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Abstract

Spatial autocorrelation and spatial interaction are two important analytical processes for

geographical analyses. However, the internal relations between the two types of models

have not been brought to light. This paper is devoted to integrating spatial autocorrelation

analysis and spatial interaction analysis into a logic framework by means of Getis-Ord’s

indexes. Based on mathematical derivation and transform, the spatial autocorrelation mea-

surements of Getis-Ord’s indexes are reconstructed in a new and simple form. A finding is

that the local Getis-Ord’s indexes of spatial autocorrelation are equivalent to the rescaled

potential energy indexes of spatial interaction theory based on power-law distance decay.

The normalized scatterplot is introduced into the spatial analysis based on Getis-Ord’s

indexes, and the potential energy indexes are proposed as a complementary measurement.

The global Getis-Ord’s index proved to be the weighted sum of the potential energy indexes

and the direct sum of total potential energy. The empirical analysis of the system of Chinese

cities are taken as an example to illustrate the effect of the improved methods and measure-

ments. The mathematical framework newly derived from Getis-Ord’s work is helpful for fur-

ther developing the methodology of geographical spatial modeling and quantitative analysis.

1 Introduction

Spatial autocorrelation and spatial interaction models represent two theoretical cornerstones

and classic contents of geographical analyses. Spatial autocorrelation is based on the concept

of correlation coefficient, and the main measurements include Moran’s index [1], Geary’s

coefficient [2], and Getis-Ord’s indexes [3, 4]. Spatial interaction is based on the gravity con-

cept, and the chief models and methods including gravity model [5–7], potential energy for-

mulae [8, 9], and entropy-maximizing model family [10–12]. However, the mathematical links

between spatial autocorrelation and spatial interaction have not been revealed at present.

In fact, there are significant similarities and differences between the two methods. The similar-

ities between spatial autocorrelation and interaction are as follows. First, both of them are

based on size measurements and distance decay effect. Second, both of them can be used to

describe strength patterns of spatial association between different geographical elements. The

principal difference between the two methods rests with the correlation properties. Spatial
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autocorrelation is focused on the intra-correlation or self-correlation of a group of elements,

while the spatial interaction is focused on the inter-correlation or cross-correlation between

many different elements, especially two elements. Sometimes, if we examine the same elements

in a geographical system by using the same size and distance measurements, auto-correlation

and cross-correlation are often weaved into one another. Thus, spatial autocorrelation analysis

may be combined with spatial interaction modeling. If so, we can find a new way of spatial

analysis for characterizing geographical patterns and processes.

In a sense, spatial autocorrelation analyses are more widely made than spatial interaction

analyses in scientific studies. The former is a theory of spatial statistics, while the latter is a geo-

graphical theoretical model. The methods of spatial autocorrelation have been developing [4,

13–23]. The statistics of spatial autocorrelation such as Moran’s I and Ripley’s K has been

applied to spatial association processes in various fields, for example, man-land relationships

[24], human diseases [25–29], animal disease transmission [30], human fertility and mortality

[31, 32], human genome [33], spatial pattern of urbanization [34], ecological patterns [35–37],

maritime anomaly detection [38], and spatial sampling and data analysis [39–43]. In contrast,

spatial interaction analysis is mainly confined to geographical research. A discovery will be

made in this work that the Getis-Ord’s indexes can be used to connect spatial autocorrelation

and spatial interaction based on the power-law decay. If we can express the inherent correlation

between them by mathematical equations, we will be able to advance the methodology of spatial

analysis. This paper is devoted to reconstructing the mathematical expressions of Getis-Ord’s

indexes and thus integrating the spatial interaction into spatial autocorrelation analysis using

Getis-Ord’s indexes. Solving this problem results in a series of improvements to the models and

measurements based on the Getis-Ord’s indexes. The rest parts are organized as follows. First, a

new mathematical framework of spatial autocorrelation based on Getis-Ord’s indexes are pro-

posed, and a scatterplot is introduced into the new framework to visualize the analytical process.

Then, the local Getis-Ord’s indexes based on the power-law distance decay are proved to be the

rescaled potential energy indexes, and the global Getis-Ord’s index proved to be the weighted

sum of the local indexes. Finally, the system of the main Chinese cities are taken as an example

to illustrate how to use the new analytical framework of spatial autocorrelation process.

2 Theoretical results

2.1 Reconstructing formulae of Getis-Ord’s indexes

In spatial autocorrelation analysis, Getis-Ord’s indexes are important complement to Moran’s

indexes and Geary’s coefficients. Using Getis-Ord’s indexes, we can reveal the inherent rela-

tionship between spatial autocorrelation and spatial interaction. Firstly, the mathematical

expression of Getis-Ord’s indexes should be reconstructed in a new form. Then, we can reveal

the mathematical relationships between Getis-Ord’s indexes and potential indexes. Suppose

that there are n geographical elements (e.g., cities) in a regional system (e.g., a network of cit-

ies) which can be measured by a size variable x (e.g., city population). A vector of the element

sizes is as follows

x ¼ ½x1 x2 � � � xn�
T
; ð1Þ

where xi is the size measurement of the ith element (i = 1,2,. . .,n). The sum of xi is as below:

S ¼
Xn

i¼1

xi: ð2Þ
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The unitized vector of x can be given by y = x/S = [y1, y2, . . ., yn]T, in which the ith entry is

yi ¼
xi
S
¼ xi=

Xn

i¼1

xi ¼
xi
n�x
; ð3Þ

in which �x denotes the mean of xi. The unitization processing depends on the mean of size var-

iable, and average value represents the characteristic length of a sample. The concept of uniti-

zation based on sum is often confused with the notion of normalization based on range in

literature. The variable ymeets the condition of unitization such as

Xn

i¼1

yi ¼
Xn

i¼1

ðxi=
Xn

i¼1

xiÞ ¼
1

S

Xn

i¼1

xi ¼ 1: ð4Þ

Thus, Getis-Ord’s index G can be re-expressed in a simple way by means of the unitized

variable. Based on a spatial contiguity matrix (SCM), we can construct a spatial weight matrix

(SWM). Suppose that there is an n-by-n unitized spatial weights matrix (USWM) such as

W ¼ ½wij�n�n; ð5Þ

where i, j = 1,2,. . .,n. The three properties of the matrix are as follows: (1) Symmetry, i.e., wij =
wji; (2) Zero diagonal elements, namely, |wii| = 0; (3) Unitization condition, that is

Xn

i¼1

Xn

j¼1

wij ¼ 1: ð6Þ

Thus the global Getis-Ord’s index G can be expressed in a quasi-quadratic form as follows

G ¼ yTWy; ð7Þ

which is simple and more convenient than the conventional expression of Getis-Ord’s index.

In fact, G is not a really a quadratic form because W is not a positive definite matrix. Expand-

ing Eq (7) yields the original formula of Getis-Ord’s index [3, 4]

G ¼
Xn

i¼1

Xn

j¼1

wijyiyj ¼

Xn

i¼1

Xn

j¼1

wijxixj

Xn

i¼1

Xn

j¼1

xixj

; ð8Þ

where wij denotes the elements of a spatial weight matrix, W [16, 44]. Eq (8) is the common math-

ematical expression of the global Getis-Ord’s index. The local Getis’s G can be re-written as

G ¼Wy; ð9Þ

where G = [G1,G2,. . .,Gn]T. Accordingly, the expanded form is

Gi ¼
Xn

j¼1

wijðxj=
Xn

j¼1

xjÞ ¼
Xn

j¼1

wijyj; ð10Þ

which represents an important measurement of local spatial autocorrelation.

Now, we can investigate the association of spatial autocorrelation with spatial interaction.

In fact, if we use the reciprocals of distances between geographical elements (locations) to con-

struct a spatial contiguity matrix, Eq (10) proved to be equivalent to the formula of potential

energy. Proposed by Stewart [9, 45, 46], potential energy is a useful measurement in urban
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geography [47]. In fact, the local Getis’s G reflects a kind of normalized potential energy, and

this will be demonstrated next. A normalized potential energy can be defined as follows

Ei ¼ ðxi=
Xn

i¼1

xiÞ
Xn

j¼1

ðwijxj=
Xn

j¼1

xjÞ ¼ yi
Xn

j¼1

wijyj; ð11Þ

which bears an analogy with local Moran’s index in form. It can be termed the Local Indicators
of Spatial Interaction (LISI), which bears an analogy with the local indicators of spatial associa-

tion (LISA) [48, 49]. The G value is a relative measurement, while the E value is an absolute

measurement for spatial association. It can be proved that

G ¼
Xn

i¼1

Ei ¼
Xn

i¼1

yi
Xn

j¼1

wijyj ¼
Xn

i¼1

Xn

j¼1

wijyiyj; ð12Þ

which indicates that the global Getis-Ord’s indexG equals the sum of the total potential energy Ei.
Scientific description based on mathematical theory is to utilize characteristic scales, which

can be represented by eigenvalues in linear algebra. The theoretical eigen equation of Getis’s

index can be derived from the abovementioned definitions. Eq (7) multiplied left by vector y

on both sides of the equal sign yields

M�y ¼ yyTWy ¼ Gy; ð13Þ

where

M� ¼ yyTW ð14Þ

can be termed the Ideal Spatial Correlation Matrix (ISCM) in a theoretical sense. ISCM is the

outer product correlation matrix (OPCM). In Eq (13), y is the eigenvector (characteristic vec-

tor) of M
�

and Getis-Ord’s index G is just the corresponding maximum eigenvalue (character-

istic root). Expanding Eq (13) yields

y1

y2

..

.

yn

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

y1 y2 � � � yn
� �

w11 w12 � � � w1n

w21 w22 � � � w2n

..

. ..
. . .

. ..
.

wn1 wn2 � � � wnn

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼

y1

Xn

j¼1

w1jyj y1

Xn

j¼1

w2jyj � � � y1

Xn

j¼1

wnjyj

y2

Xn

j¼1

w1jyj y2

Xn

j¼1

w2jyj � � � y2

Xn

j¼1

wnjyj

..

. ..
. . .

. ..
.

yn
Xn

j¼1

w1jyj yn
Xn

j¼1

w2jyj � � � yn
Xn

j¼1

wnjyj

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; ð15Þ

which is important for the autocorrelation analysis based on Getis-Ord’s indexes. Comparing

Eq (15) with Eq (11) shows that the elements in the diagonal of M
�

give the normalized poten-

tial energy of a geographical system. The trace of M
�

is equal to the global Getis-Ord’s index,

G. The sum of each volume of M
�

yields the local Getis’ G, that is

Ek ¼
Xn

i¼1

yi
Xn

j¼1

wkjyj; ð16Þ

where i, j, k = 1,2,. . .,n. Please note that Eq (16) is different from Eq (12). The sum of each row
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of M
�

gives the product of yi and the sum of Gi, namely,

yi
Xn

k¼1

Xn

j¼1

wkjyj ¼ yi
Xn

i¼1

Gi; ð17Þ

which implies

Xn

i¼1

Gi ¼
Xn

k¼1

Xn

j¼1

wkjyj ¼
Xn

i¼1

Xn

j¼1

wijyj; ð18Þ

where i, j, k = 1,2,. . .,n. Eqs (16), (17) and (18) can be verified by a simple example. This sug-

gests that we can calculate the normalized potential energy, potential energy indexes, global

Getis-Ord’s index, and local Getis-Ord’s indexes by means of the matrix M
�

.

2.2 Actual spatial correlation matrix

The practical spatial correlation matrix is different from the ideal spatial correlation matrix. In

empirical studies, the outer product yyT in Eq (13) can be substituted with the inner product

yTy. In fact, the result of yTy is a constant. So we have

yyTy ¼ yTyy ¼ ly; ð19Þ

which suggests that the parameter λ = yTy is the maximum eigenvalue of the outer product

matrix yyT, and the unitized size vector y is the corresponding eigenvector. Developing Eq

(19) yields

y1

y2

..

.

yn

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

½ y1 y2 � � � yn �

y1

y2

..

.

yn

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

¼

y1

Xn

i¼1

y2

i

y2

Xn

i¼1

y2

i

..

.

yn
Xn

i¼1

y2

i

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼ l

y1

y2

..

.

yn

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

: ð20Þ

Further, it can be shown that λ = yTy is the maximum eigenvalue of yyT. For a square

matrix, the trace of yyT is

Trðyy
TÞ ¼

Xn

i¼1

y2

i ¼ l ¼ l1 þ l2 þ � � � þ ln; ð21Þ

where Tr refers to “finding the trace (of yyT)”. If λ1 = λmax = yTy, then we will have

l ¼
yTy; l ¼ lmax

0; l 6¼ lmax

: ð22Þ

(
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For arbitrary λ, the extended form of yyT is as below:

yyT ¼

y1

y2

..

.

yn

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

½ y1 y2 � � � yn � ¼

y1y1 y1y2 � � � y1yn

y2y1 y2y2 � � � y2yn

..

. ..
. . .

. ..
.

yny1 yny1 � � � ynyn

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

: ð23Þ

According to the Cayley-Hamilton theorem, the eigenvalues of any n-by-nmatrix are iden-

tical to the characteristic roots of the polynomial equation. The characteristic polynomial

results from the determinant of the matrix yyT, that is

lE � yyT ¼

l � y1y1 � y1y2 � � � � y1yn
� y2y1 l � y2y2 � � � � y2yn

..

. ..
. . .

. ..
.

� yny1 � yny1 � � � l � ynyn

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

¼ 0; ð24Þ

where E denotes the identity/unit matrix. Finding the characteristic roots of Eq (24) yields λ1 =

λmax = yTy = y1
2+y2

2+. . .+yn2 and λ2 = λ3 = . . . = λn = 0.

Now, a practical autocorrelation expression based on the global Getis-Ord’s index can be

given by matrixes and vectors. Substituting the maximum eigenvalue λ for the corresponding

matrix yyT in Eq (13) products a new mathematical relation. The precondition that Eq (7)

comes into existence is

lWy ¼ Gy: ð25Þ

In fact, Eq (25) is left multiplied by yT yields Eq (7). This implies that we can derive Eq (7)

from Eq (25). Obviously, Getis-Ord’s index is the maximum eigenvalue of the weight matrix

λW, and y is the corresponding eigenvector, which can be normalized as y/
p
λ. Eq (25) can be

re-expressed as a matrix scaling relation such as

My ¼ lWy ¼ yTyWy ¼ Gy; ð26Þ

where

M ¼ lW ¼ yTyW: ð27Þ

In this Eq, M can be termed the Real Spatial Correlation Matrix (RSCM) in the sense of

application. RSCM is the inner product correlation matrix (IPCM). The trace of the matrix

λW is the eigenvalue with the minimum absolute value, i.e. Tr(λW) = 0. Normalizing the

eigenvector yields

yo ¼
y
ffiffiffiffiffiffiffiffi
kyk

p ¼
y
ffiffiffi
l
p : ð28Þ

If we use the mathematical software such as Matlab to calculate the eigenveactor of yyTW

or λW, the result will be y˚ rather than y. Comparing Eq (25) with Eq (13) shows

yyTWy ¼ lWy: ð29Þ
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This indicates that the eigenvector G = Wy is still the eigenvector of the outer product

matrix yyT, and the corresponding eigenvalue is λ = yTy. Substituting Eq (9) into Eq (29)

yields

yyTG ¼ lG; ð30Þ

which suggests that the vector of local Getis-Ord’s index is the eigenvector of yyT correspond-

ing to the eigenvalue λ. Thus we have

ðlE � yyTÞWy ¼ ðlW � yyTWÞy ¼ 0; ð31Þ

in which 0 refers to the zero/null vector. However, Eqs (29) and (31) cannot occur unless the

spatial contiguity matrix is a unit matrix. In other words, the vector G is not really an eigenvec-

tor of yyT. In empirical analysis, the null vector should be replaced by a residual vector. An

approximation relation is as follows

My ¼ lWy! yyTWy ¼ M�y; ð32Þ

where the arrow “!” denotes “infinitely approach to” or “be theoretically equal to”. There are

always errors between the inner product correlation matrix M = yTyW and the outer product

correlation matrix M� = yyTW. Based on the error vector, we can define an index to measure

the degree of spatial autocorrelation. The stronger the spatial autocorrelation is, the closer the

vector My will be to the vector M
�

y. A finding is that, according to the Eqs (13) and (26), the

global Getis-Ord’s index proved to be the eigenvalue of spatial correlation matrixes. As indi-

cated above, an eigenvalue of a matrix is the characteristic root of the corresponding multino-

mial of the determinant of the matrix. It represents a characteristic length of spatial analysis.

This suggests that, like Moran’s I, Getis-Ord’s G is also a characteristic parameter of geographi-

cal spatial modeling.

2.3 Getis-Ord’s scatterplot

The spatial analytical process based on Getis-Ord’s index can be visualized by scatter plots. In

order to find new approaches to evaluating Getis-Ord’s indexes and introducing Getis-Ord’s

scatterplot into spatial autocorrelation analysis, two vectors based on spatial correlation

matrixes should be defined. One is the outer product vector as below

f� ¼ M�y ¼ yyTWy ¼ Gy; ð33Þ

which is based on Eq (13). The other is the inner product vector as follows

f ¼ My ¼ yTyWy ¼ Gy; ð34Þ

which is based on Eq (26). The relationship between y and f
�

suggests the theoretical autocor-

relation trend line, and the dataset of y and f, indicates the scatter points of actual autocorrela-

tion pattern. The residuals of spatial autocorrelation can be defined as

ef ¼ f � f� ¼ My � M�y ¼ ðlE � yyTÞWy; ð35Þ

where ef refers to the errors of the Getis-Ord’s spatial autocorrelation. The squared sum of the

residuals Sf is

Sf ¼ eTf ef ¼ yTWðlE � yyTÞðlE � yyTÞWy! 0: ð36Þ

The value of ef fluctuates around 0; therefore, the Sf value approaches zero.
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By analogy with Moran’s scatterplot, we can employ scatter point graphs to make local spa-

tial autocorrelation analysis based on Getis-Ord’s indexes. If the unitary vector y represents

the x-axis, and the corresponding vector λWy represents the y-axis, a Getis-Ord’s scatterplot

will be generated. Further, a “trend line” can be added to the plot: the x-axis is still the unitary

vector, y, but the y-axis is yyTWy. In other words, the relationship between y and λWy forms

the scatter points, while the relationship between y and yyTWy makes the trend line. Differing

from Moran’s index which comes between -1 and 1, Getis-Ord’s index ranges from 0 to 1.

That is to say, G�0. As a result, the trend line based on yyTWy does not always match the scat-

ter points based on λWy. In fact, for the positive spatial autocorrelation (Moran’s I>0), a

Getis-Ord’s trend line is consistent with its scatter points; however, for the negative spatial

autocorrelation (Moran’s I<0), a Getis-Ord’s trend line is inconsistent with its scatter points.

In many cases, a trend line of Getis-Ord’s scatter plot serves for a dividing line, and the data

points fall into two categories. By means of the scatter points and trend line, we can divide the

geographical elements into two groups.

3 Discussion

3.1 Association of autocorrelation with interaction

So far, a series of improvement and development of the spatial autocorrelation analysis

based on Getis-Ord’s indexes have been fulfilled. Using the improved expressions of Getis-

Ord’s indexes, we can associate spatial autocorrelation analysis with spatial interaction anal-

ysis. The main findings and innovations of this work are as follows. First, the computational

formulae of Getis-Ord’s indexes are simplified and normalized. Unitizing size vector and

spatial weight matrix, we can express Getis-Ord’s index in the simpler way so that the calcu-

lations become easier. Second, a scatter plot can be introduced into the analytical process.

By analogy with Moran’s scatter plot, we can draw a scatter plot for Getis-Ord’s autocorrela-

tion analysis. Using the scatter plot, we can visualize the spatial patterns and divide geo-

graphical elements into several groups. Third, Getis-Ord’s index proved to be an eigenvalue

of a spatial correlation matrix. This suggests that Getis-Ord’s index is actually a characteris-

tic length of spatial autocorrelation. Fourth, if we use the reciprocals of geographical dis-

tances to define spatial contiguity, Getis-Ord’s index is demonstrated to be equivalent to

potential energy. Suppose that spatial contiguity matrix is generated using power-law decay

and the distance decay exponent equals 1. Getis-Ord’s index can be converted into local

potential energy. Thus, spatial autocorrelation is mathematically associated with spatial

interaction.

The precondition of the abovementioned innovations is reconstruction of

Getis-Ord’s index formula with matrixes and vectors. It is easy to prove the following rela-

tion:

Xn

i¼1

Xn

j¼1

xixj ¼
Xn

i¼1

xi
Xn

j¼1

xj; ð37Þ

where

Xn

i¼1

xi ¼
Xn

j¼1

xj ¼ const; ð38Þ
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in which const denotes a constant. Thus, re-expressing Eq (8) yields

G ¼

Xn

i¼1

Xn

j¼1

wijxixj

Xn

i¼1

xi
Xn

j¼1

xj

¼
Xn

i¼1

Xn

j¼1

wijð
xi

Xn

i¼1

xi

xj
Xn

j¼1

xj

Þ ¼
Xn

i¼1

Xn

j¼1

wijyiyj; ð39Þ

which is equivalent to Eq (7). The relation between the global Getis-Ord’s index and the

local Getis-Ord’s index is

G ¼
Xn

i¼1

xi
Xn

i¼1

xi

Xn

j¼1

wijð
xj

Xn

j¼1

xj

Þ ¼
Xn

i¼1

yi
Xn

j¼1

wijyj ¼
Xn

i¼1

yiGi; ð40Þ

in which Gi is defined by Eq (9). It is obvious that Eq (40) is equivalent to Eqs (12) and

(16). This suggests that the global Getis-Ord’s index is the weighted sum of local Getis-

Ord’s index based on the unitized size vector.

By comparison, the relationships and differences between Getis-Ord’s indexes, Moran’s

indexes, and potential energy indexes can be made clearer. Getis-Ord’s indexes are different

from Moran’s indexes. Getis and Ord proposed the indexes to make up the deficiencies of

Moran’s indexes [3]. However, there is an analogy between Getis-Ord’s G and Moran’s I. The

similarities are as follows. First, the method of improving the mathematical expressions of

Getis-Ord’s index is similar to that of improving the mathematical expressions of Moran’s

index. Second, both Moran’s I and Getis-Ord’s G proved to be the eigenvalues of spatial corre-

lation matrixes. Third, both the two computational processes depend on the variable transfor-

mation based on average values. The eigenvalues represent the characteristic length of spatial

correlation, while average values represent the characteristic length of size samples. A compari-

son between the two measurements is drawn and tabulated as follows (Table 1). Apparently,

both the new forms of the Getis-Ord’s indexes and Moran’s indexes are based on unitized spa-

tial contiguity matrix, W. But the size vector is different in form. The Moran’s indexes are

based on standardized size vector, while the corresponding Getis-Ord’s indexes is based on

unitized size vector. So, Moran’s index I comes between -1 and 1 (-1�I�1), while Getis-Ord’s

index G varies from 0 to 1 (0�G�1).

Next, let’s investigate the relationship between Getis-Ord’s indexes for spatial autocorrela-

tion and the potential energy indexes for spatial interaction. The classical gravity model of geo-

graphical spatial interaction is as below [6]:

Iij ¼ K
xixj
rbij
; ð41Þ

where xi and xj are two size measures (e.g., city population), rij is the distance between the i

Table 1. A comparison of form and structure between Moran’s index, I, and Getis-Ord’s index, G.

Parameter Formula Definition of variable

Global index Local index

Moran’s index, I I = zTWz Ii ¼ zi
Xn

j¼1

wijzj
zi ¼ ðxi � �x�Þ=s

Getis-Ord’s index, G G = yTWy
Gi ¼

Xn

j¼1

wijyj yi ¼ xi=
Xn

i¼1

xi ¼ xi=ðn�x�Þ

https://doi.org/10.1371/journal.pone.0236765.t001
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location and the j location, Iij denotes the attraction force between xi and xj, the parameter K
refers to the gravity coefficient, and b to the distance decay exponent (b>1). The distance

exponent proved to be a kind of fractal dimension [50]. Thus the mutual energy between the i
location and the j location can be defined as [9, 46, 51]

Iijrij ¼ K
xixj
rb� 1
ij

: ð42Þ

Thus, the gravitational potential can be defined as sj = Iijrij/xi [51]. The total mutual energy

(TME) between the i location and other locations can be given by

Ei ¼
Xn

j¼1

Iijrij ¼ Kxi
Xn� 1

j¼1

xj
rb� 1
ij

¼ Kxi
Xn� 1

j¼1

xj
rqij
: ð43Þ

where q = b-1 denotes distance scaling exponent. The value of Ei reflects the influence power

of an element at the ith location in a regional network. Accordingly, the potential energy index

(PEI) indicating the total gravitational potential of the i location in a geographical system can

be defined as [47]

Vi ¼
Ei
xi
¼ K

Xn� 1

j¼1

xj
rb� 1
ij

¼ K
Xn� 1

j¼1

xj
rqij
; ð44Þ

which reflects the traffic accessibility of location i. Without loss of generality, let K = 1 and

b = 2, then we have q = 1. Suppose that the spatial proximity function (SPF) is vij = 1/rij and xi
and xj are replaced by yi and yj. Unitizing the spatial contiguity matrix, we can convert Eq (44)

into Eq (10), and transform Eq (43) into Eq (11). This suggests that Getis-Ord’s index is actu-

ally normalized potential energy, and spatial autocorrelation analysis and spatial interaction

modeling reach the same goal by different routes.

3.2 Equivalence of Getis-Ord’s G to potential energy

In order to further reveal the association of spatial autocorrelation with spatial interaction, the

clearer and exacter relation between Getis-Ord’s indexes and potential energy should be

shown. Now, let’s change an angle of view to examine them. In fact, by rescaling potential

energy of geographical elements, we can obtained local Getis-Ord’s indexes. By the mathemati-

cal derivation, we can find practical links between the two approaches of spatial modeling. To

make a spatial autocorrelation analysis, a spatial contiguity matrix must be created by applying

a weight function to a spatial proximity matrix [52, 53]. For n elements in a geographic system,

a spatial contiguity matrix, V, can be expressed as

V ¼ ½vij�n�n ¼

v11 v12 � � � v1n

v21 v22 � � � v2n

..

. ..
. . .

. ..
.

vn1 vn2 � � � vnn

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

; ð45Þ

in which vij is a measure used to reflect the contiguity relationships between location i and

location j (i, j = 1,2,. . .,n). If i = j as given, then vii�0. This indicates that the diagonal elements
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must be converted into zero. Thus a unitized spatial weights matrix, W, can be given by

W ¼
V
V0

¼

w11 w12 � � � w1n

w21 w22 � � � w2n

..

. ..
. . .

. ..
.

wn1 wn2
. .

.
wnn

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; ð46Þ

where

V0 ¼
Xn

i¼1

Xn

j¼1

vij; wij ¼
vij

Xn

i¼1

Xn

j¼1

vij

;
Xn

i¼1

Xn

j¼1

wij ¼ 1:

.

In above equations, the value vii�0 results in the value wii�0. Compared with spatial conti-

guity matrix V, the unitized spatial weights matrix W make the mathematical form of spatial

autocorrelation become simple and graceful. If the spatial contiguity matrix is unitized by row,

the result will violate the well-known distance axiom [54]. There are three types of spatial

weight function that can be used to construct spatial continuity matrix, that is, inverse power

function, negative exponential function, and staircase functions [52]. Among these weight

functions, the inverse power function is the common one [55]. This function stemmed from

the impedance function of the gravity model [6]. Generally speaking, the inverse power func-

tion is as below

vij ¼
r� qij ; i 6¼ j

0; i ¼ j
; ð47Þ

(

where rij refers to the distance between location i and location j, and q denotes the distance

scaling exponent. Generally, we have q = 1 for spatial autocorrelation [56]. A total quantity of

spatial continuity can be defined as

S ¼
Xn

i¼1

Xn

j¼1

r� qij : ð48Þ

Then, we can rescale the spatial distances as follows

dij ¼ ðr
q
ijSÞ

1=q
: ð49Þ

Based on the unitized size measure yj and rescaled distances dij, the potential energy is

V�i ¼
Xn

j¼1

yj
dqij
; ð50Þ

which can be regarded as rescaled potential energy. Based on the rescaled distances, the
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unitized weight is as below

wij ¼ d
� q
ij ¼

1

rqijS
¼

r� qij
Xn

i¼1

Xn

j¼1

r� qij

: ð51Þ

Substituting Eq (51) into Eq (50) yields the normalized potential energy index

V�i ¼
Xn

j¼1

yj
dqij
¼
Xn

j¼1

wijyj ¼ Gi; ð52Þ

which suggests that the rescaled potential energy index Vi� equals local Getis-Ord’s index Gi.
Accordingly, the mutual energy index is Ei� = yiVi� = yiGi. That is to say, Getis-Ord’s indexes

for spatial autocorrelation are equivalent to the potential energy indexes for spatial interaction

based on the gravity model under certain conditions.

This is a theoretical and methodological study for spatial autocorrelation and spatial inter-

action. Compared with pure autocorrelation measurements based on Getis-Ord’s indexes, the

new framework can yield more systematic outputs of calculations and analyses. The equiva-

lence relationship between Getis-Ord’s indexes and potential energy indexes is useful for spa-

tial modeling. We can employ the gravity analysis of a regional network to estimate the

distance scaling exponent value of spatial autocorrelation q. What is more, we can use spatial

autocorrelation analysis to complement the spatial interaction analysis and vice versa. Getis-

Ord’s indexes are abstract and thus difficult to understand, but it is easy to understand the

potential energy concept based on the gravity model. The chief shortcomings of this work are

as follows. First, the method relies heavily on linear algebra theory. For the readers who are not

familiar with linear algebra, especially matrix knowledge, it is hard to understand the method-

ology developed in this work. Second, the spatial autocorrelation and cross-correlation analy-

ses are not integrated into framework. The spatial autocorrelation measures can be generalized

to spatial cross-correlation measures [44]. Using total potential energy, we can associate spatial

interaction with spatial autocorrelation and spatial cross-correlation. Due to the limited space,

the problem remains to be solved in a companion paper.

4 Materials and methods

4.1 Approaches to Getis-Ord’s indexes

It is difficult for the learners of spatial autocorrelation and spatial interaction to compute

Getis-Ord’s index using the complex formulae. Students can calculate Getis-Ord’s G by means

of the professional software such as ArcGIS. However, the computational process is a black

box for them. If and only if a student knows how to fulfil a set of complete calculation steps of

a measurement, he/she will really understand the principle of the mathematical method. Based

on the new framework of Getis-Ord’s spatial autocorrelation expressed by linear algebra, a

number of approaches to computing global and local Getis-Ord’s indexes are proposed in this

section. Each approach has its own advantages and disadvantages (Table 2). Using the calcula-

tion results, we can make an analysis of spatial interaction with the potential energy values (Fig

1). Among these approaches, three ones bear analogy with those for Moran’s index [16]. In

other words, all the approaches to calculating Moran’s index can be employed to compute

global Getis-Ord’s index. The difference lies in the processing way of size measurements. How-

ever, for the local Getis-Ord’s indexes, we should address them in the means differing from

those for local Moran’s indexes.
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Table 2. Comparison of the advantages and disadvantages of different approaches to global and local Getis-Ord’s indexes.

Level Method Simplicity Result Eq

Local Conventional formula Detailed Directly yield Eq (10)

Matrix manipulation Simple Directly yield Eq (9)

Spatial correlation matrix Simple Directly yield Eqs (15) and (16)

Potential energy Moderate Indirectly yield Eqs (47)–(50)

Global Conventional formula Detailed Directly yield Eq (8)

Three-step calculation Very simple Directly yield Eqs (3), (5), and (7)

Matrix scaling Simple Directly yield Eqs (13) or (26)

Linear regression Moderate Directly yield Eqs (33) or (34)

Local weighting Moderate Indirectly yield Eq (40)

Spatial correlation matrix Simple Indirectly yield Eqs (15) and (16)

Outer product sum Simple Directly yield Eqs (33) and (54)

If the utilized variable y is replaced by the standardized variable z, the seven approaches can be employed to evaluate global Moran’s I, for which the seventh method can

also be termed standard deviation method.

https://doi.org/10.1371/journal.pone.0236765.t002

Fig 1. A flow chart of data processing, parameter estimation, and autocorrelation analysis based on Getis-Ord’s

indexes. The analytical process is similar to that based on Moran’s index and Geary’s coefficient. However, the

measurements and conclusions are different.

https://doi.org/10.1371/journal.pone.0236765.g001
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The main approaches to computing the local Getis-Ord’s indexes are as follows. (1) Con-

ventional formula method. Using Eq (10), we can calculate local Getis-Ord’s indexes step by

step. This is the traditional approach used in literature. (2) Matrix manipulation method. The

sizes and weights must be unitized by Eqs (3) and (46). Then, in terms of Eq (9), using the unit-

ized weight matrix W to multiple left the unitized size vector y yields the vector of local Getis-

Ord’s indexes G. The process is very simple and can be carried out by MS Excel. (3) Spatial

correlation matrix method. Suppose that we obtain the ideal spatial correlation matrix, M� =

yyTW. According to Eq (16), the sums of the columns of matrix M� give the local Getis

indexes. (4) Potential energy method. Local Getis-Ord’s indexes are equal to the rescaled

potential energy measurements. Using Eq (3) to unitize size measurements, using Eqs (48) and

(49) to rescale distance matrix, and using Eq (52) to calculate the potential energy based on the

special distance scaling exponent q = 1, we can obtain the local Getis-Ord’s indexes.

The approaches for calculating global Getis-Ord’s index are more than seven ones, which

are summarized as follows. (1) Conventional formula method. Using Eq (8), we can compute

the global Getis-Ord’s index by the traditional method. (2) Three-step calculation method.

This approach is very simple and the beginners of spatial autocorrelation analysis can master it

easily. The three steps of calculating Getis-Ord’s index are as follows. Step 1: unitize the size

variable x. In other words, convert the initial variable x based on Eq (1) into the unitized vari-

able in Eq (3). Step 2: compute the unitized spatial weight matrix. The weights matrix is

defined in Eqs (5) and (6) and can be calculated by Eqs (45) and (46). Step 3: calculate Getis-

Ord’s index. According to Eq (7), the unitized spatial weight matrix is first left multiplied by

the transposition of y, and then the vector yTW is right multiplied by y. The final product of

the continued multiplication is the global Getis-Ord’s index. (3) Matrix scaling method. This

approach is to find the maximum characteristic value of the spatial correlation matrix. If we

work out the maximum eigenvalue of the matrix M
�

= yyTW or M = λW by using Eq (13) or

Eq (26), we will gain the global Getis-Ord’s index. (4) Regression analysis method. Based on

Eq (13) or Eq (26), a linear regression analysis can be employed to evaluate Getis-Ord’s G. The

unitized vector y is treated as an independent variable (i.e., argument), and f
�

= M
�

y or f = My

as the corresponding dependent variable (response variable). If the constant term (intercept) is

fixed to zero, the regression coefficient (slope) will be equal to the global Getis-Ord’s index. (5)

Local weighting method. After calculating the local Getis-Ord’s indexes, we can figure out the

global index using Eq (40). The elements of the unitized size vector, y, can serve as weight

numbers. The global Getis-Ord’s index equals the weighted sum of the local indexes. (6) Spa-

tial correlation matrix method. Using Eq (16), we can generate the ISCM, M� = yyTW. The

trace, i.e., the sum of the diagonal elements of matrix M�, give the global Getis-Ord’s index. (7)

Outer product sum method. In terms of Eq (4), the sum of y’s elements is 1. According to Eq

(33), we have

Xn

i¼1

ðf�Þi ¼ G
Xn

i¼1

ðyÞi ¼ G
Xn

i¼1

yi ¼ G: ð53Þ

Thus the value of Getis-Ord’s index can be calculated using the elements in the vector f
�

,

that is

G ¼
Xn

i¼1

f �i ¼
Xn

i¼1

ðyyTWyÞi; ð54Þ

which indicates an alternative approach to working out global Getis-Ord’s index.
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4.2 Empirical analysis

The new framework of spatial autocorrelation based on Getis-Ord’s indexes can be applied to

China’s cities to make case studies. The study area includes the whole mainland of China, and

the time points are 2000 and 2010, respectively (See S1 Data and S2 Data). As an example of

illustrating a methodology, the simpler, the better. Therefore, only the capital cities of the 31

provinces, autonomous regions, and municipalities directly under the Central Government of

China (CCC) are taken into account. The urban population from the fifth census in 2000 and

the sixth census in 2010 can serve as the two size variables (xi), and the railway mileage

between any two cities are used as a spatial proximity measurement (rij). Because the cities of

Haikou and Lhasa were not connected to Chinese network of cities by railway for a long time,

only 29 cities are really considered in the spatial analysis, and thus the size of the spatial sample

is n = 29.

Using the methods shown above and the datasets of city sizes and spatial distances, we can

calculate the Getis-Ord’s indexes and potential energy measurements of Chinese systems of

cities. By means of one of the seven approaches above-shown, we can compute the global

Getis-Ord’s index. For example, using the three-step method based on the formula G = yTWy,

we have the following results, for 2000 year, G = 0.001299, and for 2010 year, G = 0.001345. By

using one of the four approaches displayed above, we can compute the local Getis-Ord’s

indexes. On the other, using the formula of potential energy index and mutual energy index

(K = 1, q = 1), Eqs (43) and (44), we can compute the potential energy indexes and mutual

energy indexes (See S1 File and S1 Code). If K = 1 and q = 1 as given, then the potential energy

indexes equal the corresponding the local Getis-Ord’s indexes, and the mutual energy indexes

are just the product of unitized size variable and the local Getis-Ord’s indexes. In short, local

Getis-Ord’s indexes equal the normalized potential energy indexes, and the sum of the mutual

energy indexes equals the global Getis-Ord’s index (Table 3).

Furthermore, we can draw the Getis-Ord’s scatterplots by means of the scaling relation

between the unitized size vectors and the spatial correlation matrixes. Using Eqs (33) and (34),

we have two variables f = λWy and f� = yyTWy (Table 4). The relationships between y and f(y)
give a scatter plot, and relationships between y and f�(y) yields a trend line in the scatter plot

(Fig 2). The scatter plot has at least three uses. First, it can be used to estimate the global Getis-

Ord’s index. The slope of the trend line is equal to global Getis-Ord’s G. Second, it can be used

to reflect the spatial distribution feature of a geographical system. Third, it can be used to

make a simple classification for the research objects. If the points are above the trend line, the

actual values of the potential energy indexes are greater than the expected values; if the points

are below the trend line, the actual potential energy index values are less than the expected val-

ues. Specially, if the points are on the trend line, the actual values are close to the expected val-

ues of the potential energy indexes. A discriminant index for the simple classification can be

defined as

hi ¼
fi
f �i
¼
ðyTyWyÞi
ðyyTWyÞi

; ð55Þ

where hi denotes the discriminant index. If hi>1, the ith point is above the trend line, other-

wise, the point is beneath the trend line. By the way, the trend line represents the conditional

mean value, and the potential energy indexes are equal to the local Getis-Ord’s indexes and

indicate accessibility.

About the Getis-Ord’s scatter plot, it is necessary to explain the two aspects. First, generally

speaking, the scattered points are not consistent with the trend line. If we fit Eq (34) to the

dataset based on the relationship between λWy and y, the slope of the trend line gives the
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regression coefficient, which represents the expected global Getis-Ord’s index. Second, there is

an alternative form for the scatter plot. If we substitute the original x-axis represented by y
with f� = yyTWy, the pattern of the scattered points have no change. In other words, we can

use the relationships between f� and f to replace the relationships between y and f (Fig 3). The

relative spatial relationships between the scattered points do not change despite the variable

substitution. The difference is that the trend line is superseded by the diagonal line from the

lower left corner to the upper right corner (f� = f). The scatterplots show that 5 or 6 points are

prominent. In 2000, five points are significantly below the trend lines, and these points repre-

sent Beijing, Chongqing, Guangzhou, Shanghai, and Wuhan; in 2010, six cities are signifi-

cantly below the trend line, that is, Beijing, Chongqing, Guangzhou, Shanghai, Chengdu, and

Urumqi. Among these cities below the trend line, three ones are the municipalities directly

under CCC: Beijing, Chongqing, and Shanghai. Among the four municipalities directly under

Table 3. The main computational results of spatial autocorrelation and spatial interaction based on Getis-Ord’s indexes (2000 & 2010).

City 2000 2010

Variable (yi) Local Gi & PEI (Vi) yGi & MEI (Ei) Variable (yi) Local Gi & PEI (Vi) yGi & MEI (Ei)
Beijing 0.096014 0.001774 0.000170 0.109598 0.001831 0.000201

Changchun 0.027262 0.001172 0.000032 0.023185 0.001162 0.000027

Changsha 0.021463 0.001403 0.000030 0.020274 0.001346 0.000027

Chengdu 0.038637 0.000938 0.000036 0.041530 0.000938 0.000039

Chongqing 0.057390 0.000907 0.000052 0.061105 0.000898 0.000055

Fuzhou 0.020029 0.000925 0.000019 0.018852 0.000915 0.000017

Guangzhou 0.069445 0.000784 0.000054 0.065137 0.000776 0.000051

Guiyang 0.018497 0.001008 0.000019 0.017128 0.001009 0.000017

Hangzhou 0.024784 0.001985 0.000049 0.031087 0.001969 0.000061

Harbin 0.034932 0.000931 0.000033 0.032845 0.000911 0.000030

Hefei 0.014790 0.001580 0.000023 0.021679 0.001594 0.000035

Hohhot 0.010019 0.001082 0.000011 0.010124 0.001106 0.000011

Jinan 0.026145 0.001690 0.000044 0.023697 0.001751 0.000042

Kunming 0.025059 0.000705 0.000018 0.022152 0.000704 0.000016

Lanzhou 0.018354 0.000931 0.000017 0.016780 0.000934 0.000016

Nanchang 0.016881 0.001512 0.000026 0.013512 0.001490 0.000020

Nanjing 0.034852 0.001766 0.000062 0.039725 0.001785 0.000071

Nanning 0.013695 0.000812 0.000011 0.017085 0.000798 0.000014

Shanghai 0.128610 0.001205 0.000155 0.124315 0.001278 0.000159

Shenyang 0.043929 0.001130 0.000050 0.039929 0.001139 0.000045

Shijiazhuang 0.019519 0.002036 0.000040 0.019428 0.002084 0.000040

Taiyuan 0.025663 0.001529 0.000039 0.021558 0.001565 0.000034

Tianjin 0.053723 0.002228 0.000120 0.062410 0.002345 0.000146

Urumqi 0.017468 0.000420 0.000007 0.019647 0.000420 0.000008

Wuhan 0.066318 0.001269 0.000084 0.051300 0.001277 0.000066

Xi’an 0.036855 0.001200 0.000044 0.034418 0.001204 0.000041

Xining 0.008639 0.000890 0.000008 0.008041 0.000883 0.000007

Yinchuan 0.005847 0.000938 0.000005 0.007895 0.000937 0.000007

Zhengzhou 0.025183 0.001665 0.000042 0.025565 0.001660 0.000042

Sum 1.000000 0.036414 0.001299 1.000000 0.036710 0.001345

Mean 0.034483 0.001256 0.000045 0.034483 0.001266 0.000046

The sum of the Ei values is equal to the global Getis-Ord’s index.

https://doi.org/10.1371/journal.pone.0236765.t003
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CCC, Tianjin is a special case or exception. The point representing Tianjin is significantly

above the trend line, indicating the highest potential energy index.

The abovementioned trend line represents conditional mean. Moreover, the arithmetic

mean result represents the absolute mean. The absolute mean forms a horizontal average line.

The scatterplot can be divided into four “quadrants” by using the conditional mean and abso-

lute mean. In 2000, the absolute mean of the potential energy indexes is about 0.000070, and in

2010, the absolute mean is around 0.000071. If we add the average line reflecting absolute

means to a Getis-Ord’s scatterplot, the 29 main cities of China will fall into four sub-regions.

The meanings of the four sub-region are as follows. (I) The first region is the upper right part,

representing high-high type quadrant (H-H type). The potential energy index of a city is high,

so are the potential indexes of surrounding cities. The typical city is Beijing, the national capital

of China. (II) The second region is the upper left part, representing high-low type quadrant

Table 4. The computational results of spatial autocorrelation for Getis-Ord’s scattered plots (2000 & 2010).

City 2000 2010

Variable (y) yTyWy (f) yyTWy (f�) Variable (y) yTyWy (f) yyTWy (f�)
Beijing 0.096014 0.000098 0.000125 0.109598 0.000103 0.000147

Changchun 0.027262 0.000065 0.000035 0.023185 0.000065 0.000031

Changsha 0.021463 0.000078 0.000028 0.020274 0.000076 0.000027

Chengdu 0.038637 0.000052 0.000050 0.041530 0.000053 0.000056

Chongqing 0.057390 0.000050 0.000075 0.061105 0.000050 0.000082

Fuzhou 0.020029 0.000051 0.000026 0.018852 0.000051 0.000025

Guangzhou 0.069445 0.000044 0.000090 0.065137 0.000044 0.000088

Guiyang 0.018497 0.000056 0.000024 0.017128 0.000057 0.000023

Hangzhou 0.024784 0.000110 0.000032 0.031087 0.000110 0.000042

Harbin 0.034932 0.000052 0.000045 0.032845 0.000051 0.000044

Hefei 0.014790 0.000088 0.000019 0.021679 0.000089 0.000029

Hohhot 0.010019 0.000060 0.000013 0.010124 0.000062 0.000014

Jinan 0.026145 0.000094 0.000034 0.023697 0.000098 0.000032

Kunming 0.025059 0.000039 0.000033 0.022152 0.000040 0.000030

Lanzhou 0.018354 0.000052 0.000024 0.016780 0.000052 0.000023

Nanchang 0.016881 0.000084 0.000022 0.013512 0.000084 0.000018

Nanjing 0.034852 0.000098 0.000045 0.039725 0.000100 0.000053

Nanning 0.013695 0.000045 0.000018 0.017085 0.000045 0.000023

Shanghai 0.128610 0.000067 0.000167 0.124315 0.000072 0.000167

Shenyang 0.043929 0.000063 0.000057 0.039929 0.000064 0.000054

Shijiazhuang 0.019519 0.000113 0.000025 0.019428 0.000117 0.000026

Taiyuan 0.025663 0.000085 0.000033 0.021558 0.000088 0.000029

Tianjin 0.053723 0.000124 0.000070 0.062410 0.000132 0.000084

Urumqi 0.017468 0.000023 0.000023 0.019647 0.000024 0.000026

Wuhan 0.066318 0.000070 0.000086 0.051300 0.000072 0.000069

Xi’an 0.036855 0.000067 0.000048 0.034418 0.000068 0.000046

Xining 0.008639 0.000049 0.000011 0.008041 0.000050 0.000011

Yinchuan 0.005847 0.000052 0.000008 0.007895 0.000053 0.000011

Zhengzhou 0.025183 0.000092 0.000033 0.025565 0.000093 0.000034

Sum 1.000000 0.002020 0.001299 1.000000 0.002059 0.001345

Mean 0.034483 0.000070 0.000045 0.034483 0.000071 0.000046

The sum of the fi� values is equal to the global Getis-Ord’s index.

https://doi.org/10.1371/journal.pone.0236765.t004

PLOS ONE Associating spatial autocorrelation with interaction by Getis-Ord’s indexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0236765 July 30, 2020 17 / 25

https://doi.org/10.1371/journal.pone.0236765.t004
https://doi.org/10.1371/journal.pone.0236765


(H-L type). The potential energy index of a city is high, and there are cities with low potential

indexes around it. The typical cities are Tianjin and Hangzhou. (III) The third region is the

lower left part, representing the low-low type quadrant (L-L type). The potential energy index

of a city is low, and there are cities with low potential indexes around it. The typical cities are

Kunming and Nanning. (V) The fourth region is the lower right part, representing the low-

high quadrant (L-H type). The potential energy index of a city is low, and there are cities with

high potential index around it. The typical cities are Chongqing and Guangzhou. Of course,

the high and low potential energy indexes are relative to one another. From 2000 to 2010, only

Shanghai, Wuhan, Chengdu, and Urumqi have changed their situations. In fact, Chengdu and

Urumqi are near the trend line, their h values are close to 1. This means that their category

characteristics are not obvious. Nevertheless, this classification outlines a clear map of urban

location and spatial correlation of cities in Mainland China (Table 5).

The locational properties and the spatial association of the 29 Chinese cities can be evalu-

ated by the potential energy indexes and mutual energy indexes. The local Getis-Ord’s indexes

are equivalent to the normalized potential energy indexes, and the sum of the mutual energy

index equals the global Getis-Ord’s index. By way of potential and mutual energy concepts, we

can understand Getis-Ord’s statistics deeply. Using local Getis-Ord’s indexes or potential

energy indexes of Chinese cities, we can evaluate the traffic accessibility of these cities. The

main features are as follows. First, if the size of a city is relatively small, but there is big cities

near the city, then its potential index is high. The typical cities are Tianjin, Shijiazhuang, Hang-

zhou, and Nanjing. Tianjin and Shijiazhuang are adjacent to the megacity, Beijing, while

Hangzhou and Nanjing are adjacent to the megacity, Shanghai. Second, if a city is in the center

of the network of cities, then its potential energy index is relatively high to some extent. The

Fig 2. The scatterplots of spatial auto-correlation based on Getis-Ord’s measurement for the main cities of China ((A) 2000 & (B) 2010). The trend line is added to the

trend points based on the outer product correlation, yyTWy, and we have perfect fit, R2 = 1. This implies that the connection line of the scattered points yielded by the

linear relation between y and yyTWy is just the trend line.

https://doi.org/10.1371/journal.pone.0236765.g002
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Fig 3. The alternative forms of the scatterplots of spatial auto-correlation based on Getis-Ord’s measurement for the main cities of China ((A) 2010 & (B) 2010). This

scatter plot is equivalent to the ones display in Fig 4, but the variable y used as a horizontal axis is replaced by the new variable f
�

= yyTWy. In this case, the original trend

line is replaced by a diagonal line.

https://doi.org/10.1371/journal.pone.0236765.g003

Fig 4. The normal parameter values and abnormal goodness of fit in the scatterplots of spatial auto-correlation based on Getis-Ord’s indexes for the main cities of

China ((A) 2000 & (B) 2010). The trend line is added to the scattered points based on inner product correlation, λWy, and the intercept is set as 0. The slope of the trend

line give the global Getis-Ord’s index, and the value of goodness of fit, R2, is defined by cosine instead of Pearson correlation. The horizontal line represent absolute

average line.

https://doi.org/10.1371/journal.pone.0236765.g004
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typical city is Zhengzhou. The location of Wuhan is also superior, but its size is too large to

increase its potential index. Third, the cities in remote areas bear lower potential indexes due

to being far from the city network of Chinese mainland. The typical city is Urumqi in Xinjiang,

northwestern China, having the lowest potential index. The next one to last is Kunming in

Yunnan, located in southwestern China. Although Guangzhou is an economically developed

city, due to its location on the southern sea coast, its potential index is also in the bottom.

Fourth, during the period from 2000 to 2010, the potential energy indexes of these cities have

no significant change. This suggests that the potential indexes of the main Chinese cities are

very stable (Fig 5). An interesting phenomenon is that because there are no other large cities

around Urumqi, it turned into a high-low type of city in 2000.

The potential energy index depends on the location of a city in an urban network, but it has

nothing to do directly with the size of the city itself. So the potential energy indexes and thus

local Getis-Ord’s indexes reflect the spatial association rather than spatial influence. Reflecting

the influence power of a city in a network of cities, the mutual energy indexes are function of

city size and potential energy indexes. As indicated above, the potential energy index implies a

city’s accessibility of transportation and the superiority of geographical location in an urban

network. Using the mutual energy indexes of the 29 Chinese cities, we can illustrate the abso-

lute positions of these cities in the urban network (Fig 6). The top cities of spatial influence are

Table 5. Chinese city classification based on conditional mean (trend line) and absolute mean (average line) (2000

& 2010).

Quadrant 2000 2010

I (H-H) Beijing, Wuhan Beijing, Shanghai

II (H-L) Tianjin, Shijiazhuang, Hangzhou, Nanjing, Jinan,

Zhengzhou, Hefei, Taiyuan, Nanchang, Changsha

Tianjin, Shijiazhuang, Hangzhou, Nanjing, Jinan,

Zhengzhou, Hefei, Taiyuan, Nanchang, Changsha,

Wuhan

III (L-L) Xi’an, Changchun, Shenyang, Hohhot, Guiyang,

Chengdu, Yinchuan, Lanzhou, Harbin, Fuzhou,

Xining, Nanning, Kunming, Urumqi

Xi’an, Changchun, Shenyang, Hohhot, Guiyang,

Yinchuan, Lanzhou, Harbin, Fuzhou, Xining,

Nanning, Kunming

V (L-H) Shanghai, Chongqing, Guangzhou Chongqing, Guangzhou, Chengdu, Urumqi

https://doi.org/10.1371/journal.pone.0236765.t005

Fig 5. The potential energy indexes and local Getis-Ord’s indexes of the main cities in Mainland China (2000 & 2010).

https://doi.org/10.1371/journal.pone.0236765.g005
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Beijing, Shanghai, and Tianjin, which are the old municipalities directly under the Central

Government of China. From 2000 to 2010, the mutual energy indexes of the three municipali-

ties have significant change. After the three old municipalities, the cities with higher mutual

energy index values include Nanjing, Hangzhou, Wuhan, Hangzhou, and Chongqing, which

have superior geographic locations and large city sizes. The cities in marginal areas, such as

Xining, Yinchuan, Hohhot, Nanning, Kunming, Lanzhou, Fuzhou, and Guiyang bear lower

mutual energy indexes due to small city sizes and geographical locations away from the center

of urban network. The cities like Xi’an, Shijiazhuang, Chengdu, Harbin, and so on, have mid-

dle mutual energy indexes owing to one of advantages in city size or geographical location.

The mutual energy index of Hefei went up fast because of city population size doubled from

2000 to 2010.

5 Conclusions

Scientific research involves two elements, that is, description and understanding. Getis-Ord’s

indexes are a type of statistic measurements for spatial description. So, geographical explana-

tion is not the main aim of this study. As a work of methodology research, this paper is devoted

to normalizing, developing, and improving the analytical process and techniques of the spatial

autocorrelation modeling based on Getis-Ord’s indexes. The chief contributions of this work

to geographical spatial analysis lie in four aspects: (1) the computational process is significantly

simplified and diversified, (2) the scatter plot is introduced into the analytical process, (3) the

parameter characters of the global and local Getis-Ord’s indexes are illustrated, and (4), the

relationship between Getis-Ord’s index and potential energy is revealed. If the spatial contigu-

ity matrix is generated using power-law decay function, the local Getis-Ord’s indexes proved

to be equivalent to potential energy measurements. Based on these results and findings, we can

reach the main conclusions as follows. First, the prerequisite for the effective use of Getis-

Ord’s indexes is that the spatial distributions and size distribution possess characteristic

scales. The global Getis-Ord’s index, which is a weighted sum of local indexes, is an eigenvalue

of spatial correlation matrix, and the local indexes form an eigenvector of the outer product

matrix of the unitized size vector. This suggests that the global index is a characteristic length

Fig 6. The mutual energy indexes based on census population of the main cities in Mainland China (2000 & 2010).

https://doi.org/10.1371/journal.pone.0236765.g006
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of spatial correlation. For the scale-free geographical processes and patterns, the Getis-Ord’s

index is no longer valid. What is more, the unitization processing of size variable depends the

average value, where represents the characteristic length of statistical analysis. This implies

that we need new measurement for scale-free spatial autocorrelation. Second, the spatial

autocorrelation and spatial interaction can be integrated into an analytical framework.

The Getis-Ord’s indexes are the measurements for spatial autocorrelation, while the potential

energy indexes are the measurement based on spatial interaction. However, the two kinds of

measurements are equivalent to one another if the distance decay function is an inverse power

law. By unitizing size vector and rescaling spatial distances, we can obtain Getis-Ord’s indexes

by calculating potential energy indexes. This indicates that we can unify spatial autocorrelation

and spatial interaction to a degree by means of spatial correlation functions. Third, the spatial

analytical processes based on Getis-Ord’s indexes can be visualized by normalized scatter-

plot. The scatterplot similar to Moran’s plot can be employed to make both spatial autocorre-

lation and spatial interaction analyses in the new framework. The scatterplot can provide a

visual pattern for spatial modeling results. Using the scattered points indicating observational

values, the trend line indicating predicted values, and the average line indicating absolute

mean of local potential energy indexes, we can make a simple spatial cluster for geographical

elements in a study area. In practice, different researchers may obtain different types of geo-

graphical information from the scatter plots and the related cluster results.
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