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Therefore, knowledge of its genome is required to uncover the genetic factors and the solutions to these
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combining lllumina and PacBio sequences. A total of 24,053 transcripts (23,338 genes) are predicted, and
among those transcripts, 23,362 (97%), are annotated with functional terms. Finally, the completeness of
the genome assembly was assessed by CEGMA, which resulted in the complete mapping of 220 (88.7%)
core genes in the genome. To the best of our knowledge, this is the first draft genome for the family

Oplegnathidae.
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Background & Summary

Oplegnathus fasciatus (commonly known as rock bream, barred knifejaw or striped beakfish), is a fish
belonging to the family Oplegnathidae. Those common names are derived from its phenotypic features.
Rock bream is a subtropical and carnivorous species and is an economically important teleost fish in East
Asia'. Generally, the rock bream inhabits estuaries at various depths according to their growth stage, i.e.,
as juveniles, they are mostly found in drifting seaweed/algae, and as adults, they are present at depths of 1
to 10 meters'. Moreover, the species growth depends on the photoperiod’. Other factors, such as
overfishing and environmental changes, are affecting fish yield and cost, particularly in wild conditions.
To overcome these issues, O. fasciatus is propagated via aquaculture to achieve sustainable and cost-
effective production. In 2008, the annual production of O. fasciatus in South Korea was 614 tons, and that
figure had increased to 909 tons in 2016°. However, bacterial and viral diseases cause an enormous
economic loss in the Korean aquaculture industry’. As a consequence, the scientific community
continues to seek various solutions, including molecular genetic applications, to overcome those
problems. Some examples of these applications include genetic breeding®, QTL marker identification’,
characterization of immunological pathway genes, proposed sex determination®, sex chromosomal
evolution models®, antimicrobial peptides”®, and vaccine development’.

More and more often, advances in molecular sequencing technologies are supporting the scientific
community in uncovering the inherited molecular mechanisms of a given species, rather than depending
on its model organism'®. In this study, we constructed a draft genome for O. fasciatus using next-
generation sequencing (NGS) (Fig. 1), which could aid in functional characterization of O. fasciatus-
associated problems.

The O. fasciatus genome size is estimated to be ~749 Mb (Fig. 2a) and was assembled into scaffolds
with a total size of 762 Mb. Initially, the 224 Gb Illumina library (Table 1) assembled into 108,639 contigs
and 31,533 scaffolds. Although the assembled scaffolds are larger than the estimated genome size, it is
highly fragmented (Table 2). Therefore, the inclusion of 11.5Gb of PacBio sequences in the second
assembly improved the quality of the overall draft genome when compared to the initial assembly (Fig.
la). This addition resulted in a 766 Mb draft genome with 4,149 scaffolds, along with improvements to
the N50 (0.87 Mb to 1.1 Mb) and to the gaps (5.3% to 5.2%) (Table 2). Furthermore, the repeats were
predicted by the de novo method were classified into subclasses (Table 3). In total, 180 Mb (23.56%) of
genomic regions consist of repeat sequences, and it is masked in the genome.

A total of 334.3 Gb of mRNA transcriptome sequences from 34 libraries (313.8 Gb of Illumina data and
20.5 Gb of Iso-Seq data) was used for the EVM, and seven genomes were used in the ab initio gene modeler.
These analyses predicted 23,338 genes and 24,053 transcripts, and 23,362 (97%) of those transcripts were
annotated from biological databases. Moreover, the completeness score produced from CEGMA indicated
that 220 (88.7%) eukaryotic core genes are entirely mapped to the genome. Therefore, these results clearly
show that the given draft genome could be a near-complete reference genome for O. fasciatus. Moreover,
these scaffolds will act as a primary genetic resource for O. fasciatus that can be used to design functional
studies, and the annotated transcripts (97%) will aid in detailed characterizations. Finally, based on a
literature survey and author knowledge, this is the first draft genome presented to the public from the
family of Oplegnathidae; therefore, these data could be a valuable asset for marine researchers.

Methods

Sample collection and genomic DNA extraction

A single rock bream fish (95 + 5g) was supplied by the Gyeongsangnam-do Fisheries Resources
Research Institute (FRRI) (Tongyeong, Republic of Korea) and was maintained at 22 + 0.5 °C in aerated
seawater. Liver tissue was taken from the fresh rock bream aseptically and stored in liquid nitrogen for
the extraction of the genomic DNA. The genomic DNA was extracted using a DNeasy Animal Mini Kit
(Qiagen, Hilden, Germany). A total of 24 pg of DNA was quantified using the standard procedure for the
Quant-iT PicoGreen ds-DNA Assay Kit (Molecular Probes, Eugene, OR, USA) with a Synergy HTX
Multi-Mode Reader (Biotek, Winooski, VT, USA). The quality of the DNA was also checked using an
ND-1000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA).

DNA library preparation and sequencing

High-quality high molecular-weight genomic DNA > 100 kb in length was isolated from the given tissues,
and two protocols were used to construct the sequencing libraries according to the manufacturer
protocols, i.e., llumina paired-end (PE) and mate pair (MP) libraries, (Illumina, San Diego, CA, USA).
Furthermore, these libraries were fragmented and size-selected for Illumina Hi-Seq sequencing (Table 1).
To obtain long non-fragmented sequence reads from the libraries, the PacBio manufacturing protocols
were used (Pacific Biosciences, CA, USA) with 14 cells, and the sequencing used the P6-C4 chemistry of
the PacBio RS II system (Table 1).

Preprocessing and genome size estimation
The entire Illumina DNA sequences were subjected to pre-processing steps, which included adapter
trimming, quality trimming (Q20) and contamination removal. The adapter and quality trims were
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Figure 1. Illustration of the complete Oplegnathus fasciatus genome assembly and the structural and
functional annotation pipelines used. (a) the genome assembly pipeline, (b) the structural and functional
annotation pipeline, (c) details of the reference gene sets used for the ab initio and evidence-based gene model
predictions.

conducted by using Trimmomatic-0.32 functions'', and the microbial contamination of each sample was
removed by CLCMapper v4.2.0 (https://www.qgiagenbioinformatics.com/products/clc-assembly-cell/)
with an in-house database. Here, the in-house database was constructed from the meta-genomes
(bacteria (ftp://ftp.ncbinlm.nih.gov/genomes/GENOME_REPORTS/prokaryotes.txt), virus (ftp:/ftp.
ncbi.nlm.nih.gov/genomes/Viruses/) and marine metagenomes (https://www.ncbi.nlm.nih.gov/biopro-
ject/PRINA13694). Similarly, mate pair sequences were also subjected to adapter and quality trimming,
and classification of the mate pairs was performed using the Nextclip v1.1 method'?. All the pre-
processed sequences (Insert size: 550 bp, 35 Gb) from the paired-end library (Data Citation 1) were
subjected to genome size estimation using the k-mer based method (which was used in the panda
genome'?). The k-mer frequencies (k-mer size = 19) were obtained using the Jellyfish v2.0 method'*, and
the genome size was calculated from the given formulas: Genome Coverage Depth = (k-mer Coverage
Depth x Average Read Length)/(Average Read Length — k-mer size + 1) and Genome size = Total Base
Number/Genome Coverage Depth. Alternatively, the PacBio sequences were only subjected to error
correction using CLCAssemblyCell v4.2.0 (Fig. 1a).

De novo Genome Assembly and Scaffolds

The draft genome was built from two type of assemblies, ie., short-read assemblies and hybrid
assemblies. Initially, the complete pre-processed paired-end DNA sequences were subjected to
CLCAssemblyCell v4.2.0 to build the contigs. Furthermore, it was scaffolded with mate-pair sequences
using the SSPACE v3.0 method'’, and the hybrid assembly was built with the SSPACE-LongRead v1.0
method'® from the scaffolds along with the processed PacBio sequences. Next, the hybrid scaffolds were
subjected to gap filling with paired-end and mate pair libraries using the GapFiller 1.11 method'”. Finally,
the gene completeness was assessed using CEGMA'® (Fig. 1a).
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Figure 2. Illustration of the genome size and the functional annotation of the Oplegnathus fasciatus
genome. (a) k-mer based genome size estimation, (b) sequence similarity-based species distribution obtained

from BLAST.
S. No | Sample Type | Library type Platform Insert size (bp)/cell | Read length (bp) Total length(Gb) | Coverage (X) | Preprocessed | Coverage (X) | SRA Accesion Number
1 DNA Paired-end Tllumina-HiSeq2000 | 350 101 56.4 73.6 399 52.1 SRR5860988
2 DNA Paired-end Tllumina-HiSeq2000 | 550 101 53.6 69.9 35.8 46.7 SRR5860989
3 DNA Mate-pair Tllumina-HiSeq2000 | 3,000 101 31.1 40.6 16.2 21.1 SRR5860986
4 DNA Mate-pair Illumina-HiSeq2000 | 5,000 101 27.6 36.0 12.1 15.8 SRR5860987
5 DNA Mate-pair Tllumina-HiSeq2000 | 8,000 101 26.2 342 24 31 SRR5860984
6 DNA Mate-pair Tllumina-HiSeq2000 | 10,000 101 29.5 385 32 42 SRR5860985
7 DNA Long Fragments | PacBio RSIT 20 Kb Max: 50,375/Min: 50 11.5 15.0 SRR5860983

Table 1. Summary of the complete sequence libraries used in this study.

De novo repeat region prediction and classification

Initially, repeat regions were predicted using the de novo method and classified into repeat subclasses
(Table 3). The de novo repeat prediction for O. fasciatus was conducted using RepeatModeler (http://
www.repeatmasker.org/RepeatModeler/), which includes other methods such as RECON'® (http://
eddylab.org/software/recon/), RepeatScout™ (https://bix.ucsd.edu/repeatscout/) and TRE*' (https://
tandem.bu.edu/trf/trf.html). Furthermore, the repeats were masked using RepeatMasker v4.0.5 (http://
www.repeatmasker.org/) with RMBlastn v2.2.27" and classified into their subclasses using the Repbase®
v20.08 databases for reference (https://www.girinst.org/repbase/).
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Description 1*" scaffolding (w/o PacBio) 2" scaffolding (w/PacBio)
No. of scaffolds 31,533 4,149

No. of bases (bp) 762,490,804 766,301,214
Scaffold N50 (bp) 874,256 1,126,915
Maximum length (bp) 5,005,633 7,250,909
Minimum length (bp) 143 1,000

N (%) 5.3 52

No. of contigs 108,639

No. of bases (bp) 730,022,001

Contig N50 (bp) 37,752

Minimum length (bp) 200

Maximum length (bp) 462,101

N (%) 0.5

Table 2. Oplegnathus fasciatus genome de novo assemblies.

Categories Subcategories No. of Elements Length Occupied % of Sequences
SINEs 16,852 2,167,823 0.28
MIRs 2,753 4,18,120 0.05
LINEs 76,644 19,492,079 2.54
LINE1 1,232 5,34,505 0.07
LINE2 31,556 7,363,574 0.96
L3/CR1 149 53,174 0.01
LTR elements 10,054 2,940,460 0.38
ERV_Class 1 184 111,018 0.01
DNA elements 253,296 50,393,060 6.58
hAT-Charlie 11,297 2,077,564 0.27
Unclassified 469,919 88,403,276 11.54
Total Interspersed repeats 163,396,698 21.32
Small RNA 5,689 758,706 0.1
Satellites 1,693 165,759 0.02
Simple repeats 334,581 14,726,054 1.92
Low complexity 41,697 2,428,206 0.32

Table 3. Repeat elements present in the Oplegnathus fasciatus genome.

Gene prediction and annotation

The genes from the O. fasciatus draft genome were predicted using an in-house gene prediction pipeline,
which includes three modules: an evidence-based gene modeler (EVM), an ab initio gene modeler and a
consensus gene modeler. Finally, the functional annotation processing was conducted for the consensus
genes (Fig. 1b). The details of this pipeline were previously explained in articles on the genomes of
Capsicum™ and Haliotis>*. Initially, the sequenced transcriptomes from two sequencers (Illumina (313.8
GB) and IsoSeq (27.7 GB)) were mapped to the O. fasciatus repeat-masked draft genome using Tophat™,
and the transcript/gene structural boundaries were predicted using Cufflink’® and PASA*®. To train the
ab initio gene modeler and the EVM (which includes Exonerate’’, AUGUSTUS?, and GENEID?),
several genomes (Gasterosteus aculeatus, Oreochromis niloticus, Tetraodon nigroviridis, Takifugu rubripes,
Oryzias latipes, Danio rerio, and Homo sapiens) were used for prediction. Finally, the predicted gene and
transcripts models from the EVM and ab initio modeler were subjected to the consensus gene modeler
(which includes EVidenceModeler™®) to produce the final gene and transcript models. Finally, the
consensus transcripts were subjected to functional annotation from biological databases (NCBI - NR
databases, Uniprot, Gene Ontologies and KEGG pathways) by using Blast2GO>' (Fig. 1b). From this
annotation, 50% of the genes are highly similar to Larimichthys crocea (Fig. 2b).

Code availability
Throughout this study, we were not used any custom specific codes. The command line at each step were
executed as instructed in the respective bioinformatics methods.
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File name (Assembly Files) File type Data description

Contigs/scaffolds/Super scaffold

Oplegnathusfasciatus_contig.fa fasta Genome assembly result file (CLC Assembly Cell)
Oplegnathusfasciatus_scaffold.fa fasta Genome assembly result file (SSPACE - scaffolding with Illumina MP reads)
Oplegnathusfasciatus_super_scaffold.fa fasta Genome assembly results file (SSPACE - scaffolding with PacBio long reads)

Repeat (Masked and unmasked results)

Oplegnathusfasciatus_super_scaffold.fa.out txt Repeat annotation file by Repeat Masker
Oplegnathusfasciatus_super_scaffold.fa.tbl txt The summary file
Oplegnathusfasciatus_super_scaffold.fa.masked fasta Repeat masked genome assembly file

Gene models (Gene Prediction Files)

Oplegnathusfasciatus_cds.fna fasta Predicted coding sequence
Oplegnathusfasciatus_gene.gff3 gff3 Annotated coding sequence, gff3 format file
Oplegnathusfasciatus_protein.faa fasta Predicted protein sequence

Function annotation (Blast2go Files)

Oplegnathusfasciatus_gene_definition.xls xls Give the blast description table from blast2go files
Oplegnathusfasciatus_Interpro.xls xls InterPro database annotation table
Oplegnathusfasciatus_gene_KEGG.xls xls KEGG database annotation
Oplegnathusfasciatus_GO_annotation.tar tar Gene Ontologies (BP, MF. CC)

Table 4. Datasets for this project submitted to the figshare repository and its data descriptions.

Data Records

The entire data set used for draft assembly and its corresponding functional and structural annotations
were deposited in public repositories. The DNA sequence libraries were deposited in NCBI (Data Citation 1)
and see Table 1 for the details. The final assembly super-scaffold were submitted to NCBI Assembly (Data
Citation 2) and see Table 2 for details. Moreover, the other files, such as the assembled contigs, scaffolds,
and annotation tables, were stored in figshare (Data Citation 3) and see Table 4 for the details.

Technical Validation

Throughout this study, every step was validated with the given metrics. The sampled fish were cultured
under controlled conditions in the FRRI. Furthermore, the sequence libraries were quantified with
different parameters. For Illumina, the isolated DNA spectrophotometer ratios (SP) were 260/280 > 1.6
and total DNA > 1.1 pg with minimum 20ng/pl, and for PacBio, the SP was 260/280 > 1.6 and
260/230 > 2.0 and total DNA > 15 pg with minimum 200 ng/pl. Moreover, the default parameters were
used in the bioinformatics methods.
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