP expression signature independently 
sub-stratified the mutational ‘higher-risk cohort’ into better-risk (41/82) groups (Fig. 4B, Kaplan-Meier Wald test 
p. value = 2.4e-04).

The TEP further classified cytogenetics and coding gene expression survival hazard categorizations. The 14 
TEP identified 68 poorer risk patients from a pool of 137 good-risk patients identified based on cytogenetics 
(Fig. 4C, Kaplan-Meier Wald test p. value = 0.00284). And, the 14 TEP identified 21 better risk patients from a 
pool of 41 poor-risk patients identified by cytogenetics (Fig. 4D) (Kaplan-Meier Wald test p. value = 4.91e-05). 
Likewise, the TEP identified 45 poorer risk patients from a pool of 99 good-risk patients identified based on gene 
expression (Fig. 4E, KM Wald test p. value = 1.58e-04). The TEP identified 45 better risk patients from a pool of 
99 poor-risk patients identified by gene expression (Fig. 4F) (KM Wald test p. value = 1.97e-03).

Overall, this indicated that the TEP could provide robust independent prognostic value and can improve the 
prognostic ability obtained by mutational status, cytogenetics or coding gene expression in AML.

TEP associated coding gene expression and gene networks.  TEs constitute diverse transcripts that 
fall within several TE biotypes. However, the functional roles of individual TE transcripts are yet to be character-
ized. In order to gain insight into the potential functional role of the TEPs in AML, we analyzed the coding genes 
that appear highly correlated in expression to TEPs. A majority of the coding genes (Supplementary Table 3), 
which are associated to TEPs such as AluJo, L1MB2, LTR56, MER11A, MER44C, and Tigger5a, were members 
of the network module 3 (ME3) (Figs 2 and 5). A functional pathway analysis of the coding genes in ME 3 using 
DAVID30, revealed that the genes in ME3 were enriched in biological processes such as regulation of transcrip-
tion (GO:0006355, GO:0006351), detection of chemical stimulus involved in sensory perception of taste (GO: 
0001580, GO:0050909), nucleic acid binding, metal ion binding, and ATP binding (GO:0003676, GO:0046872, 
GO:0005524 respectively).

Risk-stratification of AML based on a combination of mutations and TEP expression.  We devel-
oped a composite model combining the prognostic value of both the mutations, cytogenetics, non-TE expression 
and TEP expression to understand the relative effect of mutations and TEP in various mutational sub-categories 
of AML. We identified that non-TE transcript expression profile, TEP and mutational status were the primary 
contributors of risk prediction in adult AML (Fig. 6) (Supplementary Table 4).

Using mutations alone the 178 AML patients were classified in to 96 low-risk and 82 high-risk patients. This 
risk stratification based placed most of DNMT3A, TP53, RUNX1 and FLT3 mutations into high-risk category 
and NPM1 mutation, PML-RARα and inv (16) into low-risk category (Fig. 7A). We then re-classified all 178 
adult AML patients using a combination of mutational status, cytogenetics, non-TE expression and TEP expres-
sion. The comprehensive model re-classified 48/96 mutation based low-risk and 41/82 mutation based high-risk 
patients to worse and better prognosis respectively (Fig. 4A/B). We analyzed the mutational categories of patients 
that were reclassified in these groups (Fig. 7B). In the mutation based high-risk group, the TEP model re-classified 
a large majority of patients with DNMT3A, DNMT3A plus NPM1, FLT3 plus NPM1, and RUNX1 mutations as 

Figure 6.  Prognostic contributions for multiple clinically relevant features. The center (grey) polygon depicts 
the C-statistic derived from a multivariate Cox proportional hazards model. The multiple predictive variables 
were TEP expression, nonTE expression, cytogenetics, mutations, blood, and demographic variables. The 
percentages indicate the overall group contribution to the C-statistic.
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low-risk. Only one of the TP53-mutated AML patients identified as high-risk from the mutational based model 
was reclassified as low-risk using TEP (Fig. 7A/B). This suggested that AML patients with DNMT3A, RUNX1, 
NPM1 and FLT3, mutations constitute a diverse group with regards to their prognosis. These findings demon-
strate that by incorporating the expression of the 14 TEP in a comprehensive model that includes mutational 
status, cytogenetics and non-TE expression pattern, we can improve the ability to predict prognosis in AML.

Discussion
This is the first study to comprehensively characterize the expression of TE expression at the transcript level, 
demonstrating novel roles for TE in cancer. PML-RARα chromosomal translocation was identified to be associ-
ated with the most dysregulation of TE expression, with majority of the dysregulated TEs exhibiting upregulation 
of expression in AML. PML-RARα fusion protein has been shown to be a transcriptional repressor through its 
role regulating DNA methylation and chromatin modification31 Its specific role in regulating TEs has not been 
previously known. Whether treatment with ATRA (All-trans retinoic acid), or arsenic trioxide, in PML-RARa 
translocated AML leads to changes in TE expression and their role in the pathogenesis of PML-RARa translocated 
AML needs to be investigated.

Figure 7.  Comprehensive risk-stratification of AML. (A) AML patient classified based on mutational status. 
The mutation based risk classification for each patient is depicted on the left. Right-adjacent depicts clinically 
relevant mutations or cytogenetic annotations corresponding to the patient classification bar plot. Each bar 
plot (4) depicts independent risk classification models using covariates such as mutations, cytogenetics, 14 
TEP, nonTE, or a comprehensive model including mutations, cytogenetics, nonTE, TEP and demographical 
information. High risk (red) and low risk (blue) represents patient’s risk classification. (B) TEP based risk 
classification model. The TEP based risk stratification for each patient and the corresponding clinical profile.  
(C) The comprehensive classification model. The patients are ordered from the risk classification determined by 
the comprehensive model utilizing mutational status, cytogenetics, TEP expression and nonTE expression. Each 
subject’s clinical profile is depicted to the right of the classification bar plots.
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Although methylation has been previously shown to regulate the expression of TE7,8, our study showed very 
little association between mutations in methylation regulating genes (DNMT3A and TET2) and dysregulation 
of TE expression. However, we found strong association between mutations in NPM1, MTCO2, and SMC1A. 
Interestingly FLT3 mutation was largely associated with suppression of TE, and IDH1, and TP53 were the only 
mutational features showing complete uniform suppression. Studies investigating the mechanism of how these 
genes regulate TE expression will be needed. Recent report suggested that TP53-mutated AML are highly sus-
ceptible to treatment with hypomethylating agents32, which have been shown to activate the expression of TE 
and the downstream interferon cascade, leading to cancer cell death7,8,33. The mechanism high responsive rate 
to hypomethylating agents in TP53-mutated AML is not completely characterized. Our study does not show a 
high level of dysregulation of TE in TP53-mutated AML, but the dysregulated TEs were all downregulated. The 
relation of this finding to the mechanism of action of hypomethylating agents in TP53-mutated AML needs to 
be investigated.

TE constitutes a diverse group of transcripts, which likely have diverse function, as demonstrated by our net-
work analysis. Interestingly, AluJo, AluSq2, L1MB2, LTR24C, LTR56, MER101B, MER11A, MER31-I, MER44C, 
and Tigger5a transcripts were associated with low hazards and LTR14A, LTR45B, MER77 and Tigger9b were 
classified as hazardous. Interestingly, L1MB2, a LINE-1 element, was calculated as low hazardous which contrasts 
other studies describing the re-activation of LINE-1 elements as associated with increased genomic instability 
and hence hazardous in cancer. This indicates that LINE-1 may play a diverse role of the development of cancer. 
Additionally, the other TE transcripts within the same class/type were associated with varying hazard estimates, 
further indicating diversity within TE. We predict that individual TE transcripts are as diverse as coding genes in 
their function. It is likely that some of the TE that have active transposition activity promoting tumorigenesis6, 
and others that have defective transposase activity performing other functions such as activating tumor immuno-
genicity via interferon activity. In this context, we recently showed that leukemic stem cells in AML, which are the 
most resilient to treatment, have suppressed TE expression22. A recent study also reported that TE is suppressed in 
chemotherapy resistant cancer cells34. These findings demonstrate that suppression of TE in cancer could possibly 
play a role in cancer evolution by protecting the cells from immune mediated cell death.

Further understanding disease pathogenesis requires a closer investigation of the regulation mechanisms of 
the 14 TEP transcripts. This study is limited in its ability to characterize short interspersed nuclear elements 
(SINE), since most of them do not contain polyA tail and that the sequencing libraries were generated using 
polyA selection method. The SINE TEs identified using our pipeline were a sub-group of SINEs that have polyA 
tail. Future large scale studies could include non-polyA selection protocols which would provide opportunities 
for examining SINEs in better detail.

Our comprehensive model suggests that the expression of 14 TEP transcripts contributes significantly to the 
prognostication. We propose an improved prognostic algorithm in AML utilizing a comprehensive model that 
includes mutational status, cytogenetic status, coding gene expression and TEP expression. The utility of TEP in 
risk stratifying AML needs to be further validated using orthogonal assays in future studies.

This is the first study demonstrating the utility of TE expression signature in predicting outcomes in cancer. 
This study establishes the analytical foundation to investigate the role of TE in other cancers. Whether the prog-
nostic TEP identified in AML overlaps with other cancer needs to be investigated.
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