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Environmental enrichment combined with fasudil 
treatment inhibits neuronal death in the hippocampal 
CA1 region and ameliorates memory deficits

Gao-Jing Xu1, #, Qun Zhang1, #, Si-Yue Li1, Yi-Tong Zhu1, Ke-Wei Yu1, Chuan-Jie Wang2, 
Hong-Yu Xie1, *, Yi Wu1, *

Abstract  
Currently, no specific treatment exists to promote recovery from cognitive impairment after a stroke. Dysfunction of the actin cytoskeleton 
correlates well with poststroke cognitive declines, and its reorganization requires proper regulation of Rho-associated kinase (ROCK) proteins. 
Fasudil downregulates ROCK activation and protects neurons against cytoskeleton collapse in the acute phase after stroke. An enriched 
environment can reduce poststroke cognitive impairment. However, the efficacy of environmental enrichment combined with fasudil 
treatment remains poorly understood. A photothrombotic stroke model was established in 6-week-old male C57BL/6 mice. Twenty-four hours 
after modeling, these animals were intraperitoneally administered fasudil (10 mg/kg) once daily for 14 successive days and/or provided with 
environmental enrichment for 21 successive days. After exposure to environmental enrichment combined with fasudil treatment, the number 
of neurons in the hippocampal CA1 region increased significantly, the expression and proportion of p-cofilin in the hippocampus decreased, 
and the distribution of F-actin in the hippocampal CA1 region increased significantly. Furthermore, the performance of mouse stroke 
models in the tail suspension test and step-through passive avoidance test improved significantly. These findings suggest that environmental 
enrichment combined with fasudil treatment can ameliorate memory dysfunction through inhibition of the hippocampal ROCK/cofilin 
pathway, alteration of the dynamic distribution of F-actin, and inhibition of neuronal death in the hippocampal CA1 region. The efficacy of 
environmental enrichment combined with fasudil treatment was superior to that of fasudil treatment alone. This study was approved by the 
Animal Ethics Committee of Fudan University of China (approval No. 2019-Huashan Hospital JS-139) on February 20, 2019. 
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Introduction 
Poststroke cognitive impairment is a common complication 
in ischemic stroke patients, and its prevalence ranges from 
25% to 30% (Kalaria et al., 2016). The occurrence of cognitive 
impairment can even reach 71% in survivors with good 
clinical recovery at 3 months after stroke (Jokinen et al., 
2015). Although pharmacological interventions and physical 

training are two promising approaches to promote functional 
recovery and anatomical reorganization, no specific treatment 
currently exists to improve cognitive recovery after a stroke 
(Mijajlović et al., 2017). The hippocampal lesion accounts 
for poststroke cognitive impairment (Sun et al., 2014; Guo 
et al., 2020). Studies have revealed that dysfunction of actin 
cytoskeleton regulation correlates well with cognitive declines 
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after stroke (Mack et al., 2016; Hoffmann et al., 2019). Thus, 
reorganization of the hippocampal actin cytoskeleton may 
be an appropriate option to promote poststroke cognition. 
However, studies on approaches to promote hippocampal 
actin cytoskeleton reorganization are lacking.

Actin cytoskeleton reorganization requires proper regulation of 
Rho-associated kinase (ROCK) proteins, which are ubiquitously 
present in all tissues (Amin et al., 2019). The appropriate 
balance of cofilin phosphorylation, the downstream effector 
of LIM-kinase 1 and LIM-kinase 2 in the ROCK family, is 
necessary for actin cytoskeleton reorganization (Hashimoto 
et al., 1999; Sumi et al., 2001). Furthermore, ROCK pathway 
activation has been observed after ischemic brain injury 
(Nunes et al., 2010). Fasudil (also known as HA-1077), a widely 
used ROCK inhibitor, has shown clinical effectiveness in acute 
ischemic stroke patients (Shibuya et al., 2005). In addition to 
its neuroprotective potential via suppressing the inflammatory 
response (Ding et al., 2010), promoting angiogenesis (Zhai 
and Feng, 2019), reducing cerebral infarct size, and rescuing 
the spine and synaptic properties (Li et al., 2009), fasudil has 
been shown to downregulate ROCK activation and promote 
cognitive recovery through an anti-apoptotic mechanism 
in a chronic ischemic model (Yan et al., 2015). Moreover, 
fasudil can protect neurons against cytoskeleton collapse 
via cytoskeleton reorganization in the peri-infarct area (Wei 
et al., 2014). Recently, some drug combination strategies 
have shown synergistic effects after stroke. For example, co-
administration of fasudil and tissue plasminogen activator 
showed promising effects on attenuating stroke-induced 
neurological deficits and expanding the time window for 
ischemic stroke therapy (Fukuta et al., 2018; Knecht et al., 
2018); fasudil combined with ozagrel, a thromboxane A(2) 
synthase inhibitor, showed a greater neuroprotective effect 
on reducing cerebral infarction than either drug administered 
alone (Koumura et al., 2011). A previous study demonstrated 
that early constraint-induced movement therapy combined 
with fasudil treatment can promote motor performance in 
rats with acute ischemia (Liu et al., 2016). However, studies on 
combination therapy including fasudil and nonpharmacological 
recovery interventions in the chronic stage are limited.

Previous studies demonstrated that environmental enrichment 
(EE), a rearing condition including various toys to provide 
increased physical, cognitive, and social interactions compared 
with standard conditions (van Praag et al., 2000; Huang et al., 
2016), exhibited neuroprotective effects through different 
mechanisms, including inflammatory cytokine reduction 
(Gonçalves et al., 2018), neurogenesis (Matsumori et al., 
2006), and cell proliferation (Klein et al., 2017). Moreover, 
because it decreased neuronal death in the hippocampus, EE 
was effective in reducing cognitive impairment after cerebral 
ischemia (Kato et al., 2014; Jin et al., 2017). A previous study 
showed that EE combined with 17beta-estradiol accelerated 
cognitive recovery after focal brain ischemia (Söderström 
et al., 2009). Considering that both EE and fasudil lead to 
substantial cognitive recovery and anatomical reorganization 
in the hippocampus after stroke, it is hypothesized in this 
study that fasudil combined with EE provides greater benefit 
than either EE or fasudil treatment alone. Therefore, this 
study aimed to further explain the involvement of ROCK2/
cofilin signaling in poststroke hippocampal actin cytoskeleton 
reorganization and analyze the potential neuroprotective 
effect of EE combined with fasudil treatment in poststroke 
cognitive recovery compared with either EE or fasudil 
treatment alone. 
 
Materials and Methods
Animals
All procedures described in this study were approved by 
the Animal Ethics Committee of Fudan University (approval 
No. 2019-Huashan Hospital JS-139) on February 20, 2019. A 

total of 60 male C57BL/6 mice (specific pathogen free level, 
purchased from JSJ Company, Shanghai, China, license No. 
SCXK(Hu)2013-0006), aged 6 weeks and weighing 20–22 
g, were housed under a 12-hour light, 12-hour dark cycle 
at 23 ± 2°C, with ad libitum access to water and food. All 
experiments were designed and reported according to the 
Animal Research: Reporting of In Vivo Experiments (ARRIVE) 
guidelines. All sample sizes for the assessment parameters 
were calculated based on previous studies using a sample size 
calculator.

Experimental design
After 1 week of habituation to the new environment, the 
animals were prepared for photothrombotic stroke induction. 
The mice were randomly divided into five groups (n = 12 
each; Figure 1A): (I) sham group: received a sham surgery, 
were injected with normal saline for 14 days starting from 24 
hours after surgery, and were kept in a standard environment 
for 21 days. The other four groups were subjected to 
photothrombotic ischemia in the sensorimotor area and 
subsequently treated for 21 days as follows: (II) control group: 
injected with normal saline for 14 days starting from 24 hours 
after stroke and kept in the standard environment until the 
end of the experiment; (III) fasudil group: intraperitoneally 
administered 10 mg/kg fasudil (1 mg/mL in saline; Adamas, 
Shanghai, China, once a day) for 14 days starting from 
24 hours after stroke (Huang et al., 2018) and kept in the 
standard environment; (IV) EE group: exposed to EE starting 
at 24 hours poststroke and maintained for 21 days; and (V) EE 
+ fasudil group: given the same dose of fasudil as the fasudil 
group and exposed to EE for 21 days. 

Photothrombotic stroke model establishment
After being anesthetized with an intraperitoneal injection 
of 1% pentobarbital (50 mg/kg, Sigma-Aldrich, St. Louis, 
MO, USA), the mice were placed in a stereotactic device 
(RWD Life Science, Shenzhen, China) with the skull exposed. 
The whole skull was covered with an opaque template that 
exposed a circular region of the left sensorimotor cortex 
(Bix et al., 2013; Clarkson et al., 2013; Harrison et al., 2013) 
(coordinates: rostral to caudal, 2.5–1.5 mm; medial to lateral, 
0–4 mm; relative to bregma). As soon as the mice were given 
1% Rose Bengal (0.01 mL/g of body weight, dissolved in 0.9% 
NaCl; Sigma-Aldrich) by intravenous injection, the targeted 
sensorimotor cortex was illuminated with a 532-nm green 
laser beam (50 mW) for 10 minutes at maximum output. 
During the whole procedure, the body temperature was 
monitored and maintained with a heating lamp.

Housing conditions
The animals were kept in two housing conditions: a standard 
environment or an EE condition. In the EE condition, the 
animals were maintained in 545 mm × 395 mm × 200 mm 
cages (with up to 10 animals per cage) containing various toys, 
such as chains, runners, ladders, and pipelines (Figure 1B). 
For the standard environment, the animals were maintained 
in 294 mm × 190 mm × 130 mm cages (with up to five animals 
per cage; Figure 1C). These objects were changed every day 
as described in a previous study (Zhang et al., 2019).

Behavioral tests
All behavioral tests were conducted after the 21-day 
intervention and in the light phase of the diurnal cycle, 
between 13:00 and 17:00. The animals were subjected to the 
tail suspension test, and after one day of rest, they underwent 
the step-through passive avoidance test. 

Tail suspension test 
After 1 hour of habituation in the experimental environment, 
each mouse was suspended 40 cm above the floor with 
an adhesive tape placed approximately 1 cm from the tip 
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of the tail (Figure 1D). At the beginning of the test, the 
animals exhibited escape behaviors, which after a period of 
struggle, became more subtle. These subtle movements were 
considered as the immobility time. The activities of the mice 
were recorded by a camera, and the immobility time during 
the last 4 minutes of a 6-minute testing period was calculated. 
During the test, the mice were recorded separately to prevent 
animals from observing or interacting with each other. After 
each animal completed the test, the suspension box was 
thoroughly cleaned to eliminate olfactory effects (Can et al., 
2012).

Step-through passive avoidance test
The step-through passive avoidance test was performed 
to evaluate the animals’ short-term memory. A chamber 
(130 mm × 210 mm × 300 mm) was evenly divided into two 
compartments by a sliding door (Figure 1E). In the acquisition 
trial, each mouse was first placed in the light compartment 
and allowed to explore for 10 seconds. Then, the sliding 
door was opened, allowing the mouse to move to the dark 
side. Upon entering the dark compartment completely, the 
mouse was immediately given a 0.5-mA electric shock for 
1 second through the steel floor grid. Then, the mouse was 
returned to its home cage. After 24 hours, for the retention 
trial, each mouse was placed in the light compartment again, 
and the latency to enter the dark compartment was recorded. 
If the latency exceeded 300 seconds, it was recorded as 
300 seconds. The number of times that the mouse traveled 
through the sliding door was also recorded (Kameyama et al., 
1986; Zhou et al., 2019). Meanwhile, the footprints of the 
animal were recorded during the retention trial to determine 
the travel pattern (Figure 1E).

Sample preparation
The mice were sacrificed after the behavioral tests. After being 
deeply anesthetized with 1% pentobarbital (50 mg/kg, Sigma-
Aldrich), the mice were transcardially perfused with normal 
saline, followed by 4% paraformaldehyde in 0.1 M phosphate 
buffer (pH 7.2). The entire brain was removed and immersed 
overnight in 4% paraformaldehyde in 0.1 M phosphate buffer 
(pH 7.2) and then placed in 10% and 20% sucrose for 6 hours 
sequentially at 4°C until it sank in 30% sucrose. Subsequently, 
the samples were embedded in optical coherence tomography 
compound (Tissue-Tek, Sakura Finetek, Japan) and cut into 
20-µm-thick sagittal sections.

Western blot analysis
The h ippocampus  was  i so lated  and lysed  in  rad io 
immunoprecipitation assay buffer (Beyotime, Shanghai, 
China) containing protease and phosphatase inhibitors. The 
protein concentration was measured using a bicinchoninic 
acid protein assay kit (Melone Pharmaceutical Co., Ltd., 
Dalian, China). An aliquot of 40 μg of total protein was 
separated by size via 10% sodium salt-polyacrylamide 
gel electrophoresis and transferred onto polyvinylidene 
fluoride membranes (Millipore, Darmstadt, Germany). After 
blocking with 5% non-fat milk (Beyotime) in Tris-buffered 
saline containing 0.1% Tween-20 (Beyotime) for 1 hour, 
the membranes were incubated overnight at 4°C with the 
following primary antibodies: anti-cofilin antibody (1:1000; 
rabbit; ab42824, Abcam, Cambridge, MA, USA), anti-cofilin 
(phospho S3) antibody (1:1000; rabbit, ab12866, Abcam), and 
anti-beta-actin antibody (1:1000; rabbit; ab8227, Abcam). 
The membranes were then incubated with horseradish 
peroxidase-labeled secondary antibodies (1:3000; goat anti-
rabbit; A16104SAMPLE, Invitrogen, Waltham, MA, USA) for 1 
hour at room temperature. The blots were visualized using the 
Chemistar High-sig enhanced chemiluminescence Western 
Blotting Substrate (Tanon, Shanghai, China). All protein bands 
were analyzed using ImageJ software (National Institute of 
Mental Health, Bethesda, MD, USA) (Kim et al., 2014). 

Nissl staining
The experiment was performed in accordance with the 
Nissl staining kit instructions (Solarbio, Beijing, China). After 
blotting with a cresyl violet staining solution (Solarbio) for 45 
minutes at room temperature, the sections were washed and 
differentiated with a Nissl differentiation solution (Solarbio). 
Then, the sections were immersed in distilled water to stop 
the reaction. Subsequently, the change in cell morphology 
in the hippocampal CA1 region was photographed under 
a microscope using 10× and 20× magnifications. Three 
discontinuous slides were chosen for quantitative analysis for 
each animal. The number of surviving pyramidal neurons in 
a region of interest (200 μm × 100 μm) in the hippocampal 
CA1 region was recorded using the plugin “Cell counter” for 
ImageJ software (Plata et al., 2018).

F-actin distribution assay
Phalloidin specifically binds to F-actin, and because of its low 
molecular weight, it can penetrate the cell membrane without 
pretreatment; thus, secondary antibodies are not necessary 
for further analysis (Katanaev and Wymann, 1998). Brain 
sections were cut through the hippocampus with a cryostat 
(20 µm, coronal), incubated with fluorescein isothiocyanate-
labeled phalloidin (1:500; peptide from Amanita phalloides, 
MFCD00147902, Sigma-Aldrich) for 20 minutes at room 
temperature, and observed using a confocal laser scanning 
microscope with a 60× oil lens (Leica Microsystems, Wetzlar, 
Germany). XY scanning was used to capture the horizontal 
plane as described previously (Li et al., 2007). Single-plane 
images of the hippocampal CA1 region (50 μm × 50 μm) 
were collected and analyzed using Image-Pro Plus software 
(v.6.0, Media Cybernetics, Rockville, MD, USA) as described 
in a previous study (Zhang et al., 2014). The threshold 
function of Image-Pro Plus was used to set the threshold 
intensity and automatically score the puncta of the CA1 field 
based on the fluorescence intensity (Xiong et al., 2015). The 
immunopositivity was obtained from three fields per slide; 
three slides from each animal were chosen for analysis, and 
the group means were calculated. 

Statistical analysis
All data are expressed as the mean ± standard deviation of the 
mean (SD) across the groups and were statistically analyzed 
using GraphPad Prism 8.0 software (GraphPad Company, San 
Diego, CA, USA). Significance was determined by one-way 
analysis of variance followed by Tukey’s multiple comparison 
test among experimental groups. A P value less than 0.05 was 
considered statistically significant.

Results
EE combined with fasudil improves the morphological 
changes in the hippocampal CA1 region of stroke mice
Nissl staining was conducted to show morphological changes 
in the hippocampal CA1 region. The results revealed that 
photothrombotic stroke induced greater neuronal loss in the 
hippocampal CA1 region than in the sham group on day 21 (P 
< 0.05), as shown by diamond- and triangle-shaped neurons 
(Figure 2A1 and A2). The neuron densities of the EE, fasudil, 
and EE + fasudil groups were significantly higher than that 
of the control group (P < 0.05; Figure 2B1–E1 and B2–E2). A 
higher neuron density was observed in the EE + fasudil group 
than in the EE and fasudil groups (P < 0.05; Figure 2).

EE combined with fasudil inhibits phosphorylation of cofilin 
in the hippocampus of stroke mice
Phosphorylated cofilin (p-cofilin, inactive form) in the 
hippocampus was chosen as a core indicator to evaluate 
whether EE and fasudil altered the ROCK activity (Xue et al., 
2019). An increase in p-cofilin expression was observed in 
the control group after photothrombotic stroke compared 
with the sham group (Figure 3A), in addition to an increase 
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in phosphorylation of cofilin (P < 0.05; Figure 3B). After 
administering fasudil, both the expression and proportion 
of p-cofilin were decreased significantly compared with the 
control group (P < 0.05; Figure 3B and C). The EE housing 
condition suppressed the phosphorylation of cofilin compared 
with the control group (P < 0.05; Figure 3C). The combination 
of EE and fasudil suppressed p-cofilin expression and 
phosphorylation of cofilin compared with the control group (P 
< 0.05), and it also decreased the expression and proportion 
of p-cofilin compared with the EE group (P < 0.05; Figure 3B 
and C). The difference in cofilin expression among the five 
groups was not significant (P > 0.05; Figure 3D).

EE combined with fasudil treatment alters the F-actin 
distribution in the hippocampal CA1 region of stroke mice
Phalloidin can bind to F-actin and reveal its distribution; 
therefore, phalloidin staining was performed. Under normal 
conditions, F-actin appears as tiny puncta in the CA1 region, 

Figure 1 ｜ Schematic diagram of the experiment design. 
(A) Time course of different treatment groups. Mice were randomly divided 
into five groups. At 24 hours after stroke, mice in the fasudil and EE + fasudil 
groups received a 14-day treatment course of fasudil. The EE and EE + fasudil 
groups were housed under the EE condition for 21 days, while the other 
three groups were kept in a standard environment. (B) EE provided for mice, 
with 10 mice housed in the EE condition with different toy arrangements. (C) 
The standard environment for mice, with five mice housed in the standard 
environment. (D) Chamber used in the tail suspension test. (E) The chamber 
of the step-through passive avoidance test. EE: Environmental enrichment; 
NS: normal saline.

Figure 2 ｜ Effect of EE combined with fasudil treatment in the hippocampus of mice at 21 days after stroke. 
(A1–E1) The change in the hippocampal CA1 region (Nissl staining). (A2–E2) The representative areas of interest (200 μm × 100 μm) in A1–E1 are enlarged (black 
frames) to show a magnified view of the pyramidal cells. The neurons exhibit a triangle shape in the control group, and neuronal death was ameliorated in the 
EE, fasudil, and EE + fasudil groups. Scale bars: 200 μm in A1–E1, 50 μm in A2–E2. (F) Quantitative analysis of the neuron density in the representative areas of 
interest (200 μm × 100 μm). Data are expressed as the mean ± SD (n = 4). ***P < 0.001, ****P < 0.0001, vs. control group; #P < 0.05, vs. fasudil group; ††P < 0.01, 
vs. EE group (one-way analysis of variance followed by Tukey’s multiple comparison test). EE: Environmental enrichment.
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Figure 3 ｜ Effect of EE combined with fasudil treatment on the protein expression and phosphorylation of cofilin in the hippocampus of stroke mice.
(A) p-Cofilin and cofilin were assessed by western blot assays. (B, D) Quantitative analysis of p-cofilin (B) and cofilin (D) expression. (C) Quantitative analysis of 
the cofilin phosphorylation ratio. Data are expressed as the mean ± SD (n = 4). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, vs. control group; †P < 0.05, 
††††P < 0.0001, vs. EE group (one-way analysis of variance followed by Tukey’s multiple comparison test). EE: Environmental enrichment.

and the intensity of the fluorescence signal may be weakened 
in degenerated neurons (Zhang et al., 2014; Xiong et al., 
2015). In the control group, the F-actin immunopositivity 
in the hippocampal CA1 region was lower than that in the 
sham group on day 21 post stroke (Figure 4A1, A2, E1 and 
E2). The F-actin distribution in the hippocampal CA1 region 
was significantly increased in the EE, fasudil, and EE + fasudil 
groups compared with that in the control group (P < 0.05; 
Figure 4B1–D1 and B2–D2). Quantitative analysis showed 
that the combination of EE + fasudil treatment resulted in 
high immunopositivity of F-actin compared with the EE and 
fasudil groups (P < 0.05; Figure 4F).

EE combined with fasudil treatment ameliorates memory 
deficits in stroke mice
A step-through passive avoidance test was performed to 
assess the cognitive functions, especially short-term memory, 
of animals (Kameyama et al., 1986). During the light-dark 
step-through task, mice were trained to remember an electric 
shock when they entered the dark compartment. After a 
photothrombotic stroke, the latency of entering the dark 
compartment was remarkedly reduced in the control group, 
while the number of times mice crossed through the door 
was increased compared with the sham group (P < 0.05), 
indicating learning and memory deficits (Figure 5A and B). 
After EE and/or fasudil intervention, the latency of entering 
the dark compartment was increased compared with the 
control mice (P < 0.05). Compared with the control group, the 
numbers of times mice crossed through the door in the EE, 
fasudil, and EE + fasudil groups were significantly decreased 
(P < 0.05). The EE + fasudil group showed a longer latency 
and crossed through the door fewer times than the fasudil 
group (P < 0.05). The travel pattern revealed that the mice in 
the EE condition preferred to stay in the light room compared 
with the control animals, similar to the sham group (P < 0.05; 
Figure 5C–G).
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Figure 4 ｜ Effect of EE combined with fasudil treatment on the F-actin distribution in the hippocampal CA1 region of stroke mice.
(A1–E1) The F-actin distribution in the hippocampal CA1 region. (A2–E2) The representative areas of interest (50 μm × 50 μm) in A1–E1 are enlarged (red 
frames) to show a magnified view. Scale bars: 25 μm in A1–E1, 10 μm in A2–E2. (F) Quantitative analysis of F-actin immunopositivity in the CA1 region. The F-actin 
puncta immunopositivity was decreased in the control group, and F-actin loss was reduced in the EE, fasudil, and EE + fasudil groups. Data are expressed as the 
mean ± SD (n = 5). **P < 0.01, ****P < 0.0001, vs. control group; #P < 0.05, vs. fasudil group; ††P < 0.01, vs. EE group (one-way analysis of variance followed by 
Tukey’s multiple comparison test). EE: Environmental enrichment.

Figure 5 ｜ Effect of EE combined with fasudil treatment on the behavioral function of stroke mice.
(A) Quantitative analysis of the latency during the step-through passive avoidance test. (B) Quantitative analysis of the number of times that mice crossed 
through the door during the step-through passive avoidance test. (C–G) Travel patterns of the control (C), fasudil (D), EE (E), EE + fasudil (F), and sham (G) 
groups. The EE, EE + fasudil, and sham groups showed more movement in the light zone than the control and fasudil groups. The green spots represent the real 
time location of the animal, and the red line is the trace pattern during the recording. (H) Quantitative analysis of the immobility time during the tail suspension 
test. Data are expressed as the mean ± SD (n = 10). *P < 0.05, **P < 0.01, *** P < 0.001, ****P < 0.0001, vs. control group; #P < 0.05, ##P < 0.01, ####P < 0.0001, 
vs. fasudil group (one-way analysis of variance followed by Tukey’s multiple comparison test). EE: Environmental enrichment.

EE combined with fasudil attenuates depression-like 
behavior in stroke mice
The immobility time in the tail suspension tests was calculated 
to assess depression-like behavior (Can et al., 2012). Strikingly, 
mice in the EE and EE + fasudil groups showed less immobility 
time than those in the control group (P < 0.05; Figure 5H), 
which indicates that EE was sufficient to attenuate depression-
like behaviors. Fasudil treatment decreased the poststroke 
depression-like behavior of mice (P < 0.05) compared with the 
control group, but the effect did not reach the level of that in 
the EE + fasudil group (P < 0.05; Figure 5H).

Discussion
Poststroke cognitive impairment is one of the most common 
complications in patients with ischemic stroke. The findings 
of this study provided evidence for the innovative role of 
both EE and fasudil treatment in cognitive rehabilitation. The 
behavioral, morphological, and immunofluorescence analysis 
results demonstrated that the combination of EE and fasudil 

treatment achieved better results than using either alone. This 
study increased the understanding of the function of both EE 
and fasudil in poststroke cognitive recovery.

In this study, the photothrombotic model was chosen to 
induce focal ischemia to standardize stroke severity. In a 
previous study, neuronal loss combined with a progressive 
decrease in F-actin in the hippocampal CA1 subfield was 
observed in a rodent model of global cerebral ischemia (Guo 
et al., 2019). Recent findings revealed a time-delayed (24-
hour post-stroke) induction of cofilin-actin bundles, and their 
formation was found to extend into the nonischemic territory 
(Won et al., 2018). Similar results were shown in the present 
study; on the 21st day after the photothrombotic stroke in the 
cortex, mice showed a behavior pattern indicating cognitive 
impairment in the step-through avoidance test, along with 
an increase in cofilin phosphorylation and a downstream 
decrease in F-actin in the hippocampal CA1 subfield. In 
other words, the photothrombotic stroke caused distant 
damage to other nonischemic areas. In this study, neuronal 
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death in the hippocampal CA1 subfield was reduced and the 
density of F-actin was increased after either monotherapy or 
combination therapy with EE and fasudil. These results were 
consistent with those of previous fluorescein isothiocyanate-
labeled phalloidin staining findings in which fasudil reversed 
weakening of the fluorescent intensity of actin buds (Xiao et 
al., 2014).

The tail suspension test was performed to eliminate emotion-
related behavior. The phenomenon that the animals preferred 
to stay in the light compartment after being housed in the 
EE condition may have two possible explanations. Poststroke 
depression-like behavior might reduce movement, while 
the recovery of short-term memory might benefit the step-
through avoidance results. After the rehabilitation procedures, 
depression-like behavior was reduced. The tail suspension test 
result eliminated the bias favoring depression-like behavior, 
which indicates that the reduction in the scope of travel 
patterns was more likely related to the memory of the electric 
shock than to poststroke depression.

A previous study on a ROCK2 knockout mouse model provided 
plausible evidence that Rho/ROCK2 signaling was critical for 
synaptic function through alteration of cofilin and actin (Zhou 
et al., 2009). A further pharmacological experiment showed 
that downstream LIMK activity was required for memory 
acquisition and reconsolidation (Lunardi et al., 2018). Cofilin, a 
potent actin-binding protein and a downstream factor of LIMK, 
severs and depolymerizes actin filaments during an ischemic 
stroke (Alhadidi et al., 2016). In this study, the alteration of 
p-cofilin expression was consistent with the rearrangement of 
F-actin. As shown in the western blot analysis and phalloidin 
staining, phosphorylation of cofilin was inhibited by fasudil 
administration, and F-actin density was increased. The data 
in this study were consistent with previous findings that the 
ROCK inhibitor fasudil provided robust neuroprotection of 
brain tissue by depressing actin turnover (Gisselsson et al., 
2010). Moreover, fasudil-treated animals housed in the EE 
condition had a higher F-actin puncta density and neuron 
number in the ipsilateral CA1 region than those housed in a 
standard cage or normal saline-treated animals housed under 
the EE condition. This finding indicated a synergy between the 
ROCK inhibitor and enriched housing stimulation; however, 
the underlying mechanism still remains unknown.

Furthermore, the trends of the behavioral and morphological 
results were different,  which indicates that a more 
complicated mechanism is involved in short-term memory. 
The behavioral tests showed that learning and short-term 
memory deficits were ameliorated by suppression of ROCK 
signaling. The effect of housing under the EE condition was 
more significant than that of fasudil administration. However, 
in the subsequent morphological and immunofluorescence 
analyses performed to determine the ROCK signaling levels 
in the hippocampus, EE housing had a less significant effect 
than fasudil administration. This might have occurred because 
the step-through passive avoidance test focused on short-
term memory, which might involve both hippocampal actin 
remodeling and other plasticity mechanisms. As EE has been 
demonstrated to preserve memory after brain injury (Stuart et 
al., 2019), numerous studies have revealed an improvement 
in synaptic plasticity (Bayat et al., 2015; Wang et al., 2019), 
oxidative state modulation (Pereira et al., 2009), and 
endogenous neuroprotection via adjustment of brain histone 
acetylation levels and neuroprotection-related transcription 
factors to normalize memory deficits after ischemia (Sun et 
al., 2010). Therefore, in addition to the fasudil-related ROCK2 
inhibition of behavioral changes, EE might be effective in 
improving short-term memory. 

In summary, hippocampal ROCK2/cofilin signaling is involved 
in poststroke cognitive recovery. EE and fasudil treatment both 
could improve hippocampus-related memory and promote 

hippocampal puncta increases through modulation of ROCK2/
cofilin signaling. Furthermore, compared with monotherapy, 
the combination of EE and the ROCK inhibitor fasudil resulted 
in improved cognitive results after photothrombotic stroke in 
a rodent model. These findings provide insight into an actin 
cytoskeleton-related rehabilitation strategy for treatment of 
cognitive deficits. However, this study had some limitations. 
The investigation was conducted only 21 days after stroke; 
hence, continuous changes in the hippocampus that occurred 
in previous stages are poorly understood. Additionally, 
changes in actin filaments were only examined in the CA1 
region; therefore, future studies should be performed to 
examine changes in actin in other hippocampal regions and at 
additional time points (e.g., 3, 7, and 14 days after stroke). 
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