Analysis of protein expression in *Brucella abortus* mutants with different growth rates by two-dimensional gel electrophoresis and LC-MS/MS peptide analysis

Woo Bin Park¹, Young Bin Im¹, Soojin Shim¹, Han Sang Yoo^{1,2,*}

¹Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea ²Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea

Brucella abortus is a bacterium that causes brucellosis and is the causative agent of worldwide zoonoses. Pathogenesis of the *B. abortus* infection is complicated, and several researchers have attempted to elucidate the infection mechanism of *B. abortus*. While several proteins have been revealed as pathogenic factors by previous researchers, the underlying mechanism of *B. abortus* infection is unresolved. In this study, we identified proteins showing different expression levels in *B. abortus* mutants with different biological characteristics that were generated by random insertion of a transposon. Five mutants were selected based on biological characteristics, in particular, their growth features. Total proteins of mutant and wild-type *B. abortus* were purified and subjected to two-dimensional gel electrophoresis. Thirty protein spots of each mutant with expression increases or decreases were selected; those with a change of more than 2-fold were compared with the wild-type. Selected spots underwent liquid chromatography tandem mass spectrometry for peptide analysis. DnaK and ClpB, involved in protein aggregation, increased. SecA and GAPDH, associated with energy metabolism, decreased in some mutants with a growth rate slower than that of the wild-type. Mutants with slower growth showed a decrease in energy metabolism-related proteins, while mutants with faster growth showed an increase in pathogenicity-related proteins.

Keywords: Brucella abortus, growth rates, protein sequence analysis, two-dimensional gel electrophoresis

Introduction

Brucella abortus is a bacterium that cause brucellosis and is the causative agent of a worldwide zoonotic disease that infects both humans and animals. Brucellosis generally causes persistent abortion and infertility in infected animals and can cause serious economic damage. In the case of human infection, symptoms include undulant fever and arthritis [3,11]. B. abortus has a small, non-motile, non-spore forming bacterium with a rod shape. Due to the survival characteristics of bacteria at the intracellular level, they are very difficult to isolate. Unlike other pathogenic bacteria, B. abortus does not produce exotoxins, toxic lipopolysaccharide, fimbriae, or plasmids [10]. B. abortus is a Gram-negative facultative intracellular pathogen that can enter to the host macrophage and survive. Due to its intracellular survival characteristics, its isolation is complicated. B. abortus does not utilize the classical pathogenicity factors mentioned above; rather, it invades and

proliferates in host phagocytic cells, thereby avoiding the host's cell-mediated immune reaction. This infection mechanism allows it to survive for a long time in the host and can result in chronic infection [21].

Intracellular pathogens are commonly exposed to a variety of environmental factors, including stresses such as pH, oxidation, and nutrition. The survival of *B. abortus* in macrophages is closely related to the production of various proteins. For example, in the case of heat-shock protein, produced when cells are exposed to high temperatures or other stresses, intracellular bacteria can adapt to a stressful environment [30]. In addition, Hfq, an RNA-binding protein, also has a role in adapting to various stressful environments. It has been reported that, when *hfq* mutation occurs, several genes associated with the cellular processes are not properly regulated [7]. Several attempts have been made to solve the mechanism of *Brucella* infection [8,21]. Although several proteins have been proposed as potentially pathogenic, the basic mechanism of *B. abortus* infection still

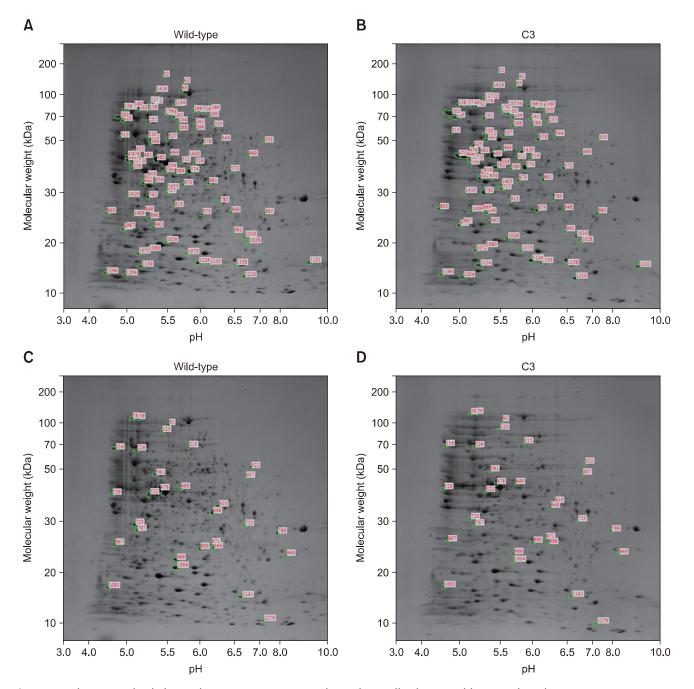
Received 18 May 2017, Revised 12 Sep. 2017, Accepted 22 Sep. 2017

*Corresponding author: Tel: +82-2-880-1263; Fax: +82-2-874-2738; E-mail: yoohs@snu.ac.kr

pISSN 1229-845X eISSN 1976-555X

Journal of Veterinary Science • © 2018 The Korean Society of Veterinary Science. All Rights Reserved.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

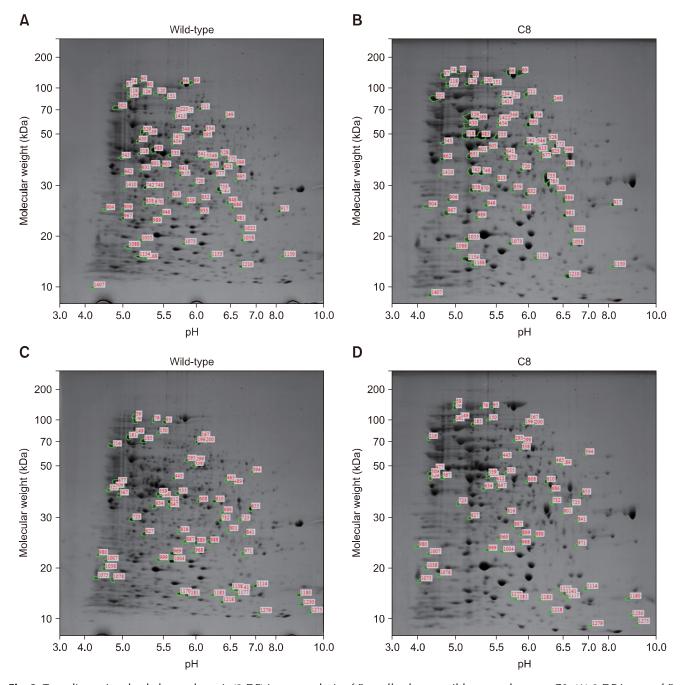

by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

needs to be described [21].

Post-genomic technology provides a new and exciting opportunity for further research into and understanding of *B. abortus* [13]. Various studies on the immunogenic components of *B. abortus* can be conducted based on proteomic studies for the detection of various antigens [14]. The post-genome approach of proteomics using two-dimensional gel

electrophoresis (2-DE) can be used to discover, isolate, and identify new antigens that are different from previously reported ones [14,22,29].

Five mutants were selected for study after analyzing the molecular characteristics of *B. abortus* wild-type and several mutants [20]. The purpose of this study was to investigate protein expression levels of the selected *B. abortus* mutants. In


Fig. 1. Two-dimensional gel electrophoresis (2-DE) image analysis of *Brucella abortus* wild-type and *B. abortus* mutant C3. (A) 2-DE image of *B. abortus* wild-type. (B) 2-DE image of *B. abortus* mutant C3. (C) Spots of *B. abortus* mutant C3 that were relatively increased compared to *B. abortus* wild-type. (D) Spots of *B. abortus* mutant C3 that were relatively decreased compared to *B. abortus* wild-type.

addition, we examined the relationships between protein expression level changes and the growth features of *B. abortus* mutants.

Materials and Methods

Sample selection and preparation for 2-DE

B. abortus mutants were prepared by transposon mutagenesis using wild-type and kanamycin resistance (*rKan*) genes and the EZ-Tn5 transposon system (Epicentre Biotechnologies, USA). The mutants were used in experiments to assess changes in

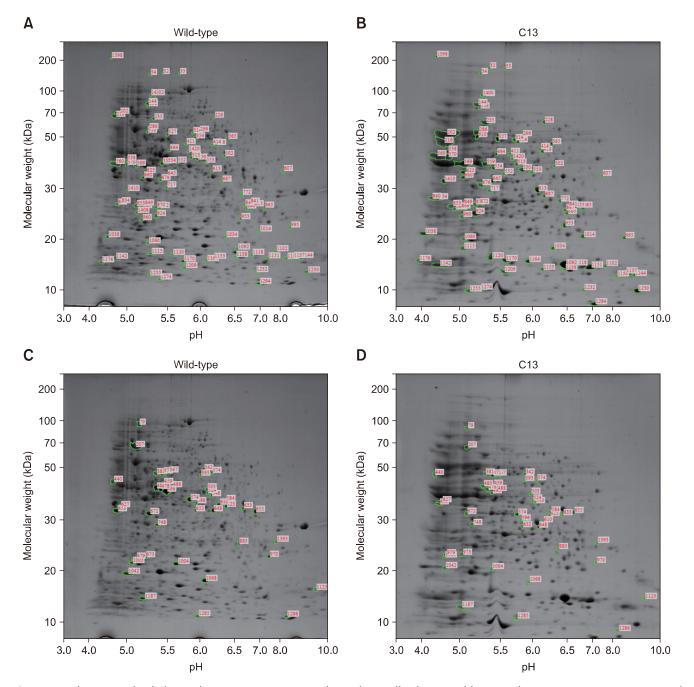
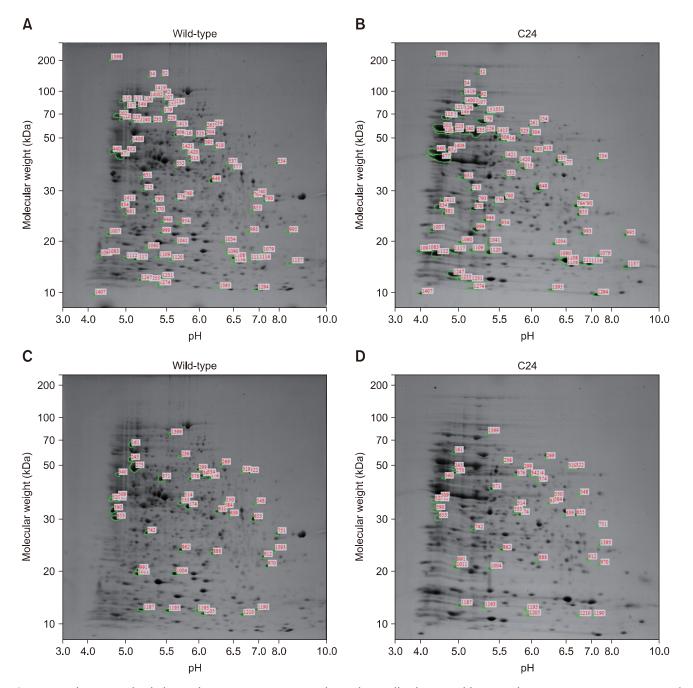


Fig. 2. Two-dimensional gel electrophoresis (2-DE) image analysis of *Brucella abortus* wild-type and mutant C8. (A) 2-DE image of *B. abortus* wild-type. (B) 2-DE image of *B. abortus* mutant C8. (C) Spots of *B. abortus* mutant C8 that were relatively increased compared to *B. abortus* wild-type. (D) Spots of *B. abortus* mutant C8 that were relatively decreased compared to *B. abortus* wild-type.

characteristics such as growth feature and pathogenic factors following *rKan* insertion. Biochemical tests were performed on *B. abortus* wild-type and 24 *B. abortus* mutants. Five mutants were selected based on growth features [20]. The selected *B. abortus* mutants C3, C8, and C13 had a slower growth pattern than *B. abortus* wild-type, whereas selected *B. abortus* mutants C24 and C30 had a faster growth pattern than *B. abortus*

wild-type.

B. abortus wild-type cultured in 10 mL Brucella broth (BD, USA) for 24 h was used as a seed in 250 mL Brucella broth (BD) for 24 h. *B. abortus* mutants C3, C8, C13, C24, and C30 from 10 mL cultures grown in Brucella broth (BD) with kanamycin (100 μ L/500 mL; Sigma, USA) for 24 h were used as seeds in 250 mL Brucella broth (BD) with kanamycin (100 μ L/500 mL; Sigma)


Fig. 3. Two-dimensional gel electrophoresis (2-DE) image analysis of *Brucella abortus* wild-type and mutant C13. (A) 2-DE image of *B. abortus* wild-type. (B) 2-DE image of *B. abortus* mutant C13. (C) Spots of *B. abortus* mutant C13 that were relatively increased compared to *B. abortus* wild-type. (D) Spots of *B. abortus* mutant C13 that were relatively decreased compared to *B. abortus* wild-type.

for 24 h. These were harvested via centrifugation at $8,000 \times \text{g}$ for 30 min at 4°C. The pellets were washed twice with PBS. All procedures were approved by the Seoul National University Institutional Biosafety Committee (SNUIBC-R160314-1).

2-DE analysis

The 2-DE was carried out essentially as described. B. abortus

wild-type and 5 mutants in sample buffer (7 M urea, 2 M thiourea, 4.5% CHAPS, 100 mM DTE, 40 mM Tris, pH 8.8) were applied to immobilized pH 3 to 10 nonlinear gradient strips (Amersham Biosciences, Sweden) for isoelectric focus (IEF). Similar amounts of each protein from *B. abortus* wild-type and mutants underwent 2-DE analysis after quantification. IEF was performed at 80,000 Vh. The second

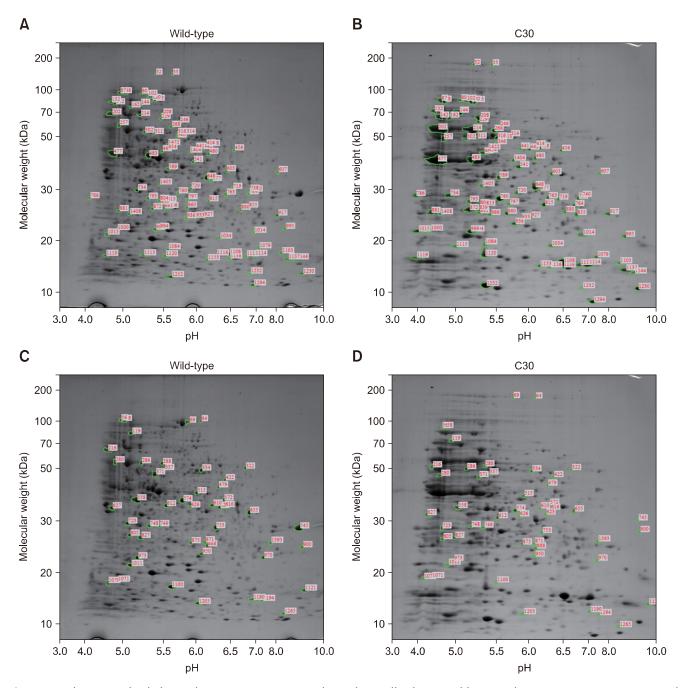


Fig. 4. Two-dimensional gel electrophoresis (2-DE) image analysis of *Brucella abortus* wild-type and mutant C24. (A) 2-DE image of *B. abortus* mutant C24. (C) Spots of *B. abortus* mutant C24 that were relatively increased compared to *B. abortus* wild-type. (D) Spots of *B. abortus* mutant C24 that were relatively decreased compared to *B. abortus* wild-type.

dimension was analyzed on 9% to 16% linear gradient polyacrylamide gels (18 cm \times 20 cm \times 1.5 cm) at constant 40 mA per gel for approximately 5 h. After protein fixation in 40% methanol and 5% phosphoric acid for 1 h, the gels were stained with Coomassie brilliant blue G-250 for 12 h. The gels were then destained with distilled water, scanned in a Bio-Rad GS710 densitometer (Bio-Rad, USA) and converted to electronic files, which were then analyzed by using the Image Master Platinum 5.0 image analysis program (Amersham Biosciences) [16,17].

Liquid chromatography tandem mass spectrometry (LC-MS/MS) for peptide analysis

According to the results of 2-DE analysis, we selected 30

Fig. 5. Two-dimensional gel electrophoresis (2-DE) image analysis of *Brucella abortus* wild-type and mutant C30. (A) 2-DE image of *B. abortus* wild-type. (B) 2-DE image of *B. abortus* mutant C30. (C) Spots of *B. abortus* mutant C30 that were relatively increased compared to *B. abortus* wild-type. (D) Spots of *B. abortus* mutant C30 that were relatively decreased compared to *B. abortus* wild-type.

spots from each image of the *B. abortus* mutants that had higher than 2-fold changes (increase or decrease) from those of *B. abortus* wild-type. LC-MS/MS for peptide analysis was performed on the selected spots.

Nano LC-MS/MS analysis was performed with an Easy n-LC chromatograph (Thermo Fisher, USA) and a LTQ Orbitrap XL mass spectrometer (Thermo Fisher) equipped with a nanoelectrospray source. Protein samples were separated on a C18 nano bore column (150 mm \times 0.1 mm, 3 µm pore size; Agilent, USA). Mobile phase A for LC separation was 0.1% formic acid, 3% acetonitrile in deionized water, while mobile phase B was 0.1% formic acid in acetonitrile. The chromatography gradient was designed for a linear increase from 5% B to 30% B in 23 min, 30% B to 60% B in 3 min, 95% B in 3 min, and 3% B in 6 min. The flow rate was maintained at 1,500 nL/min. Mass spectra were acquired by using data-dependent acquisition with a full mass scan (350–1,200 m/z) followed by 10 MS/MS scans. For MS 1 full scans, the orbitrap resolution was 15,000 and the AGC was 2 \times 10⁵. For MS/MS in the LTQ, the AGC was 1 \times 10⁴ [15].

Database searching

Analysis and interpretation of the LC-MS/MS data were conducted according to the Mascot algorithm (Matrix Science, USA), which was used to identify peptide sequences present in a protein sequence database. Database search criteria were: taxonomy, *B. abortus* bv. 1 str. 9-941 (downloaded 12 April 2016; National Center for Biotechnology Information, USA); fixed modification; carbamidomethylated at cysteine residues; variable modification; oxidized at methionine residues; maximum allowed missed cleavage, 2; MS tolerance, 10 ppm; MS/MS tolerance, 0.8 Da. The peptides were filtered with a significance threshold of p < 0.05.

Results

For this study, five mutants, among 24 mutants showing differences in growth features from those of *B. abortus* wild-type [20], were selected. The mutants were commonly resistant to kanamycin and were expected to show differences in protein expression following insertion of the *rKan* gene.

The 2-DE analysis, using the same concentrations of prepared proteins from *B. abortus* wild and mutant strains, revealed 814 spots in *B. abortus* wild-type and 541 spots in mutant C3. Among them, 444 paired spots were identified after comparison of the mutants with *B. abortus* wild-type. Ninety-four spots showed increases and 30 showed decreases from *B. abortus* wild-type (Fig. 1). In case of mutant C8, the total number of spots was 577, and 418 spots were paired with *B. abortus* wild-type. Among them, 78 spots showed relatively increased expression and 65 spots showed decreased expression (Fig. 2). In mutant C13, the total number of spots were 491, of which 256 spots formed pairs with *B. abortus* wild-type. Among them, 87

Table 1. Two-dimensional electrophoresis results for Brucella
abortus wild-type and B. abortus mutants

	Group	Spots	Paired spots		Spots decreased more than 2-fold
Wild-type	Reference	814	-	_	-
C3		541	444	93	30
C8		577	418	78	65
C13		491	256	87	43
C24		516	246	87	45
C30		560	282	96	50

spots were relatively increased and 43 spots were decreased (Fig. 3). The total spot number of mutant C24 was 516, of which 246 spots formed pairs with B. abortus wild-type. Of these, 87 spots increased in relative expression and 45 spots had decreased expression (Fig. 4). A total of 560 spots were identified in mutant C30, of which 282 spots formed pairs with B. abortus wild-type. In 96 spots of those spots, expression was relatively increased, while in 50 spots, expression was decreased (Fig. 5, Table 1). All spots were detected on 2-DE gels and had pI (isoelectric point) and molecular weight ranges of 4.0 to 10.0 and 10 to 250 kDa, respectively. Based on the 2-DE image analysis results, 30 spots of each mutant strain with greater than 2-fold changes (increases or decreases) from those of the spots of B. abortus wild-type were selected. The selected spots underwent LC-MS/MS for peptide analysis (Table 2). The spot number, gene name, gene ID, protein identification, protein ID, accession number, sequence length, locus tag, experimental molecular weight, theoretical molecular weight, pI, sequence coverage (%), subcellular location, and Clusters of Orthologous Groups (COG) functional category of these proteins are presented in Table 3.

The results confirmed that expressions of pathogenic factors such as ClpB and its interacting DnaK, RpsE, and cold-shock proteins were increased; particularly in mutants C24 and C30. In some mutants, an increase in proteins related to energy metabolism such as Zwf, TrpA, and Pgk were identified, and an increase in proteins associated with ATP-binding protein or ABC transporter were also detected.

The SecA, GAPDH, and GNAT family have been shown to reduce expression in energy metabolism-related factors. In particular, expressions of mutants C3 and C8, which have a slower growth rate than that of *B. abortus* wild-type, were observed to decrease in common. Additionally, in mutants C3 and C8, expression of AcnA, which is involved in bacterial growth, was present but was decreased. Expression of Hfq, which is related to stress resistance and pathogenicity, metabolism, and also important in intracellular survival in *B*.

Spot ID	Protein name	C3	C8	C13	C24	C30
Increased spo	ots					
32	MULTISPECIES: sarcosine oxidase subunit alpha [Brucella]	2.3		5.8	3.6	5
102	ClpB, ATP-dependent Clp protease, ATP-binding subunit ClpB			2.2	2.6	3.9
202	chaperone protein DnaK	5.5	2.7	7.6	6.2	7
234	magnesium ion-transporting ATPase, E1-E2 family	2.8	2.3			
369	Zwf, glucose-6-phosphate 1-dehydrogenase	2.4	3.4			
418	DadA, D-alanine dehydrogenase, small subunit			2.8	2.9	2.6
464	carboxyl-terminal protease	2.4		2.9		3.7
483	hypothetical peptide ABC transporter, permease protein	2.3	4.3			2.6
572	hypothetical protein BruAb1_0662	2.9	2.3			
631	methionine-gamma-lyase, hypothetical		2.3	15.9		
673	ArgF, ornithine carbamoyltransferase	2	2.1			
742	ABC transporter, ATP-binding protein	2.1	2.1			
813	TrpA, tryptophan synthase, alpha subunit	3.4	2.8			6.2
848	RpsC, ribosomal protein S3	2.3	2			
855	RpsC, ribosomal protein S3			4.2	2.7	2.7
870	RpsC, ribosomal protein S3		2.6	2.2	10.7	
995	AtpH, ATP synthase F1, delta subunit			4.6	3.6	4.7
1034	single-stranded DNA-binding protein family			4.5	3.2	4.2
1037	RpsE, ribosomal protein S5			6.7	2.9	4
1060	TPR domain protein	2.4		2.2	4.2	
1073	RpIM, ribosomal protein L13	2	2.3			
1118	Dut, deoxyuridine 5-triphosphate nucleotidohydrolase			5.3	5.2	5.4
1120	RecName: Full = Outer membrane lipoprotein Omp16			7.6	7.6	9.7
1138	AhpD, alkyl hydroperoxide reductase D	2		3.6	2.2	3.4
1153	conserved hypothetical protein		3	2.9		2.7
1154	sugar-phosphate isomerases, RpiB/LacA/LacB family	2.7	3.9			
1210	RpIX, ribosomal protein L24	2.4	2.6			
1294	cold-shock family protein			3.1	2.1	2.3
1410	RpsB, ribosomal protein S2	2.2	3	10		
1420	Pgk, phosphoglycerate kinase	17.7		2	3.9	
Decreased sp						
59	SecA, preprotein translocase, SecA subunit	2.5	2.2			
95	AcnA, aconitate hydratase 1	2.9	9.7			
161	EtfA, electron transfer flavoprotein, alpha subunit		10.4		2.5	
216	MusA, N utilization substance protein A	6.5	10.2			5.5
299	cytosol aminopeptidase family protein		4.9		2.5	
322	RplK, ribosomal protein L11	4.5			4.9	2.9
342	cytosol aminopeptidase family protein			2.1	10.7	
371	MULTISPECIES: glycerol kinase			2.3	2.9	6.1
478	FabB, 3-oxoacyl-(acyl-carrier-protein) synthase I	3.9		4.9		
529	Tuf-1, translation elongation factor Tu	2.5	2.1		2.4	
574	acetylornithine aminotransferase, hypothetical			3	4.3	3.3
610	Gap, glyceraldehyde 3-phosphate dehydrogenase	2.6	2.2	2.6	7.2	12.2
612	renal dipeptidase family protein		14.7	2.0		2
648	IlvC, ketol-acid reductoisomerase	7.7		4.1		-
653	conserved hypothetical protein			8.5	4.3	
655	AcrB/AcrD/AcrF multidrug efflux protein		3.2	3	4.1	3.4

Table 2. Results of two-dimensional gel electrophoresis and liquid chromatography tandem mass spectrometry for peptide analysis revealed the protein name and the increased and decreased fold changes of 30 selected spots

224 Woo Bin Park et al.

Table 2. Continued

Spot ID	Protein name	C3	C8	C13	C24	C30
723	RplB, ribosomal protein L2	6.1	4.8			4.6
725	Pnp, polyribonucleotide nucleotidyltransferase	2.1	4.1			
748	RpsE, ribosomal protein S5			2.4		6.4
827	conserved hypothetical protein		3.2			3.4
888	ribosomal 5S rRNA E-loop binding protein Ctc/L25/TL5	2.7	4.4		11	2
889	ribosomal 5S rRNA E-loop binding protein Ctc/L25/TL5	2.2	6.3			
969	hypothetical transaldolase	2.7	12.3			
970	kinase, hypothetical			4.1	4.4	4.6
1004	RpII, ribosomal protein L9	12.7	18.2	11.4	6.6	
1011	RpII, ribosomal protein L9				2.7	7.5
1078	peptide release factor 2		6.6			2.5
1141	acetyltransferase, GNAT family	2.5	2.2			
1279	Hfq, host factor-I protein	2.3	3.1			
1393	EtfB, electron transfer flavoprotein, beta subunit			2.2	2.8	3.2

abortus, was also decreased in mutants C3 and C8.

Discussion

Brucellosis is a re-emerging zoonosis that can infect not only animals but also humans throughout the world. At present, the pathogenesis of the disease is reported to have greatly increased [19,24]. Despite many studies, however, eradication of brucellosis remains a difficult task, and many potential effective diagnostics and vaccines are under study to prevent the spread of this disease [6,18].

In this study, *B. abortus* mutants were generated by using the EZ-Tn5 transposon system. The resulting mutants were commonly resistant to kanamycin, and the expression of their proteins was different due to the insertion of the related *rKan* gene. The expression patterns of the proteins of the *B. abortus* mutants were generated, compared to *B. abortus* wild-type, and found to vary. We identified various proteins that were changed following transposon insertion and confirmed functions of each protein.

ClpB, shown to increase in expression commonly in *B. abortus* mutants C13, C24, and C30, is associated with energyrelated metabolism including ATP-binding and peptidase activity. In addition, ClpB is a heat-shock protein that allows pathogens to adapt to the intracellular environment; moreover, ClpB works in conjunction with DnaK, DnaJ, and GrpE to suppress protein aggregation, thereby affecting pathogenicity [31]. DnaK (Hsp70), which increased in expression in all of the studied *B. abortus* mutants, is a chaperone protein. Protein folding is also performed by DnaK, and ATP is essential for this role. It is also reported that structural change in DnaK occurs through ATPase activity [4]. Moreover, DnaK is involved in replication of phage lambda DNA, is related to hyperosmotic shock, and has a role in ATP-dependent resolubilization of aggregations of protein in conjunction with ClpB. Binding of ClpB occurs according to a previous DnaK association with the protein aggregation. The bi-chaperone network of DnaK and ClpB consists of three stages. When DnaJ is attached, the co-chaperone forms an aggregation with DnaK, and DnaK interacts with ClpB on the surface on the aggregation. The TRP domain protein also has an important role in stimulating the molecular chaperone complex, particularly in the formation of bridges between Hsp70 (DnaK) and Hsp90 [1,2,5,23,31].

RpsC was identified as ribosomal protein S3, which is involved in the expression of the nuclear factor kappa B (NF- κ B)-induced reporter gene when T cell stimulation occurs. When the T cell is stimulated, RpsC is transferred into the cell to transmit the NF- κ B signal within the cytoplasm. In particular, RpsC has an important role in signal transduction of NF- κ B though p65, where NF- κ B has an important role in the expressions of genes that bind to regulatory sites or are regulated by p65 [28]. This suggests that not only growth but also T cell stimulation may occur more actively in mutants C24 and C30, which are faster growing than *B. abortus* wild-type.

The SecA, GAPDH, and GNAT family, which are commonly expressed in the mutants C3 and C8 that have slower growth than that in *B. abortus* wild-type. It is thought that the growth rate is lower than that in *B. abortus* wild-type due to expression decreases in metabolic function- related factors active in obtaining the energy required for the normal growth of the strains [9,27]. In addition, the decrease in the expression of AcnA, which is directly related to the growth feature of the strain, in related to regulation networks, such as CRP, ArcA, Fur, and SoxR5, and seems to have affected the growth features of the mutants [12]. Hfq, showing decreased expression in mutants C3 and C8, is an RNA-binding protein that is common

			ומאר אין באומר מומואיז וכאמום טאמווירט אל ווקמוט בוויטוומנטפומאוון ומוסטו וומאז ארכת טווכנו איווטאווופ וויכובמארת מומ מבכובמארת איוטרוויז											
Snot	Gene		Protein	Protein	Accession	Sequence			Molecular weight	r weight		Sequence	Subcellula	DOD
No.		Gene ID	identification	ID		length		Score	Experi- mental	Theore- tical	ld	coverage (%)		functional category
Increa: 32	Increased protein 32 SoxA	1 3339477	MULTISPECIES: sarcosine oxidase subunit alpha [Brucella]	WP_ 002967112.1	WP_ 002967112	1,344	BruAb1 0226	16	1045.5610	1045.5590	6.29	7	Periplasmic E space	E: Glycine cleavage system T protein (aminomethyl-
102	ClpB	3339973	ATP-dependent Clp protease, ATP-binding	WP_ 002964938.1	WP002964938	2,625	BruAb11843	1606	51593.5287	51593.5453	5.18	30	Cytoplasm C	transferase) O: ATP- dependent protease Clp,
202	DnaK	3341115	subunit ClpB chaperone protein DnaK	WP002969217.1	AAX75397.1	1,914	BruAb1_ 2100	503	18108.8404	18108.8666	4.85	16	Cytoplasm C	ATPase subunit O: Molecular chaperone
234	BruAb2_ 0037	3341882	magnesium ion-transporting ATPase, E1-E2	WP_ 002971302.1	AAX75488.1	2,718	BruAb2_ 0037	17	931.4719	931.4723	6.54	-	Inner F membrane	Dhan (HSP7U) P: Magnesium- transporting ATPase
369	369 Zwf	3342337	family glucose-6-phosphate WP_ 1-dehydrogenase 00	WP002965865.1	WP 002965865	1,476	BruAb1_ 0454	41	844.4477	844.4443	5.74	-	Cytoplasm ((P type) G: Gulucos-6- phosphate 1-
418	DadA	3341955	D-alanine dehydrogenase,	WP_ 002965723.1	AAX75742.1	1.251	BruAb2_ 0309	21	785.4629	785.4647	6.47	-	Cytoplasm E	dehydrogenase E: Alanine de- hydrogenase
464	BruAb1_ 1816	3340394	sman suoumu carboxyl-terminal protease	WP002964915.1	AAX75131.1	1,329	BruAb1_ 1816	788	23777.4215	23777.4214	5.69	37	Periplasmic C space	O: C-terminal processing CtpA/Prc, contains a PDZ
483	BruAb2_ 1038	3341806	hypothetical peptide WP ABC transporter, 00	WP002965559.1	AAX76414.1	834	BruAb2_ 1038	25	813.5066	813.5072	10.52	7	lnner membrane	domain -
572	BruAb1_ 0662	3339996	permease protein hypothetical protein WP_ 01_	WP_ 01168934.1	AAX74037.1	93	BruAb1 0662	21	936.4529	936.4586 11.13	11.13	27	Cytoplasm	I

Table 3. Peptide analysis results obtained by liquid chromatography tandem mass spectrometry showing increased and decreased proteins

Analysis of protein expression in Brucella abortus mutants 225

Table	Table 3. Continued	nued												
Snot	Cana.		Drotain	Drotain	Accession	Saduanca		I	Molecular weight	r weight		Sequence	Subcallula	COC
No.		Gene ID	identification	ID		Jength	tag	Score	Experi- mental	Theore- tical	Ιd	coverage (%)	r location	functional category
631	BruAb1_	3340562	methionine-	WP_	AAX75247.1	1,284	BruAb1	29	801.4242	801.4232	6.02	1	Cytoplasm	I
	1941		gamma-lyase, hvpothetical	002967006.1			1941							
673	ArgF	3339044	ornithine	WP	AAX73728.1	939	BruAb1_	124	2868.4788	2868.4716	5.50	8	Cytoplasm	E: Ornithine
			carbamoy	002963466.1			0328							carbamoyltrans
			Itransferase	!			- - -	i				,	-	ferase
742	BruAb1 0941	3340129	ABC transporter, ATP-hinding	WP002964056 1	AAX74305.1	756	BruAb1 0941	76	1145.5879	1145.5928	5.00	m	Cytoplasm	O: Fe-S cluster assembly
			protein											ATPase SufC
813	TrpA	3340522	tryptophan	WP	AAX75382.1	840	BruAb1	179	6209.2546	6209.2628	5.48	11	Cytoplasm	E: Tryptophan
			synthase,	002965172.1			2083							synthase beta
			alpha subunit											unit
848	RpsC	3341103	ribosomal	WP_	AAX74570.1	711	BruAb1_	269	5705.9082	5705.9031	9.86	22	Cytoplasm	J: Ribosomal
			protein S3	002964356.1			1232							protein S3
8 7 7	RpsC	3341103	ribosomal	WP_	AAX74570.1	711	BruAb1_	77	1619.9500	1619.9471	9.86	9	Cytoplasm	J: Ribosomal
660			protein S3	002964356.1			1231							protein S3
8.70	RpsC	3341103	ribosomal	WP_	AAX74570.1	711	BruAb1_	136	2381.3369	2381.3325	9.86	6	Cytoplasm	J: Ribosomal
0			protein S3	002964356.1			1231							protein S3
	AtpH	3341000	ATP synthase F1,	WP_	AAX75099.1	561	BruAb1_	179	6730.6430	6730.6511	8.04	22	Cytoplasm	C: F0F1-type ATP
995			delta subunit	002964879.1			1782							synthase, delta
				!			-						:	subunit
1034		BruAb1_ 3339761	single-stranded	WP	AAX74449.1	507	BruAb1_	117	3031.6063	3031.6011	5.93	11	Extracellula	L: Single-
	1108		DNA-binding	002964231.1			1108						r space	stranded
			protein family											DNA-binding
		1110100				t L	6 C	1	1014 101	0744 4704		5		protein
1001	NUSE				1.600+/VVV	100		16	1004.4004	10141.4004	10.43	7	Cytupidai	
			protein S5	002964345.1			1221						-	protein S5
1060		BruAb1_ 3339291	TPR domain	WP	AAX73821.1	1,866	BruAb1_	28	1808.8108	1808.8141	6.23		Periplasmic	I
	0425		protein	002963560.1			0425							
1073	RplM	3339415	ribosomal	WP_	AAX74173.1	465	BruAb1_	39	842.5000	842.4974	10.18	5	Cytoplasm	J: Ribosomal
			protein L13	002963926.1			0805							protein L13
1118	Dut	3340298	deoxyuridine	WP_	AAX74979.1	474	BruAb1_	137	3619.1198	3619.1189	6.59	22	Cytoplasm	I
			5-triphosphate	002964766.1			1660							
			nucleotidohydrolase	Ð										

226 Woo Bin Park et al.

Journal of Veterinary Science

Table	Table 3. Continued	nuea												
Snot	Gana		Drotain	Drotein	Accession	Saguanca			Molecular weight	ır weight		Sequence	Subcellula	DOD
No.		Gene ID	identification	ID		Jength	tag	Score	Experi- mental	Theore- tical	Ιd	coverage (%)	r location	functional category
1120		3339640	Outer membrane	P0A3S9	P0A3S9.1	507	BruAb1_	56	960.4848	960.4876	9.92	J.	Outer	1
	1680		lipoprotein Omp16				1680						membran e	
1138	AhpD	3342335	alkyl hydroperoxide WP_	WP_	AAX75942.1	528	_1	154	3690.0771	3690.0777	6.13	16	Cytoplasm	I
1153		BruAb1 3340675	reductase D conserved	002965934.1 WP	AAX74510.1	465	0523 BruAb1	283	5800.9132	5800.9169	5.87	24	Cytoplasm	I
	1171		hypothetical	002964292.1			1171							
			protein											
1154	BruAb2_	BruAb2 3341616	sugar-phosphate	WP_	AAX75793.1	456	a.	413 1	10359.2240	10359.2292	5.11	50	Cytoplasm (G: Ribose
	0362		isomerases, RoiB/LacA/LacB	002965776.1			0362							5-phosphate isomerase RniB
			family											
1210	RplX	3340121	ribosomal protein	WP_	AAX74565.1	312	BruAb1_	29	1302.6821	1302.6779	10.24	11	Cytoplasm J	J: Ribosomal
			L24	002964351.1			1227							protein L24
1294	BruAb1_	3339880	cold-shock family	WP_	AAX74814.1	210	BruAb1_	190	5612.8591	5612.8557	6.54	43	Cytoplasm	K: Cold-shock
	1486		protein	002964599.1			1486							protein, CspA
						İ		į						family
1410	RpsB	3340672	ribosomal protein S2 WP_	WP	AAX74507.1	771	I	271	6596.5143	6596.5160	5.86	23	Cytoplasm	J: Ribosomal
				002964289.1			1168							protein S2
1420	Pgk	3340208	phosphoglycerate	WP	AAX75033.1	1,191	BruAb1_	40	1089.5295	1089.5302	5.64	2	Cytoplasm	G: Phosphoglyc
			kinase	002964816.1			1714							erate kinase
Decre		eins 2240544				101 C	D A 5.1	, 0.00	76676001	10011005	L 7 L	c	C. 40 al 2000	
ה	VDac		transforms			7/7			0070.4000		r	D		transforment
			riansiocase,	1.210006200			1761							
														(ATPase, RNA
														helicase)
95	AcnA	3340768	aconitate	WP_	AAX73506.1	2,688	BruAb1_	268 1	11360.5575	11360.5663	5.55	~	Cytoplasm	I
			hydratase 1	002965341.1			0600							
161	EtfA	3340252	electron transfer	WP_	AAX75250.1	930	BruAb1_	44	800.4489	800.4504	4.75	2	Cytoplasm	C: Electron
			flavoprotein, alpha	002965036.1			1946							transfer
			subunit											flavoprotein, alnha subunit

Analysis of protein expression in Brucella abortus mutants 227

www.vetsci.org

Table	Table 3. Continued	nued												
Snot	Gana		Drotain	Drotoin	Accession	Saduanca		I	Molecular weight	r weight		Sequence	Subcellula	DOD
No.		Gene ID	identification	ID		Jength	tag	Score	Experi- mental	Theore- tical	Ιd	coverage (%)		functional category
216	Nus A	3340636	N utilization	WP_	AAX75432.1	1,614	BruAb1_	108	2793.4055	2793.4004	4.53	4	Cytoplasm	I
000			substance protein A	002965225.1			2136	Ţ	1		L	c		
667		07080708	cytosor aminopeptidase	vvг002963831.1	1.0004/VVV	1,434	_10708	+ -	6177.6141	441.0.141	40.C	И	Cytopiasiii	
	0 1	1000166	family protein	GVV	A V 7 1 E 00 1	OCT	D A b 1	7	CC26 C92	1036 632	0 0	~	Dorin Louiso L. Dihooon	lomonodio.
770		+600+cc	проѕонатриотент L11	иг 002964374.1	1.060+1000	44	1252	<u>+</u>	77/6.70/	4600.707	10.6	1	space	. Nibusulilat protein L11
342	BruAb1_	3339393	cytosol	WP_	AAX74083.1	1,494	BruAb1_	23	844.4579	844.4555	5.90	-	Cytoplasm	-
	0708		aminopeptidase	002963831.1			0708							
371	Bab RS	23672579	family protein MULTISPECIES:	WP	KFJ53326.1	1,071	Bab RS3	53	833.4765	833.4759	5.18	2	Cytoplasm (C: Glycerol
	30125			-002972023.1			$^{-}_{0125}$							kinase
478	FabB	3340645	3-oxoacyl-(acyl-carri WP	WP_	AAX75440.1	1,224	BruAb1_	93	2860.4601	2860.4641	5.21	9	Cytoplasm 1	IQ: 3-oxoacyl-
			er-protein)	002965234.1			2145							(acyl-carrier-
			synthase I											protein)
														synthase I
529	Tuf-1	3340098	translation	WP_	AAX74578.1	1,176	BruAb1_	252	7572.7814	7572.7943	5.29	14	Cytoplasm J	J: Translation
			elongation factor Tu	002970090.1			1225							elongation factor EF-Tu, a
														GTPase
574	BruAb1_ 0327	3339138	acetylornithine aminotransferase,	WP002963465.1	AAX73727.1	1,212	BruAb1_ 0327	293	9938.0735	9938.1332	5.63	14	Cytoplasm	I
			hypothetical											
610	Gap	3340207	glyceraldehyde	WP_	AAX75032.1	1,008	BruAb1_	151	3806.0224	3806.0216	6.00	11	Cytoplasm (G: Glycera-
			3-phosphate	002964815.1			1713							ldehyde-3-phos
			dehydrogenase											phate de-
														hydrogenase/er
														ythrose-4-phos
														phate de-
	-			-			-						-	hydrogenase
612	BruAb2_ 0572	BruAb2 3341828 0572	renal dipeptidase familv protein	WP002967282.1	AAX75989.1	1,061	BruAb2_ 0572	112	4278.0898	4278.0940	5.40	10	Cytoplasm	I
648	ilvC	3340151	ketol-acid	WP_	AAX74707.1	1,020	BruAb1_	201	7279.8913	7279.8763	5.90	16	Cytoplasm E	EH: Ketol-acid
			reductoisomerase	002964491.1			1376							reductoisome-
														rase

Journal of Veterinary Science

									Molecular weight	ır weight				
Spot No.	Gene name	Gene ID	Protein identification	Protein ID	Accession No.	Sequence length	tag	Score	Experi- mental	Theore- tical	ld -	sequence coverage (%)	Subcellular location	functional category
653	BruAb1_ 2049	3339680	Ō	WP002971854.1	AAX75350.1	6969	BruAb1_ 2049	23	846.4254	846.4269	4.67	e	Cytoplasm	1
655		BruAb1_ 3339120	protein multidrug efflux	WP	AAX73706.1	3,132	BruAb1_	18	930.4541	930.4454	5.00	0	Inner .	I
723	0303 RplB	3341106	protein ribosomal	002966673.1 WP	AAX74573.1	834	0303 BruAb1	51	6836.2135	6836.2242	10.92	11	membrane Periplasmic	membrane Periplasmic J: Ribosomal
725	Pnp	3340642	protein L2 polyribonucleotide nucleotidyltransfer	002964359.1 WP 002965231.1	AAX75438.1	2,145	1235 BruAb1_ 2142	26	807.4117	807.4126	5.04	-	space Cytoplasm	protein L2 _
748	RpsE	3340115	ase ribosomal	WP	AAX74559.1	561	BruAb1_	29	764.4063	764.4068	10.49	c.	Cytoplasm	J: Ribosomal
827	BruAb1_ 0886	_ 3339354	protent 33 conserved hypothetical	WP002964004.1	AAX74251.1	708	1221 BruAb1 0886	144	4903.3185	4903.3087	4.98	14	Periplasmic space	
888		BruAb13340810 1524	protein ribosomal 55 rRNA E-loop binding	WP002964640.1	AAX74852.1	624	BruAb1 1524	343	8459.2338	8459.2224	5.91	27	Cytoplasm	I
889		BruAb1_ 3340810 1524	protein Ctc/L25/TL5 ribosomal 55 rRNA E-loop binding	WP_ 002964640.1	AAX74852.1	624	BruAb1_ 1524	116	3099.9475	3099.9473	5.91	4	Cytoplasm	I
696		BruAb13341003 1785	protein Ctc/L25/TL5 hypothetical transald/olase	WP1007966970.1	AAX75102.1	654	BruAb1_ 1785	74	1999.0578	1999.0626	5.47	ω	Cytoplasm	I
970	6 6		pothetical	> :	AAX75346.1	603	BruAb12045		11956.3411	11956.3551	6.86	19		H: Diphospho- CoA kinase
1004	Rpll	3339572 3339572	ribosomai protein L9 ribosomal	WP002963608.1 WP	AAX/3809.1 AAX73869.1	570	BruAb1_ 0474 BruAb1_	186	7071.6953	7071.7018	4.86 4.86	22	Cytoplasm	J: KIDOSOMAI protein L9 J: Ribosomal
1078	BruAb1_ 0927	_ 3339338	protein L9 peptide release factor 2	002963608.1 WP002964045.1	AAX74291.1	996	0474 BruAb1_ 0927	4	1111.5257	1111.5233	5.09	7	Cytoplasm	protein L9 -

	C					c	-		Molecular weight	r weight		Sequence	Sequence , , , ,	DOD
spot No.	spot Lene No. name	Gene ID	Protein identification	ID	Accession sequence Locus Score No. length tag Score	sequence length	Locus tag	Score	Experi- mental	Theore- tical	Ιd	coverage (%)	coverage r location (%)	functional category
1141	BruAb1_ 1881	3340244	1141 BruAb1_ 3340244 acetyltransferase, 1881	WP002964973.1	AAX75193.1 459	459	BruAb1_ 130 1881		6702.4817	6702.4780 6.22	6.22	24	Cytoplasm R: Predicted acetyltrans e GNAT	k: Predicted acetyltransferas e. GNAT
1279	1279 Hfq	3340039	3340039 host factor-I protein WP_ 002	WP002964239.1	AAX74458.1 237	237	BruAb1_ 1117	16	BruAb116 _1045.5223 1117	1045.5193 7.93	7.93	11	Cytoplasm 7	oy constrainty superfamily T: sRNA- binding regulator
1393	1393 EtfB	3340253	3340253 electron transfer flavoprotein,	WP002965037.1	AAX75251.1 747	747	BruAb1_ 1947	637 1	6300.6331	BruAb1_ 637 16300.6331 16300.6292 7.77 1947	7.77	41	Cytoplasm (protein Hfq C: Electron transfer
			beta subunit											flavoprotein, alpha and beta subunits

to bacteria and is important in gene expression control. Hfq acts on pairs of small RNA and mRNA and is involved in translation, transcription, and post-transcription networks. It acts on small RNA to inhibit the translation of the 30S and 50S ribosomal subunits and inhibits degradation of small RNA. In addition, Hfq induces cleavage by ribonuclease E (RNase E) of target mRNA. It is also associated with resistance to environmental stressors such as oxidation, acid, and heat [7,25,26]. It is thought that the observed decrease of Hfq expression may be a cause of the slower growth rate in mutants C3 and C8. Furthermore, transcription in these mutants may cause abnormal expression of several genes.

It is well-known that all the biological processes within living organisms are controlled by the various proteins present within the organism. Protein is not only a basic biological component, but also constituents of enzymes, antibodies, and hormones. In addition, proteins are deeply involved in all cell processes, such as DNA replication, RNA transcription, and protein translation, as well as in determining the function of the organism. Protein analysis of the major pathogenic factors of bacteria is of great importance in research into disease eradication or prevention.

Acknowledgments

This study was supported by MSIP (No. 2014R1A2A2A01007291), KHIDI (HI16C2130), the BK21 PLUS Program for Creative Veterinary Science Research, and the Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea.

Conflict of Interest

The authors declare no conflicts of interest.

References

ol, isoelectric point; COG, Clusters of Orthologous Groups.

- Acebrón SP, Martín I, del Castillo U, Moro F, Muga A. DnaK-mediated association of ClpB to protein aggregates. A bichaperone network at the aggregate surface. FEBS Lett 2009, 583, 2991-2996.
- 2. Blatch GL, Lässle M. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 1999, **21**, 932-939.
- Boschiroli ML, Foulongne V, O'Callaghan D. Brucellosis: a worldwide zoonosis. Curr Opin Microbiol 2001, 4, 58-64.
- Buchberger A, Theyssen H, Schröder H, McCarty JS, Virgallita G, Milkereit P, Reinstein J, Bukau B. Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication. J Biol Chem 1995, 270, 16903-16910.
- Cellier MF, Teyssier J, Nicolas M, Liautard JP, Marti J, Sri Widada J. Cloning and characterization of the *Brucella ovis* heat shock protein DnaK functionally expressed in

230 Woo Bin Park *et al.*

Table 3. Continued

Escherichia coli. J Bacteriol 1992, 174, 8036-8042.

- Christopher S, Umapathy BL, Ravikumar KL. Brucellosis: review on the recent trends in pathogenicity and laboratory diagnosis. J Lab Physicians 2010, 2, 55-60.
- Cui M, Wang T, Xu J, Ke Y, Du X, Yuan X, Wang Z, Gong C, Zhuang Y, Lei S, Su X, Wang X, Huang L, Zhong Z, Peng G, Yuan J, Chen Z, Wang Y. Impact of Hfq on global gene expression and intracellular survival in *Brucella melitensis*. PLoS One 2013, 8, e71933.
- DelVecchio VG, Wagner MA, Eschenbrenner M, Horn TA, Kraycer JA, Estock F, Elzer P, Mujer CV. Brucella proteomes--a review. Vet Microbiol 2002, 90, 593-603.
- 9. Driessen AJ. SecB, a molecular chaperone with two faces. Trends Microbiol 2001, 9, 193-196.
- Finlay BB, Falkow S. Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 1997, 61, 136-169.
- 11. Franco MP, Mulder M, Gilman RH, Smits HL. Human brucellosis. Lancet Infect Dis 2007, 7, 775-786.
- Gruer MJ, Guest JR. Two genetically-distinct and differentially-regulated aconitases (AcnA and AcnB) in *Escherichia coli*. Microbiology 1994, 140, 2531-2541.
- 13. Guzman-Verri C, Manterola L, Sola-Landa A, Parra A, Cloeckaert A, Garin J, Gorvel JP, Moriyon I, Moreno E, Lopez-Goni I. The two-component system BvrR/BvrS essential for *Brucella abortus* virulence regulates the expression of outer membrane proteins with counterparts in members of the *Rhizobiaceae*. Proc Natl Acad Sci U S A 2002, 99, 12375-12380.
- Lamontagne J, Béland M, Forest A, Côté-Martin A, Nassif N, Tomaki F, Moriyón I, Moreno E, Paramithiotis E. Proteomics-based confirmation of protein expression and correction of annotation errors in the *Brucella abortus* genome. BMC Genomics 2010, 11, 300.
- Lee HJ, Cha HJ, Lim JS, Lee SH, Song SY, Kim H, Hancock WS, Yoo JS, Paik YK. Abundance-ratio-based semiquantitative analysis of site-specific N-linked glycopeptides present in the plasma of hepatocellular carcinoma patients. J Proteome Res 2014, 13, 2328-2338.
- Lee J, Kim KY, Lee J, Paik YK. Regulation of Dauer formation by *O*-GlcNAcylation in *Caenorhabditis elegans*. J Biol Chem 2010, 285, 2930-2939.
- Lee J, Kim KY, Paik YK. Alteration in cellular acetylcholine influences dauer formation in *Caenorhabditis elegans*. BMB Rep 2014, 47, 80-85.
- McGiven JA. New developments in the immunodiagnosis of brucellosis in livestock and wildlife. Rev Sci Tech 2013, 32, 163-176.

- Pappas G. The changing *Brucella* ecology: novel reservoirs, new threats. Int J Antimicrob Agents 2010, 36 (Suppl 1), S8-11.
- Park WB, Im YB, Jung MH, Yoo HS. Molecular characteristics of *Brucella abortus* mutants generated using EZ-Tn5Tm pMODTm-3 transposon system. J Prev Vet Med 2015, **39**, 144-152.
- Pizarro-Cerdá J, Méresse S, Parton RG, van der Goot G, Sola-Landa A, Lopez-Goñi I, Moreno E, Gorvel JP. Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect Immun 1998, 66, 5711-5724.
- Pomastowski P, Buszewski B. Two-dimensional gel electrophoresis in the light of new developments. Trends Analyt Chem 2014, 53, 167-177.
- Schlee S, Beinker P, Akhrymuk A, Reinstein J. A chaperone network for the resolubilization of protein aggregates: direct interaction of ClpB and DnaK. J Mol Biol 2004, 336, 275-285.
- 24. Seleem MN, Boyle SM, Sriranganathan N. Brucellosis: a re-emerging zoonosis. Vet Microbiol 2010, 140, 392-398.
- 25. Valentin-Hansen P, Eriksen M, Udesen C. The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol Microbiol 2004, **51**, 1525-1533.
- 26. Vogel J, Luisi BF. Hfq and its constellation of RNA. Nat Rev Microbiol 2011, 9, 578-589.
- Vrontou E, Economou A. Structure and function of SecA, the preprotein translocase nanomotor. Biochim Biophys Acta 2004, 1694, 67-80.
- Wan F, Anderson DE, Barnitz RA, Snow A, Bidere N, Zheng L, Hegde V, Lam LT, Staudt LM, Levens D, Deutsch WA, Lenardo MJ. Ribosomal protein S3: a KH domain subunit in NF-kappaB complexes that mediates selective gene regulation. Cell 2007, 131, 927-939.
- Weldingh K, Rosenkrands I, Jacobsen S, Rasmussen PB, Elhay MJ, Andersen P. Two-dimensional electrophoresis for analysis of *Mycobacterium tuberculosis* culture filtrate and purification and characterization of six novel proteins. Infect Immun 1998, 66, 3492-3500.
- Woods ML 2nd, Bonfiglioli R, McGee ZA, Georgopoulos C. Synthesis of a select group of proteins by *Neisseria* gonorrhoeae in response to thermal stress. Infect Immun 1990, 58, 719-725.
- Zolkiewski M. ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from *Escherichia coli*. J Biol Chem 1999, 274, 28083-28086.