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Summary

In the outpatient setting, glucagon‐like peptide‐1 (GLP‐1) receptor agonists have

proved to be highly efficacious drugs that provide glycaemic control with a low risk

of hypoglycaemia. These characteristics make GLP‐1 receptor agonists attractive

agents to treat dysglycaemia in perioperative or high‐dependency hospital settings,

where glycaemic variability and hyperglycaemia are associated with poor prognosis.

GLP‐1 also has a direct action on the myocardium and vasculature—which may be

advantageous in the immediate aftermath of a vascular insult. This is a narrative

review of the work in this area. The aim was to determine the populations of

hospitalised patients being evaluated and the clinical and mechanistic end‐points

tested, with the institution of GLP‐1 therapy in hospital. We searched the PubMed,

Embase, and Google scholar databases, combining the term “glucagon‐like peptide

1” OR “GLP‐1” OR “incretin” OR “liraglutide” OR “exenatide” OR “lixisenatide” OR

“dulaglutide” OR “albiglutide” AND “inpatient” OR “hospital” OR “perioperative” OR

“postoperative” OR “surgery” OR “myocardial infarction” OR “stroke” OR “cerebro-

vascular disease” OR “transient ischaemic attack” OR “ICU” OR “critical care” OR

“critical illness” OR “CCU” OR “coronary care unit.” Pilot studies were reported in

the fields of acute stroke, cardiac resuscitation, coronary care, and perioperative care

that showed advantages for GLP‐1 therapy, with normalisation of glucose, lower glu-

cose variability, and lower risk of hypoglycaemia. Animal and human studies have

reported improvements in myocardial performance when given acutely after vascular

insult or surgery, but these have yet to be translated into randomised clinical trials.
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1 | INTRODUCTION

In the outpatient setting, GLP‐1 receptor agonists (GLP‐1 RA) are

considered to provide effective glycaemic control, weight loss, and
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cardiovascular benefits with a low risk of hypoglycaemia.1,2 The use

of GLP‐1 RA have increased rapidly and are now recommended for

use as second‐line therapy for type 2 diabetes (T2DM).3 As a result,

individuals treated with GLP‐1 RA will be more frequently
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encountered at the inpatient setting. Existing clinical guidelines for

inpatient diabetes control only briefly discuss their role, if at all.4-6 Fur-

thermore, the therapeutic benefit for GLP‐1 RA is being tested in a

range of acute clinical settings including perioperative, coronary care,

and critical care.7-15 This narrative review will outline the inpatient

clinical areas in which GLP‐1 RA are being tested, the panoply of

actions of GLP‐1 that offer the potential for benefit in acute illness,

and the outcome measures reported so far. This review will not

encompass the effectiveness for GLP‐1 RA to reduce hospitalisation

or mortality from macrovascular disease (such as heart failure) which

has been covered extensively elsewhere16,17; nor will it assess the

usefulness of initiating GLP‐1 RA therapy in the months before sur-

gery. GLP‐1 RA have been used with some success for short‐bowel

syndrome18 but our analysis is restricted to the use of GLP‐1 for acute

illness, perioperative, and critical care areas.
2 | SEARCH METHODOLOGY

We conducted a comprehensive search in the English‐language litera-

ture to identify all relevant studies, regardless of publication status or

year of publication. We searched the PubMed, Embase, and Google

scholar databases, combining the term “glucagon‐like peptide 1” OR

“GLP‐1”OR “incretin”OR “liraglutide”OR “exenatide”OR “lixisenatide”

OR “dulaglutide” OR “albiglutide” AND “inpatient” OR “hospital” OR

“perioperative” OR “postoperative” OR “surgery” OR “myocardial

infarction” OR “stroke” OR “cerebrovascular disease” OR “transient

ischaemic attack” OR “ICU” OR “critical care” OR “critical illness” OR

“CCU”OR “coronary care unit.” Studies could include early or late phase

human trials and those using animal models. We searched the National

Institutes of Health database (http://clinicaltrials.gov/) and the EU clin-

ical trials register (www.clinicaltrialsregister.eu) for ongoing and unpub-

lished trials. We applied backward and forward snowballing to identify

further papers. The bibliographies of all included studies and pertinent

reviews were scanned for additional references. If required, the corre-

sponding author of an included study was contacted for information

regarding unpublished trials or complementary information on their

own trial(s). The last search was performed in August 2018.
3 | STROKE AND BRAIN INJURY

GLP‐1 RAs have certain properties that lend themselves to use in

cerebrovascular disease: most obvious is the ability to normalise glu-

cose with a low propensity to hypoglycaemia. Ischaemic stroke leads

to a penumbra of neural tissue that is potentially salvageable.

Hyperglycaemia is associated with worse clinical outcomes in stroke

including haemorrhagic transformation, extent of neurological disabil-

ity, and death.19,20 Of those presenting with ischaemic stroke, 30%

have known diabetes, 20% are newly recognised to have diabetes,

and a further 30% have impaired fasting glucose or glucose toler-

ance.21-23 Therefore, just 20% have normal glucose homeostasis.

Significant consequences arise from dysglycaemia: this may be due

to the production of the excitatory neurotransmitter glutamate, or to
reactive oxygen species which adversely affect the ischaemic penum-

bra. However, clinical trials in acute stroke have failed to show a clin-

ical benefit from the amelioration of hyperglycaemia with insulin in the

first 24 to 48 hours.24-27 Neurological gains from the avoidance of

hyperglycaemia are mitigated by hypoglycaemia from the use of insu-

lin. Hypoglycaemia is associated with increased markers of cerebral

cellular distress including elevated glutamate:lactate/pyruvate ratio:

and glycerol—which may themselves contribute to disability and

death.28-31 There is therefore a J‐shaped association between plasma

glucose and outcome after stroke.32 GLP‐1 RA offer the possibility of

normalising glucose without hypoglycaemia.

In a pilot study of 11 patients with acute ischaemic stroke, subcu-

taneous exenatide (for a median of 6 days) restricted the incidence of

hyperglycaemia (> 8.6 mmol/L) to less than 5%, with no

hypoglycaemia. Of note, nausea and vomiting occurred in half the

cohort,7 which may prove to be a limiting factor in future studies. A

large phase 2 trial is underway: the Trial of Exenatide in Acute Ischae-

mic Stroke (TEXAIS) is a 3‐year, multicentre, open‐label randomised

controlled trial (RCT) comparing exenatide with standard care. It aims

to recruit 528 patients with a clinically meaningful primary end‐point

of major neurological improvement at 7 days.13

Exendin‐4 is a 39 amino acid peptide originally isolated from the

oral secretions of the Gila monster lizard. It shares 53% sequence

homology with GLP‐1 and has been used in a number of preclinical

studies.33 Murine studies of ischaemic brain damage using Exendin‐

434 and liraglutide35 show that they are capable of crossing the

blood‐brain barrier to act directly on the brain to produce neuropro-

tective and anti‐inflammatory effects.36,37 The neuroprotective prop-

erties that GLP‐1 RAs have shown in animal studies have also led to

their evaluation in patients with brain injury after cardiac arrest. A

dual‐centre study in Denmark has investigated the neuroprotective

effects of exenatide administered within 4 hours of the return of

spontaneous circulation to comatose patients resuscitated from out‐

of‐hospital cardiac arrest.14 The efficacy endpoint was the area under

curve (AUC) from 0 to 72 hours after admission of neuron‐specific

enolase—a predictor of outcomes after cardiac arrest.38 Although

exenatide was effective in normalising blood glucose (median blood

glucose 8 hours after admission was 5.8 mmol/L vs 7.3 mmol/L, in pla-

cebo; P < .0001), exenatide did not reduce neuron‐specific enolase

levels and did not significantly improve a composite end‐point of

death and poor neurological function after 180 days.14 Of note,

exenatide was not administered until after the return of spontaneous

circulation which could limit the effectiveness. More recently, a 6‐hour

infusion of either 17.4 μg of exenatide or placebo, within 4 hours from

sustained return of spontaneous circulation, showed that exenatide

lowered glucose and increased the clearance of lactate (a surrogate

marker for adequate tissue perfusion39) by 21% more than placebo.15
4 | MYOCARDIAL INFARCTION

Over 20 years after the “Diabetes Mellitus Insulin‐Glucose Infusion in

Acute Myocardial Infarction” (DIGAMI) study, evidence for the

http://clinicaltrials.gov/
http://www.clinicaltrialsregister.eu
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necessity of tight glycaemic control in the immediate aftermath of

AMI remains debatable.40 The DIGAMI study was primarily a trial

of glucose‐insulin‐potassium (GIK) rather than glycaemic control and

was predicated by the ideas that GIK may ameliorate platelet

aggregation, reduce transmembrane excitability and therefore

arrhythmias, and facilitate a switch in myocardial metabolism

away from oxygen‐dependent fatty acid metabolism to carbohydrate

metabolism. After the study, it could not be determined whether

mortality benefit at 1 year was due to the immediate intravenous

infusion of GIK, subsequent subcutaneous insulin, or both. It was

hoped that the follow‐up DIGAMI2 would answer this but

unfortunately was underpowered, in part due to protocol violations

between groups and advances in therapeutic use of aspirin and

statins.41 This results in a quandary as to glycaemic management

after AMI. However, GLP‐1 RA have properties, in addition to

glucose lowering, that make them attractive for use in the immediate

aftermath of AMI. The GLP‐1 receptor is expressed in the heart,42

and exendin‐4 directly activates cardiomyocyte signalling pathways43

which raises the possibility they may act directly on the cardiac

muscle to improve ventricular ejection fraction and cardiac index.16

GLP‐1 RA may also have an effect on increasing myocardial reliance

on glucose, rather than fatty acid metabolism (thereby being more

oxygen efficient), akin to that proposed for GIK, although this theory

is contentious.44-47 Altered myocardial metabolism has been reported

with albiglutide. In a murine model, albiglutide reduced the myocar-

dial infarct size in association with increased cardiac uptake and

utilisation of glucose. Gene expression analysis indicated an upregula-

tion of key glucose metabolism genes in the preserved myocardium

post treatment.48

Intriguingly, GLP‐1 RA has a direct effect on myocytes indepen-

dent to its action via the GLP‐1 receptor. Studies of isolated

cardiomyocytes, from GLP‐1 receptor knockout mice, have shown a

robust response to lixisenatide on the contractility response.49

Within the coronary vessels themselves, human recombinant GLP‐1

(7‐36) amide—the cleavage product of GLP‐1 (1‐36)—exerts a benefi-

cial effect on endothelial function.50,51 In coronary endothelial cells

taken from subjects with T2D, Exendin‐4 could augment endothelial

nitric oxide synthase (eNOS) phosphorylation and nitric oxide (NO)

production52—pathways that are known to lead to vascular relaxa-

tion.53 Glucagon‐like peptide 1 [7‐36 amide]54 and liraglutide55 can

exert a protective effect against endothelial dysfunction induced by

hyperglycaemia and/or inflammation through a reduction of tumour

necrosis factor‐α (TNF‐α)‐induced nuclear factor‐κB activation. This

can decrease inflammatory gene expression, including vascular cell

adhesion molecule‐1 and monocyte chemoattractant protein‐1.56

These properties have made GLP‐1 RAs an attractive treatment

option for patients with acute coronary ischaemia, as was suggested

from a number of animal models.57-60 In 10 human subjects with left

ventricular (LV) dysfunction, a 72‐hour infusion of GLP‐1 (7‐36)

amide (1.5 pmol/kg/min), commenced after primary coronary angio-

plasty for acute myocardial infarction, resulted in improved global

and regional LV wall motion scores and reduced hospital stay

(6.1 ± 1.3 days) vs 9.8 ± 1.5 days in controls.61 There followed three
publications by a group in Copenhagen, from a larger RCT (n = 172)

composed of patients with ST elevation myocardial infarction

(STEMI) treated with exenatide,9-11 both with and without diabetes.

Improvements in infarct size were seen, but no mortality benefit,

when administered intravenously during primary percutaneous coro-

nary intervention (PCI).9,10 Since then, most,11,62-64 but not all,65 tri-

als have reported an effect of reducing coronary infarct size.

Differences in glycaemic control achieved by the intervention may

go towards explaining the difference. The protocol used by the

Copenhagen group9-11 comprised exenatide or placebo given intrave-

nously 15 minutes prior to intervention and continued 6 hours post‐

PCI—at which time blood glucose was 8.0 mmol/L in controls and

6.3 mmol/L with exenatide. Conversely in a study by Roos et al,65,66

exenatide was administered for 72 hours after primary angioplasty in

91 individuals, with blood glucose measured every 3 hours on day

one, reduced to four‐times per day thereafter; there were no differ-

ences in the number of hypoglycaemic episodes (considered

<4 mmol/L [10 events in exenatide vs 9 in placebo; 0.530]) or

hyperglycaemic episodes (considered >10 mmol/L [3 events in

exenatide vs 10 in placebo; 0.064]).

The use of GLP‐1 RA in non‐ST elevation myocardial

infarction (nSTEMI) was examined in a study of 90 patients

randomised to liraglutide (0.6 mg for 2 days, 1.2 mg for 2 days,

followed by 1.8 mg for 3 days) or placebo for 7 days; liraglutide

improved LV ejection fraction by 4.7% more than placebo after

3 months.67 However, this seems a modest improvement and may

not translate into measurable clinical outcomes. A significant

improvement has been defined as an increase in the ejection fraction

of ≥8% (which is two times the interobserver variability with

echocardiography).68

Is it feasible to achieve rapid normalisation of glucose after myo-

cardial infarction with GLP‐1? This was addressed in a study of 40

patients admitted to a CCU with hyperglycaemia ranging from 7.8 to

22.2 mmol/L.69 Patients received intravenous exenatide as a bolus

followed by a fixed dose infusion for up to 48 hours. Exenatide effec-

tiveness was benchmarked to historical controls treated with insulin

infusions. There was no difference in performance in the attainment

of a target glucose range of 5.6 to 7.8 mmol/L although exenatide

was discontinued in three patients after failure to achieve glycaemic

control. Control was achieved without any episodes of severe

hypoglycaemia (<2.8 mmol/L) although nausea (occurring in 16

patients) was problematic. By far, the largest trial to date has been

the Evaluation of LIXisenatide in Acute coronary syndrome (ELIXA)

study.70 This randomised 6068 patients within 180 days of a cardio-

vascular event that required hospitalisation. Once‐daily subcutaneous

injection of 20 mcg lixisenatide, as an add‐on therapy to background

antidiabetic medications, for 25 months was noninferior to placebo

for the composite occurrence of cardiovascular death, nonfatal MI,

nonfatal stroke, hospitalisation for unstable angina or heart failure,

and revascularization. This study provided data for cardiovascular

safety of lixisenatide but no advantage. The 6‐month window from

cardiovascular event to recruitment does, however, make it distinct

from the trials described.
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5 | CARDIAC SURGERY

Perioperative glucose control reduces the incidence of sepsis and

mediastinitis after cardiothoracic surgery.71,72 Van den Berghe's 2001

paper,73 reporting improved postoperative outcomes with tight

glycaemic control after (predominantly cardiovascular) surgery, continues

to be hotly debated as the findings have not been replicated in

multicentre trials.74-77 There is an increased likelihood of hypoglycaemia

from the intensification of glucose targets with insulin therapy, which

leads to worse outcomes.74,76,78 GLP‐1 therapy offers the prospect of

glycaemic control with less likelihood of hypoglycaemia after coronary

surgery which may tip the balance in favour of tighter glycaemia targets

when using this drug. The perioperative administration of exenatide

(1.2‐1.5 pmol/kg/min) has proved to be effective at improving glucose

levels in patients with diabetes and stress hyperglycaemia undergoing

cardiac surgery and can reduce perioperative insulin requirements,79-81

although reduction in hypoglycaemia was not always observed.80 One

trial in subjects withT2DM used a much higher infusion rate (3.6 pmol/

kg/min) for 12 hours after transfer from the operating room to the inten-

sive care unit (ICU)82 combined with insulin as a rescue medication if glu-

cose concentrations were > 7.8 mmol/L, for over 3 hours. The AUC for

plasma glucose was no different between controls (receiving insulin

alone) andexenatide. Comparedwithpatients receiving intravenous insu-

lin, a lesser insulin requirement, with fewer dose adjustments, was neces-

sary in the GLP‐1 group over the first 6 hours.

In a small study of 20 patients with coronary heart disease and pre-

served LV function who underwent CABG, use of GLP‐1 [7‐36 amide]

as a continuous infusion beginning 12 hours before CABG and con-

tinuing for 48 hours resulted in less requirement for inotropic sup-

port—even in patients without diabetes.83 However, no

improvement in echocardiographic features of LV dysfunction was

seen in this study, or in a similarly executed study of perioperative

intravenous exenatide with cardiothoracic surgery.81,83 These postop-

erative trial outcomes corroborate the findings post MI suggesting lit-

tle role for exogenous GLP‐1 to improve cardiac performance acutely.

The “GLP‐1 for bridging of hyperglycaemia during cardiac surgery”

(GLOBE) study is a large randomised parallel placebo‐controlled trial, cur-

rently underway, with the intention of recruiting 274 patients undergoing

cardiac surgery, with or without diabetes mellitus.84 Patients will receive

0.6‐mg liraglutide or placebo the evening before and 1.2‐mg liraglutide or

placebo just prior to surgery. The primary endpoint is intraoperative insu-

lin requirement: a relevant outcome as greater insulin infusion rates are

associated with adverse clinical sequelae.73,85 Taken together, these

studies suggest that perioperative GLP‐1 helps to achieve glycaemic con-

trol, with a lessened requirement for insulin. Further evidence is required

whether this translates into fewer hypoglycaemic episodes. The immedi-

ate haemodynamic benefits are unproven.
6 | GENERAL SURGERY

Less work has been undertaken in noncardiac surgery. In a proof‐of‐

concept study, eight patients with T2DM who had undergone major
surgical procedures were studied with a cross‐over design, between

the second and the eighth postoperative day.86 Patients received intra-

venous GLP‐1 (7‐36) amide (1.2 pmol/kg/min) or placebo over 8 hours,

each administered in randomised order in the fasting state. From a

fasting glucose of 10 mmol/L, infusion of GLP‐1, lowered plasma glu-

cose concentration to target (<7 mmol/L) within 150 minutes, whereas

glucose remained above target throughout the 8‐hour placebo infusion

(P < .001). Rapid attainment of normoglycaemia in the postoperative

period makes GLP‐1 an attractive option. Data are needed as to the

efficacy of simple subcutaneous regimes.

For patients undergoing hip surgery, perioperative hyperglycaemia

is associated with coagulation activation and an increased risk of

venous thromboembolism.87 The effect of liraglutide on markers of

coagulation has been tested in obese adults without diabetes, over

the first 3 days after hip surgery. Despite improvement in median glu-

cose (5.5 mmol/L vs 5.8 mmol/L with placebo; P = .04), there was a

negligible change in the markers of coagulation activation.88 Overall,

there are few data to support the specific indication of GLP‐1 RA

use with general surgery.
7 | INTENSIVE CARE UNIT

The challenge of maintaining blood glucose between the hazards of

hyperglycaemia and hypoglycaemia is equally true in ICU as it is with

perioperative patients. Tight glycaemic control (4.4‐6.1 mmol/L) sig-

nificantly increases the risk for hypoglycaemia, which can lead to poor

outcomes.74,76 The administration of GLP‐1 (7‐36) amide has been

tested for its glucopaenic action at the time of ICU admission. In a par-

allel‐design RCT, 72‐hour infusion of GLP‐1 did not reduce intrave-

nous insulin requirement nor the rate of hypoglycaemia compared

with saline control, although there was less plasma glucose variability

with GLP‐1. Low glucose variability is protective in ICU patients, even

when mean glucose levels are elevated,89 making this a potential attri-

bute of GLP‐1 therapy in the ICU environment.

Of note, this study did not control for the routes or quantity of

nutritional support.8 An open‐label RCT in India evaluated the effect

of commencing fixed‐dose liraglutide (1.2 mg) from the time of ICU

admission: in a study population of 120 individuals, 46 were consid-

ered to have preexisting T2DM and another 53 stress‐hyperglycaemia.

Intravenous insulin infusion was also used as required. Liraglutide

reduced hypoglycaemia frequency and the variation of capillary glu-

cose but with no difference in mean capillary glucose.90 An intriguing

line of inquiry is whether GLP‐1 can also ameliorate ICU catabolism.

Critically ill patients in ICU suffer significant muscle loss. This worsens

ICU mortality but also leads to debilitating weakness in those surviving

to ICU discharge.91 Hyperglucagonaemia is thought to be a key factor

to provoke catabolism and hyperglycaemia in critical illness.92,93 Given

that a core attribute of GLP‐1 is to suppress glucagon release from

pancreatic alpha‐cells,94 GLP‐1 has theoretical anticatabolic action as

well as being effective in ameliorating stress hyperglycaemia.86,95

A further challenge in prolonged critical illness is to maintain

normoglycaemia in the setting of enteral and parenteral feeding
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protocols. A number of mechanistic studies from a group in Ade-

laide, Australia have shown that an infusion of GLP‐1‐(7–36) amide

at 1.2 pmol/kg/min attenuates, but not abolishes, the glycaemic

response to enteral nutrition in critically ill patients with stress

hyperglycaemia95,96 and with T2DM.97 Slowing of gastric emptying

appears to contribute to the glucose‐lowering effect of exogenous

GLP‐1 in critically ill patients following a 100‐mL intragastric

“meal.”96 However, delayed gastric emptying is common in the criti-

cally ill and may occur in up to half of all ventilated patients.98 This

may limit the magnitude of glycaemic control that could be achieved

with GLP‐1 RA during enteral feeding.96 Even so, there may be the

potential for benefit even in patients fed parenterally. In a cross‐over

study of nine critically ill patients fed with parenteral nutrition

consisting of glucose (3.2 ± 1.4 mg/kg/min), amino acids (n = 8;

0.9 ± 0.2 mg/kg/min), with or without lipid emulsions, 4‐hour infu-

sion of GLP‐1‐(7‐36) amide lowered glucose from

11.7 ± 1.3 mmol/L (with placebo) to 8.8 ± 1.4 mmol/L

(P < .001).99 Nausea is often encountered with GLP‐1 RA but may

be less of a concern in sedated patients receiving small intestinal

feeding. Further issues to contend with in critical illness are kidney

failure, pancreatitis, and the use of vasoactive drugs (including cate-

cholamines) leading to a counter‐regulatory hormonal response.
8 | CONCLUSION

GLP‐1 RA have a number of properties in addition to glucose lowering,

which could be advantageous when started in an acute, hospitalised

setting. However, there are few trial data in human subjects to sup-

port their adoption in routine clinical practice in this environment.

The increasing use of GLP‐1 RA in outpatients will mean that patients

using these medications will become increasingly seen in acute set-

tings. Trials are needed to establish their place in acute illness.
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