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Abstract
Background: Prenatal evaluation of fetal lung maturity (FLM) is a challenge, and an effective non-invasive method for prenatal
assessment of FLM is needed. The study aimed to establish a normal fetal lung gestational age (GA) grading model based on deep
learning (DL) algorithms, validate the effectiveness of the model, and explore the potential value of DL algorithms in assessing FLM.
Methods:A total of 7013 ultrasound images obtained from 1023 normal pregnancies between 20 and 41 + 6weeks were analyzed in
this study. There were no pregnancy-related complications that affected fetal lung development, and all infants were born without
neonatal respiratory diseases. The images were divided into three classes based on the gestational week: class I: 20 to 29 + 6weeks,
class II: 30 to 36 + 6 weeks, and class III: 37 to 41 + 6 weeks. There were 3323, 2142, and 1548 images in each class, respectively.
First, we performed a pre-processing algorithm to remove irrelevant information from each image. Then, a convolutional neural
network was designed to identify different categories of fetal lung ultrasound images. Finally, we used ten-fold cross-validation to
validate the performance of our model. This newmachine learning algorithm automatically extracted and classified lung ultrasound
image information related to GA. This was used to establish a grading model. The performance of the grading model was assessed
using accuracy, sensitivity, specificity, and receiver operating characteristic curves.
Results:A normal fetal lung GA grading model was established and validated. The sensitivity of each class in the independent test set
was 91.7%, 69.8%, and 86.4%, respectively. The specificity of each class in the independent test set was 76.8%, 90.0%, and 83.1%,
respectively. The total accuracy was 83.8%. The area under the curve (AUC) of each class was 0.982, 0.907, and 0.960, respectively.
The micro-average AUC was 0.957, and the macro-average AUC was 0.949.
Conclusions: The normal fetal lung GA grading model could accurately identify ultrasound images of the fetal lung at different GAs,
which can be used to identify cases of abnormal lung development due to gestational diseases and evaluate lung maturity after
antenatal corticosteroid therapy. The results indicate that DL algorithms can be used as a non-invasive method to predict FLM.
Keywords: Convolutional neural network; Deep learning algorithms; Grading model; Normal fetal lung; Fetal lung maturity;
Gestational age; Artificial intelligence
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Introduction

The leading cause of neonatal morbidity and mortality in
preterm and term fetuses is lung immaturity.[1] Lung
immaturity leading to surfactant deficiency is related to
neonatal respiratory morbidity (NRM); despite advances
in the treatment of NRM, it still represents the most
common complication in infants born preterm and even
early term (<39 weeks).[2,3] In addition, some gestational
diseases, such as gestational diabetes mellitus (GDM),[4]

pre-eclampsia (PE),[5] oligohydramnios,[6] and fetal intra-
uterine growth restriction,[7] can also affect the maturation
of the fetal lungs. It is important for clinicians to evaluate
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the fetal lung maturity (FLM) in the third trimester,
particularly after 34 weeks of gestation when the risk of
NRM ranges from 5% to 20%, and determine the use of
antenatal corticosteroid (ACS) therapy or plan the place
and time of elective delivery in the presence of late
pregnancy complications.[8,9] Prenatal evaluation of FLM
is challenging; however, it is important to evaluate FLM a
few weeks before delivery, especially in cases of planned
cesarean sections, to avoid iatrogenic prematurity.
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In current clinical practice, evaluation of FLM relies on
testing different components of the amniotic fluid, which
requires amniocentesis.[10,11] Amniocentesis is an invasive
procedure and is associated with preterm labor, premature
rupture of membranes, fetomaternal hemorrhage, fetal
injury, placental abruption, and (rarely) fetal or maternal
death.[12,13] The American College of Obstetricians
and Gynecologists (ACOG) suggests that FLM should
be confirmed in a low-risk singleton pregnancy if elective
delivery is considered before 39 weeks of gestation.[11]

The use of a non-invasive method would be ideal to
determine FLM.

For decades, the prediction of lung maturity by non-
invasive methods has been extensively explored. Several
approaches have been attempted, including comparison of
fetal lung echogenicity with the placenta,[14] fetal gut,[15]

liver,[16] gray-scale measurements,[17,18] fetal pulmonary
artery Doppler velocimetry,[19] and lung tissue motion.[20]

In recent years, quantitative texture analysis, a powerful
technique for extracting information from ultrasound
images and quantifying tissue changes, has been used to
predict FLM.[21,22] These studies generally showed a good
correlation with FLM, but the diagnostic accuracy was
inadequate for clinical use.

Over the years, powerful artificial intelligence (AI)
techniques have been developed for the medical profession
especially in fields that require imaging data analysis, such
as radiology and ultrasound, due to the advancement in
computer technology and image resolution.[23,24] AI
techniques, particularly deep learning (DL) algorithms,
are garnering increased attention in research due to their
outstanding performance in image recognition tasks.[25]

DL algorithms can automatically make a quantitative
assessment of complex medical image characteristics and
extract subtle changes in the aspect of texture information
that are invisible to the human eye.[23,25] The use of DL
algorithms in ultrasound has previously been investigated
for medical diagnostic applications, including in breast
cancer, liver disease, and other diseases.[25,26] In recent
years, some studies have demonstrated that an automatic
quantitative ultrasound texture analysis algorithm based
on AI can extract features from fetal lung ultrasound
images, showing a strong correlation with both gestational
age (GA) and the results of FLM testing of the amniotic
fluid.[1,22] However, the same problems identified in other
quantitative imaging methods using traditional machine
algorithms persist, such as the lack of robustness of blind
detection due to changes in acquisition conditions.[23]

Nevertheless, a newmethod using DL algorithms may help
to overcome these problems.[25] To date, the value of using
DL algorithms by analyzing fetal lung ultrasound images
to predict FLM has not been widely demonstrated.

In this study, we have established a normal fetal lung GA
grading model based on DL algorithms by extracting the
ultrasound image information of normal fetal lungs at
different GAs. We evaluated the accuracy of the model in
identifying the lung images at different GAs and the ability
of the features extracted by DL algorithms to provide
information related to GA. We expect that this model,
which is based on normal fetal lung data, may help to
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identify abnormal lung development caused by gestational
diseases, such as GDM, PE, or oligohydramnios, and
assess lung maturity after ACS therapy. Additionally, we
hope that this study will lay the foundation for DL
algorithms as a non-invasive method for assessing FLM.
Methods

Ethical approval

The study was in compliance with the relevant ethical laws
and approved by the Ethics Committee of Beijing
Obstetrics and Gynecology Hospital, Capital Medical
University (No. 2018-KY-003-03).
Study design

This was a retrospective study, and cases of this study were
collected at the Department of Ultrasound at the Beijing
Obstetrics and Gynecology Hospital, Maternal and Child
Health Centre, Capital Medical University, Beijing, China,
between January 2015 and March 2018. This study
population included only singleton, non-anomalous births
at 20 to 41 + 6 weeks with no neonatal respiratory diseases
and the Apgar scores of newborns were ≥8 at 1, 5, and
10min after birth. GA was determined by the last
menstrual period and verified using first-trimester dating
ultrasound (crown-rump length). Gestational hyperten-
sion, GDM, fetal growth restriction, ACS therapy,
intrauterine infection, oligohydramnios, and other con-
ditions that may affect fetal lung development, multiple
pregnancies, fetal structure, and chromosomal abnormali-
ties were excluded from the study.

A total of 1023 cases were included in this study. We
collected 7013 images of the axial cross-section of the fetal
chest at the level of the four-chamber view of the fetal heart
during routine ultrasound examination at 20 to
41 + 6 weeks of pregnancy. The standard images are
shown in Figure 1 (raw image). Images were discarded
if the lung area contained color Doppler, measurement
caliper overlays, or obvious acoustic shadows created by
bony structures. The quality of all images was inspected by
two sonographers. To explore whether DL algorithms
could be used to recognize fetal lung ultrasound images at
different GAs, we divided the images into three categories
based on GA: class I: 20 to 29 + 6 weeks; class II: 30 to
36 + 6 weeks; class III: 37 to 41 + 6 weeks. While selecting
30 and 37 weeks as the cutoff points, the distribution of
ultrasound images at each class can be relatively balanced;
also, preterm birth is defined as birth before 37 weeks of
gestation. The number of ultrasound images in each class
was 3323, 2142, and 1548, respectively.

All images were collected by sonographers in obstetrics
and gynecology who had >2 years of work experience.
Eight different ultrasound machines provided by six
different manufacturers: GE Voluson E8/E10 (GE Health-
care Austria GmbH& Co OG, Zipf, Austria), HI VISION
Preirus (Hitachi Aloka Medical, Ltd., Tokyo, Japan),
SIEMENS Acuson S2000 (Siemens Medical Systems,
Mountain View, CA, USA), TOSHIBA Aplio500SMI
(Toshiba Medical System Corporation, Tokyo, Japan),
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Figure 1: Process of DL algorithm to establish a normal fetal lung GA grading model. CNN: Convolutional neural network; DL: Deep learning; GA: Gestational age.
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SAMSUNG WS80A (Samsung Medison Corporation,
Seoul, Korea), and PHILIPS EPIQ7/EPIQ7C (Philips
Healthcare, Bothell, WA, USA) were used for data
acquisition. To obtain high-quality images, sonographers
would adjust the machine settings, such as depth, gain,
magnification, frequency, and time gain compensation,
based on the specific conditions used during the examina-
tion.

Algorithm selection and machine learning

In our study, we applied a DL algorithm. The framework
of our research process is shown in Figure 1, which
includes the following three steps.
Step 1: Ultrasound image pre-processing

The ultrasound image directly exported from the ultra-
sound workstations is generally marked with some
machine parameters in the upper left or right corner of
the image. To remove irrelevant information from the
image, we performed a pre-processing algorithm on each
image as shown in Figure 2. We observed that there is an
intensity difference between the region of interest (ROI)
and the surrounding area in the ultrasound image; and we
used the thresholdmethod to segment the ROI. First, for an
ultrasound image, we calculated the overall intensity
distribution of the entire image as shown in Figure 2B.
Then, we identified an appropriate threshold by the
intensity distribution and binarized the image based on
the threshold. Finally, we selected the largest area in the
binarized image and removed the ROI based on this area.
Step 2: Build a classification network

We designed a convolutional neural network to identify
different categories of fetal lung ultrasound images. The
network automatically learns appropriate features from
the training data and inputs the features into the classifier
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so that the feature extractor and classifier can be learned
together. The network mainly contains convolution,
pooling, non-linear, and fully connected operations. A
convolutional layer extracts different features from the
output feature maps of the previous layer based on a set of
learnable filters. A pooling layer replaces the output at a
specific location with a summary statistic of the nearby
outputs and reduces the spatial size of the output feature
maps. Non-linear operation increases the non-linear
properties of the overall network. Several fully connected
layers were used in the neural network to model high-level
reasoning. Each unit of a fully connected layer has
connections to all units in the previous layer.

The network architecture is designed based on the
structure of DenseNet as shown in Figure 3. It consists
of a convolution layer, a pooling layer, four dense blocks,
three transition layers, a global pooling layer, and two fully
connected layers. The first convolutional layer uses a 7� 7
convolution kernel and the stride is set to 2� 2. The
transition layer is composed of a convolution layer and a
pooling layer. The convolutional layer uses a 1� 1
convolution and halves the number of channels in the
feature map. Each pooling layer is a 2� 2 average pooling
layer with a stride of 2� 2. The dense block consists of a
series of convolution operations and concatenation
operations, the structure of which is shown in Figure 4.
The numbers of layers of the four dense blocks are six,
four, four, and four, respectively. The global pooling layer
averages the feature maps of each channel and outputs the
same size output for inputs of different spatial sizes. In this
architecture, all convolutional layers are followed by batch
normalization and rectified linear units (ReLUs). The first
fully connected layer is followed by the ReLUs, and the last
fully connected layer is followed by soft-max units to
output the probabilities. These are the main components of
our network, which completed the construction of the
model.
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Figure 2: Pre-processing of image. (A) Raw ultrasound image; (B) intensity histogram of the image; (C) select an appropriate threshold based on the intensity histogram to binarize the
image; (D) select the largest connected area based on the binary image; (E) cropped image according to the largest connected area.
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After the design of the network architecture, the network
produces the probabilities of each image from one of our
three classes. To train the network, we used cross-entropy
as the loss function, which is defined as:

L ¼
X

ðx;yÞ

X3

i¼1

yilogpiðxÞ;

where (x, y) is a sample from the dataset, yi indicates the
ground-truth label of x, and pi(x) is the output probability
of x belonging to the class i. By minimizing the cross-
entropy loss, the network is trained to fit the images and
provide the correct classifications.

Step 3: Build the training dataset and independent
test dataset

To validate the performance of our model, ten-fold cross-
validation was performed.We randomly split our data into
ten subsets. In each fold, one subset was used as the
independent test set, and the remaining subsets were used
as the training set. Then, one subset was used for
validation, and eight subsets were used to train the
parameters of the network. During the training stage, all
hyperparameters were determined based on the validation
set. We oversampled the samples of minority classes, such
that the numbers of the three classes remain similar due to
the different number of training samples in each class.

Experimental setting

Training the network with only these samples can result in
over-fitting due to the small size of the training set t. To
avoid over-fitting, data augmentation was performed in
our experiments. Random rotation, crop, and flipping
were used for all the training samples. First, we randomly
cropped a region from the image using the algorithm used
1831
by AlexNet[27] and then resized the region to 300�
300 pixels. Second, each training image was randomly
rotated within the range of (�30, 30). Finally, we randomly
flipped each image with respect to the x- and y-axes.

Before training, the weights of the network were initialized
using the method proposed by He et al.[28] The network
was trained using stochastic gradient descent with a
momentum of 0.9 and a weight decay of 0.0001. The batch
size was set to 16. The initial learning rate was set to 0.01
and decreased to 0.0001 by a “cosine” learning rate
policy.[29] The dropout (rate= 0.2) strategy was used in the
global pooling layer to improve the generalization
capability of the model. The network was implemented
in Python based on the DL library of Keras. It took about
4 h to train the network using a graphics processing unit
(GPU) of NVIDIA GeForce GTX 1080 Ti (NVIDIA, Santa
Clara, CA, USA).
Statistical analysis

Different metrics were used to evaluate our method,
including accuracy, sensitivity, specificity, macroF1 score,
microF1 score, and confusion matrix. All metrics were
performed using Python. In the n-class classification
problem, a confusion matrix has n rows and n columns,
and each row of the matrix represents the instances in a
predicted class, whereas each column represents the
instances in an actual class. The accuracy, sensitivity,
and specificity of class i are defined as

accuracyi ¼ 1� f ni þ f piP
jtpj þ f ni

;

sensitivityi ¼
tpi

tpi þ f ni
; specificityi ¼

tni
tni þ f pi
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Figure 3: The architecture of the classification network. The network consists of a
convolutional layer, an average pooling layer, four dense blocks, three transition layers, a
global average pooling layer, and two fully connected layers. The parameter “w” indicates
the kernel size, “s” indicates the stride, “c” indicates the output channels, “o” indicates the
spatial size of the feature, “k” indicates the growth rate, and “l” indicates the number of
layers of each dense block.
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where tpi is the number of correctly classified samples of
class i, fpi is the number of negatives falsely classified as
class i, tni is the number of correctly classified negatives,
and fni is the number of samples of class i falsely classified
as negative. The accuracy of each class is calculated by
1832
treating the classifier as multiple binary classifiers, using
the samples of class i as positive, and the remaining
samples as negatives. The accuracy of class i is the
proportion of samples that were correctly classified.
Sensitivity is the proportion of positive samples that were
correctly classified, whereas specificity is the proportion of
the negative samples that were correctly classified. The
total accuracy is also used and is defined as

accuracy ¼
P

j tpjP
j tpj þ f pi

The macroF1 score and microF1 score are defined as

MacroF1 ¼ 1

n

X
i
2 �

tpi
tpiþf pi

� tpi
tpiþf ni

tpi
tpiþf pi

þ tpi
tpiþf ni

;

MicroF1 ¼ 2 �

X
i
tpiX

i
tpiþf pið Þ

�
X

i
tpiX

i
ðtpiþtniÞX

i
tpiX

i
tpiþf pið Þ

þ
X

i
tpiX

i
ðtpiþtniÞ

:

The scores of macroF1 and microF1 are used to assess the
quality of problems with multiple classes. When the score
of macroF1 or microF1 equals 1, the classifier is the best.
When the score equals 0, the classifier is the worst. We also
used receiver operating characteristic (ROC) curves and
area under the curve (AUC) to evaluate our method. The
ROC curve is created by plotting the true positive rate
against the false positive rate at various threshold settings.
The AUC metric computes the area under a discretized
curve of true-positive vs. false-positive rates. AUC around
0.5 is the same thing as a random guess. The further away
the AUC is from 0.5, the better. Also, the micro-average
AUC (mAUC) and macro-average AUC (MAUC) are used
to assess the quality of problems with multiple classes. The
Delong test was used to compare ROC curves.
Results

A total of 7013 ultrasound images obtained from 1023
pregnancies were analyzed in this study. The clinical
characteristics and neonatal outcomes of the study
population are displayed in Table 1. The composition of
the gestational weeks of each class and the number of
images are displayed in Table 2. The detailed results of the
ten-fold cross-validation are described in Table 3. The
sensitivities of the three classes in the independent test set
were 91.7%, 69.8%, and 86.4%, respectively. The
specificities of the three classes in the independent test
set were 76.8%, 90.0%, and 83.1%, respectively. The
total accuracy was 83.8%. The confusion matrix of the
proposedmethod is shown in Table 4. Figure 5A shows the
ROC curves, including the ROC curves of each class, the
micro-average ROC curve, and the macro-average ROC
curve. The AUC of each class was 0.982, 0.907, and 0.960,
respectively. The mAUC was 0.957, and the MAUC was
0.949.
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Figure 4: The architecture of a four-layer dense block. AUC: Area under the curve; ROC:
Receiver operating characteristic.

Table 1: Clinical characteristics and neonatal outcomes of the 1023
cases of study population.

Variable Mean± SD or n (%)

Maternal age, years 27.1± 2.4
GA at delivery, weeks 39.2± 1.0
Cesarean delivery 138 (13.5)
Birth weight, g 3358.8± 306.4
Birth height, cm 50.1± 0.8

GA: Gestational age; SD: standard deviation.

Table 2: The composition gestational weeks of each class and the
number of images.

Class Gestational week Number of images (%)

Class I (n= 3323) 20 11 (0.3)
21 97 (2.9)
22 712 (21.4)
23 1625 (48.9)
24 175 (5.3)
25 120 (3.6)
26 161 (4.9)
27 82 (2.5)
28 90 (2.7)
29 250 (7.5)

Class II (n= 2142) 30 549 (25.6)
31 487 (22.7)
32 182 (8.5)
33 116 (5.4)
34 238 (11.1)
35 252 (11.8)
36 318 (14.9)

Class III (n= 1548) 37 365 (23.6)
38 395 (25.5)
39 404 (26.1)
40 336 (21.7)
41 48 (3.1)
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We also compared our model to other methods, such as
random forests (RF), support vector machine (SVM), and
naïve Bayes (NB).[30] To train these classifiers, 481 features
were extracted, including an intensity histogram, histo-
gram of oriented gradient, and gray-level co-occurrence
matrix.[31] Principle component analysis was also per-
formed to further reduce the dimensionality of features,
resulting in 128 features. Finally, the three models were
trained based on these features. Table 5 presents a
comparison of the different models, as well as the results
of the validation set. Indeed, our method achieved the best
performance and the over-fitting problem is negligible.
Figures 5B to 5D show the ROC curves of NB, RF, and
SVM, respectively. Our model shows impressive improve-
ments when compared with NB, RF, and SVM. The
macroF1/microF1 score of ourmethodwas 81.8%/83.8%.
The microF1/macroF1 scores of NB, RF, and SVM were
52.9%/51.4%, 69.3%/65.8%, and 73.2%/71.1%, respec-
tively. Our DL-based model was compared with other NB
and showed a higher AUC in three classes (class I: AUC:
0.981, 95% confidence interval [CI]: 0.979–0.984 vs.
AUC: 0.766, 95% CI: 0.755–0.777, P value< 0.001; class
II: AUC: 0.907, 95% CI: 0.900–0.914 vs. AUC: 0.593,
95% CI: 0.575–0.604, P value< 0.001; class III: AUC:
0.960, 95% CI: 0.956–0.964 vs. AUC: 0.782, 95% CI:
0.769–0.795, P value< 0.001). Our DL-based model was
also compared with other RF and showed a higher AUC in
three classes (class I: AUC: 0.981, 95% CI: 0.979–0.984
1833
vs. AUC: 0.911, 95% CI: 0.903–0.916, P value< 0.001;
class II: AUC: 0.907, 95% CI: 0.900–0.914 vs. AUC:
0.724, 95% CI: 0.716–0.741, P value< 0.001; class III:
AUC: 0.960, 95% CI: 0.956–0.964 vs. AUC: 0.908, 95%
CI: 0.901–0.916, P value< 0.001). Our DL-based model
was also compared with other SVM and showed a higher
AUC on three classes (class I: AUC: 0.981, 95%CI: 0.979–
0.984 vs. AUC: 0.942, 95% CI: 0.937–0.947, P
value< 0.001; class II: AUC: 0.907, 95% CI: 0.900–
0.914 vs. AUC: 0.795, 95% CI: 0.782–0.804, P
value< 0.001; class III: AUC: 0.960, 95% CI: 0.956–
0.964 vs. AUC: 0.928, 95% CI: 0.922–0.934, P
value< 0.001).
Discussion

In the current clinical practice, the evaluation of FLM relies
on amniocentesis, an invasive procedure that is used to
analyze the different components of the amniotic fluid.[1,2]

The latest guidelines of ACOG and the Society for
Maternal Fetal Medicine emphasized that the role of
amniotic fluid testing is becoming increasingly limited and
no longer has clinical utility. Therefore, this method should
not be used to assess FLM.[32] Meanwhile, the use of non-
invasive methods to predict lung maturity has been
extensively explored with results showing a good correla-
tion with FLM, but the diagnostic accuracy was inade-
quate for clinical use. In recent years, despite all the
advances in the treatment of NRM, it remains a leading
cause of neonatal morbidity and mortality in infants born
late preterm (28–36 + 6 weeks’ gestation) and even in early
term (37–38 + 6 weeks).[2,3] Therefore, it is necessary to
explore effective and non-invasive methods for prenatal
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Table 3: Results of ten-fold cross-validation for fetal lung gestational age grading model, (%).

Validation
Class I Class II Class III

Average
sequence Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity Accuracy accuracy

1 78.9 90.5 92.9 88.9 73.9 84.8 84.2 81.2 91.3 82.9
2 76.4 90.3 93.7 91.1 74.6 84.2 82.2 83.4 89.5 84.0
3 77.0 92.3 93.4 87.2 67.8 83.0 83.5 88.7 89.3 83.7
4 78.2 90.5 92.1 88.2 73.9 84.4 84.1 85.5 91.4 84.5
5 78.9 92.6 93.7 91.2 72.2 85.2 84.3 88.3 91.5 85.2
6 75.9 93.2 91.8 93.7 63.3 83.0 81.6 94.7 91.5 84.3
7 74.2 91.4 93.3 88.4 68.1 84.1 82.5 82.2 88.6 82.4
8 73.1 96.0 92.8 91.6 67.0 83.3 84.7 81.8 91.2 84.1
9 78.2 87.8 91.9 87.7 71.6 83.3 82.1 87.5 91.1 83.2
10 76.6 92.7 93.5 92.0 65.9 84.3 82.0 90.6 90.2 84.0

Average 76.8 91.7 92.9 90.0 69.8 84.2 83.1 86.4 90.6 83.8

Table 4: Confusion matrix of our method of fetal lung gestational age
grading model.

Predicted class

True class Class I Class II Class III

Class I 3046 258 19
Class II 215 1495 432
Class III 5 206 1337
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assessment of FLM. Compared with traditional algo-
rithms, DL algorithms do not require manually designed
features or learning a classifier based on the features to
obtain classification results. Although traditional machine
learning algorithms have achieved relatively good results in
medical image processing, manual design features require
a deep understanding of the image and the problem.
Ultrasound imaging has the disadvantages of large noise,
irregularity, and blur; making it difficult to design
appropriate features to describe the information of
interest. Therefore, it is difficult for traditional algorithms
to deal with the classification of fetal lungs based on
ultrasound images. In contrast, DL algorithms can
automatically extract task-related features from the
training data and learn a classifier, which is an end-to-
end method.

In this study, we developed and validated a normal fetal
lung GA grading model that could accurately identify fetal
lung ultrasound images of different GAs. The sensitivity of
each class in the independent test set was 91.7%, 69.8%,
and 86.4%, respectively, and the specificity of each class in
the independent test set was 76.8%, 90.0%, and 83.1%,
respectively. The total accuracy reached 83.8%, and the
AUC of each class was 0.982, 0.907, and 0.960,
respectively. The grading model had good stability and
repeatability andwas less disturbed by external conditions.
Since GA is strongly associated with FLM and maybe the
best estimator of risk for respiratory distress syndrome,[33]

the findings of this study confirmed that DL algorithms
have great potential and research value in evaluating FLM.
For any imported fetal lung ultrasound images of 20 to
1834
41 + 6 weeks, the grading model automatically outputs the
classification of gestational weeks of the images by
extracting subtle image information that is not visible to
the naked eye. The results of our study provide preliminary
evidence for the use of AI approaches for the prenatal
prediction of FLM and may support future research
evaluating the relationship between DL algorithms and
lung maturity.

Animal experiments and laboratory tests have shown that
gestational diseases have an impact on fetal lung
development. Winn et al[5] reported that pregnancies
complicated by PE were associated with delayed fetal lung
maturation biochemical profile, as shown by both the
lecithin to sphingomyelin ratio and TDx-fetal lung
maturity (TDx-FLM II, Abbott Laboratories, Abbott
Park, IL, USA) assay values at GAs between 33 and
36 weeks. Najrana et al[6] suggested that increased external
compression secondary to severe oligohydramnios can
compromise lung cell size and interfere with epithelial and
endothelial development. Baack et al[33] used a rat model
and found that late-gestational diabetes affected the
maturation rate of the fetal lung by reducing pulmonary
angiogenesis. The results of these studies indicate that some
gestational diseases can affect FLM. The latest research by
Du et al[34] found that GDM, PE, and normal fetal lungs
can be quickly and accurately classified by ultrasound-
based radiomics techniques, indicating that differences in
fetal lung development between gestational diseases (GDM
and PE), and normal pregnancies were highly significant.
Our study used DL algorithms to extract information from
numerous normal fetal lung ultrasound images to establish
a normal fetal lung grading model that can help to identify
abnormal lung development that can result from some
gestational diseases. The abnormal lungs’ grading results
often do not match the actual GA. In clinical practice,
women at risk of preterm birth between 24 and
34 + 6 weeks of gestation require ACS therapy. After
ACS therapy, we can consider that the risk of delivery is
reduced if the grading model evaluates the fetal lung as
class III, which is equivalent to the 37 and 41 + 6 weeks’
gestation level of normal lungs. Our grading model can be
useful for clinical decision-making.
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Figure 5: (A) The ROC curves of our model; (B) the ROC curves of NB; (C) the ROC curves of RF; (D) the ROC curves of SVM. NB: Naïve Bayes; RF: Random forests; ROC: Receiver operating
characteristic; SVM: Support vector machine.

Table 5: Comparison of diagnostic efficacy among different models, (%).

Models microF1 macroF1 mAUC MAUC

Naïve Bayes 52.9 51.4 71.3 71.4
Random forests 69.3 65.8 87.3 74.7
Support vector machine 73.2 71.1 90.2 88.8
Model in current study 83.8 81.8 95.8 94.9
Model by validation set 84.1 82.2 95.9 95.1

mAUC: Micro-average area under the curve; MAUC: Macro-average area under the curve.
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Previous studies have explored various non-invasive
methods for evaluating FLM by analyzing ultrasound
images. In a study by Maeda et al,[18] fetal lung ultrasonic
gray-level histogram width (GLHW) increased with fetal
lung development; however, there was no change in liver
GLHW. The lung/liver GLHW ratios were <1 at 24 to
29 weeks; however, they were ≥1 at 30 to 35 weeks. The
authors of this study believed that GLHW was reliable,
since it is reproducible in various gain settings with
different ultrasonic imaging devices. Tekesin et al[35]

evaluated the mean gray value of fetal lungs (MGL),
showing a changing pattern with fetal lung development.
1835
However, no significant differences were observed after
32 weeks of gestation. A study by Maeda et al[18] showed
that the MGL was less reliable, since the gray level varied
according to the gain changes among various machines.
Serizawa and Maeda[17] applied ultrasonic GLHW to
predict fetal lung immaturity. The results of the study
showed that fetal lung-to-liver GLHW ratios combined
with GA predicted respiratory distress syndrome, with a
sensitivity of 0.96 and a specificity of 0.72, which was
comparable to invasive amniotic fluid tests. These studies
demonstrated a correlation between quantitative image
analysis and FLM.However, thesemethods can be affected
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by ultrasonic imaging equipment and operators, and the
diagnostic accuracy is reduced, which hinders the clinical
application of quantitative image analysis and prediction
of FLM. Our DL method was not affected by the
sonographers or ultrasonic parameters, such as the type
of ultrasonic equipment or transducer.

In recent years, powerful quantitative techniques for
ultrasound image analysis have been developed due to
improvements in computer technology and image resolu-
tion.[36] Palacio et al[22] used an automatic quantitative
ultrasound analysis (AQUA) texture extractor to extract
descriptors most relevant to FLM, using the TDx FLM
assay II test (TDx-FLM) as a reference. The results of this
study showed that the imaging biomarker based on AQUA
predicted FLM with a sensitivity of 95.1%, a specificity of
85.7%, and an accuracy of 90.3%. Palacio et al[21] and
Bonet-Carne et al[23] applied quantitative ultrasound
texture analysis of the fetal lung (quantusFLM; www.
quantusflm.com; Transmural Biotech, Barcelona, Spain)
that combined texture extraction with machine learning
methods to predict neonatal respiratory diseases. The
quantusFLM predicted NRMwith a sensitivity, specificity,
and accuracy of 74.3% to 86%, 87.0% to 88.6%, and
86.5%, respectively. This study provided evidence that
quantitative texture analysis of lung ultrasound images
could predict neonatal respiratory diseases with similar
accuracy to current tests using amniotic fluid.[23] However,
the common problems of quantitative imaging methods
using traditional machine algorithms still exist, such as the
lack of robustness of blind detection due to changes in
acquisition conditions.[23] Our study explored a new AI
method based on DL algorithms that can help to improve
these problems.[25]

Our method is a new AI method based on DL algorithms,
which recognizes the specific characteristics of ultrasound
images related to the GA and consequently establishes a
classification algorithm. This method is reliable and robust
to small variations in the conditions of image acquisition,
including depth and changes in the gain of the image, and
does not need to be compared with other tissues (fetal liver
and placenta). Compared with traditional machine
learning algorithms, DL algorithms have the advantage
of automatically extracting features related to the maturity
of fetal lungs from ultrasound images, which is different
from traditional machine algorithms that require the
manual design of features. Through the end-to-end
algorithm implementation, the model can optimize the
feature extraction and classification module for increased
accuracy of the classification. To reflect the superiority of
our algorithm, we compared the performance of tradition-
al machine learning algorithms and DL algorithms in
recognizing fetal lung ultrasound images at different GAs.
The comparison results are shown in Table 5. We
concluded that the performance of DL algorithms was
superior to that of traditional machine learning algo-
rithms. In addition, the entire algorithm can automatically
process images without additional operations. Further-
more, DL algorithms use convolutional neural networks to
classify images and GPUs to accelerate model calculations.
Generally, dozens of images can be processed in 1 s.
1836
This study has some limitations that should be considered,
including the fact that this was a retrospective study. The
main limitation of this studywas that the number of images
was insufficient, especially images of classes II and III.
Indeed, AI requires big data research, and more image data
can improve the accuracy of the research. Furthermore,
there was an obvious difference in the number of images
collected in each gestational week. Class I images were
mainly collected from 22 to 24 + 6 weeks, class II images
were mainly collected from 30, 31, and 36 weeks, and class
III images were rarely collected from 41 weeks. This may
lead to inaccurate recognition of lung ultrasound images in
some gestational weeks.

To conclude, this study demonstrated that the normal fetal
lung GA grading model based on DL algorithms had good
accuracy in identifying the ultrasound images of fetal lungs
at different GAs and extracting information on fetal lung
images related to GA. These results can support further
research to establish the potential use of DL algorithms as a
non-invasive predictive method of FLM. And the grading
model can help to identify abnormal lung development
caused by gestational diseases and assess lung maturity
after ACS therapy.
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