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Innate lymphoid cells (ILCs) are a group of innate immune cells that possess overlapping
features with T cells, although they lack antigen-specific receptors. ILCs consist of five
subsets-ILC1, ILC2, ILC3, lymphoid tissue inducer (LTi-like) cells, and natural killer (NK)
cells. They have significant functions in mediating various immune responses, protecting
mucosal barrier integrity and maintaining tissue homeostasis in the lung, skin, intestines,
and liver. ILCs react immediately to signals from internal and external sources. Emerging
evidence has revealed that dietary micronutrients, such as various vitamins and minerals
can significantly modulate immune responses through ILCs and subsequently affect
human health. It has been demonstrated that micronutrients control the development and
proliferation of different types of ILCs. They are also potent immunoregulators in several
autoimmune diseases and play vital roles in resolving local inflammation. Here, we
summarize the interplay between several essential micronutrients and ILCs to maintain
epithelial barrier functions in various mucosal tissues and discuss their limitations and
potentials for promoting human health.

Keywords: micronutrients, innate lymphoid cells, AhR ligands, vitamin A and D, mucosal protection,
homeostasis regulation
INTRODUCTION

Innate lymphoid cells (ILCs) are a family of innate immune cells that possess overlapping characteristics
with T cells. ILCs exhibit properties of CD4+ helper T (Th) cells and CD8+ cytotoxic T (Tc) cells,
although they lack the antigen-specific receptors of adaptive immune cells. ILCs can be divided in several
subgroups, definedmainly by the intrinsic transcription factors expressed and the cytokines produced by
each subgroup. ILCs were initially categorized into three major subgroups: ILC1, ILC2, and ILC3.
Recently, the nomenclature of ILCs has been updated based on a more in-depth understanding of the
unique developmental pathways they follow; the latest nomenclature reclassified ILCs into five
subgroups: ILC1, ILC2, ILC3, lymphoid tissue inducer (LTi-like) cells, and natural killer (NK) cells
(1, 2). ILCs commonly express CD127, the IL-7 receptor a chain (IL-7a) which supports their survival
and proliferation. ILC1s require T-bet to function and produce interferon (IFN)-g (3). ILC2s are
characterized by a high expression level of the GATA3 transcription factor and the capacity to produce
large amounts of type 2 cytokines, IL-4, IL-5, and IL-13 (2, 4, 5). ILC3s rely on the transcription factor
org April 2021 | Volume 12 | Article 6706321

https://www.frontiersin.org/articles/10.3389/fimmu.2021.670632/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.670632/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.670632/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:naoko.satoh@riken.jp
https://doi.org/10.3389/fimmu.2021.670632
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.670632
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.670632&domain=pdf&date_stamp=2021-04-29


Shi et al. Micronutrients Modulate Homeostasis via ILCs
retinoic acid-related orphan receptor g isoform t (RORgt) to
differentiate and survive (6). There are two kinds of ILC3s. One
consists of cells that expresses the surface marker NKp46, termed
natural cytotoxicity receptor (NCR)+ ILC3s, and are significant
sources of interleukin 22 (IL-22). The other subgroup is LTi-like
cells, which express the C-C motif chemokine receptor 6 (CCR6)
but lack NKp46 expression (6, 7). LTi cells require RORgt for their
development, act to generate the secondary lymph nodes and
Peyer’s patches during fetal development and mainly produce the
cytokine IL-17 (8, 9). NK cells are regulated by both T-bet and
Eomesodermin (Eomes) and they are potent cytotoxic cells found
within tissues or circulating in the blood (10).

ILCs have significant biomedical functions in tissue homeostasis,
mediating innate immunity and communicating with adaptive
immunity, and are involved in the pathogenesis of multiple
autoimmune diseases (7, 11–13). Considerable emerging evidence
has established that tissue-resident ILCs sense and promptly
respond to perturbations in internal physiological responses to
maintain the homeostasis of mucosal tissues. In addition, they
react to an even more comprehensive range of challenges from
external sources (e.g., dietary constituents, microbes, and
pollutants). Indeed, our daily diet, which contains plenty of
nutrients, energy sources and toxins, may vitally and vigorously
affect our innate immunity by changing the immune cell cycle and
cell fate, and can impact autoimmune dysfunctions and cancer (14,
15). For example, the western-style high calorie diet could induce
long-lasting transcriptional and epigenetic reprogramming of
monocytes and enhanced proliferation of myeloid progenitor cells
due to diet-associated systematic inflammation (16).
Micronutrients, including vitamins and minerals, are essential for
the immune system to function efficiently, despite their low
quantities in the body. Micronutrient deficiency leads to
imbalanced host defense and increases the infection risk and
immune dysregulation throughout different life courses (17).
Along with the increasing insight into ILCs that we have gained
in the last decade, the linkage between micronutrients and ILCs has
also become a timely topic. In fact, recent work has highlighted the
ability of ILC3s to respond to various dietary stimuli and the ILC3s
transcriptional program could be precisely modified by several
dietary metabolites (7). In this review, we summarize the current
understanding of the communication between several essential
micronutrients, mainly Aryl hydrocarbon receptor (AhR) ligands,
vitamin A and D, and ILCs to defend the mucosal tissue epithelial
barrier and discuss their limitations and potentials for promoting
human health (Figure 1 and Table 1).
DIETARY AHR LIGANDS SERVE AS KEY
FACTORS IN INNATE IMMUNITY

The AhR is a ligand-dependent transcription factor that plays a
vital role in cell cycle and cell fate, maintenance of barrier
functions and regulating immune responses (15). AhR ligands
come from both external and internal sources. Diverse dietary
components have been considered as fundamental exogenous
sources of AhR ligands. For example, vegetables of the Brassica
genus, also called cruciferous vegetables, such as cabbage,
Frontiers in Immunology | www.frontiersin.org 2
cauliflower, broccoli, brussels sprouts, etc., the herb turmeric,
green tea, and citrus fruits contain various AhR-binding
compounds. After consumption, the body converts the Brassica
genus vegetables-derived components to secondary metabolites
such as indole-3-carbinol (I3C) and its derivative indolo [3,2-b]
carbazole (ICZ), which possesses a significantly high affinity for
the AhR (38). Of note, AhR was originally discovered as the
high-affinity receptor for the environmental pollutant 2,3,7,8-
tetrachlorodibenzop-dioxin (TCDD), or dioxin. Dioxin is a
potent promoter of carcinoma in rodent models (39). Several
metabolites synthesized by host commensal microorganisms and
from certain amino acids are the origin of the endogenous AhR
ligands (14, 38). One of the most extensively studied endogenous
AhR ligands, 6-formylindolo [3,2-b] carbazole (FICZ), is a
tryptophan-derived AhR ligand that has been shown to bind to
the AhR with the highest affinity (40). Indeed, FICZ upregulates
the expression of stem cell factor receptor (c-Kit) and IL-22 in
the human immune cells (41), and FICZ-stimulated AhR
signaling has been suggested to be a two-edged sword in
tumorigenesis (42).

AhR is an ancient gene that is ubiquitously expressed by
vertebrate cells and, more recently, it has been recognized as a
significant regulator of immune cells. Numerous studies have
established that T cells, such as Th17 cells in both peripheral
blood and spinal cord (43), and TCRab/CD8aa and TCRgd
intraepithelial lymphocytes (IELs) in the intestine and epidermis,
require AhR for their persistence (44). In addition, compelling
evidence indicates that AhR signaling plays a vital role in innate
immunity. Initially, an in vitro study showed that AhR directs the
transcriptional activity of peritoneal macrophages stimulated by
LPS-induced proinflammatory responses (45). Subsequently,
recent findings have shown that ILC3s, including both LTi-like
ILC3s and NCR+ ILC3s, require AhR for their development and
maintenance, and facilitate IL-22 production in small and large
intestines to sustain microenvironmental homeostasis (18, 21,
22). RORgt can also interact with the AhR to enhance Il22 gene
binding and promote IL-22 secretion (21). In addition, impaired
ILC3s in the postnatal phase hamper the organogenesis of
secondary lymphoid tissues including cryptopatches and
isolated lymphoid follicles (ILFs). The latest evidence has
suggested that ILC2s have the highest level of AhR expression
among all ILCs in the gut and that the AhR suppresses the ILC2
transcription program (23). Meanwhile, the AhR sustains ILC3s
to control the ILC2-ILC3 balance (23). Additionally, a study of
ILCs using AhR knockout (KO) mice indicated that a distinct
ILC1/NK cell subtype in the liver, characterized as CD49a+

TRAIL+CXCR6+DX5−NK1.1+, failed to perform its memory
and cytotoxic functions (24). In this study, the authors also
proposed that environmentally-derived AhR ligands initially
drive systematic immunity changes and subsequently affect
liver-resident ILC1s (24).

Although the issue of whether exogenous AhR ligands are
indispensable in innate immunity is controversial and obscure
(22, 23), a recent study has provided compelling data to support
that food-derived AhR ligands are essential in mediating innate
immune responses. A diet with sufficient plant-derived AhR
ligands has been shown to trigger AhR signaling, sustain the
April 2021 | Volume 12 | Article 670632
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ILC3 subset, and further direct the formation of cryptopatches
and ILFs in the neonatal gastrointestinal (GI) tract of mice (18).
Moreover, in adult mice, a diet abundant in AhR ligands may
transiently contribute to the expansion of ILC3s (18). Cruciferous
vegetables, which naturally contain potent genotoxic compounds,
for example, 1-methoxy-3-indolylmethyl alcohol (1-MIM-OH),
I3C, ICZ, etc., trigger ILC3s to produce large amounts of IL-22
(19). Subsequently, IL-22 produced by ILC3s eliminates the
Frontiers in Immunology | www.frontiersin.org 3
transformed intestinal stem cells by the DNA damage response
(DDR) and protects the stem cell niche and barrier integrity (19).
This finding supports the hypothesis that some extracts of
cruciferous vegetables structurally resemble dioxin, so that they
may have similar biological activity to this environmental
hormone after binding to the AhR (38). Strikingly, a study has
demonstrated that AhR signaling needs to be precisely controlled,
as excessive AhR activation could actually lead to the loss of
FIGURE 1 | Dietary micronutrients have various and sophisticated programs to mediate the development, proliferation, and functions of ILCs. Dietary sources of
micronutrients: AhR ligands, vitamin A and its metabolites, retinoic acid (RA) and all-trans RA (atRA). These micronutrients interact with ILC subsets: ILC1s, ILC2s,
ILC3s in the intestine, pancreas, liver, and lung. AhR signaling (indicated as purple arrows): AhR ligands maintain the liver-resident ILC1s/NK cells. AhR is highly
expressed by gut ILC2s and inhibits Gfi1 and Tcf7 gene expression, while sustaining ILC3s to control the ILC2-ILC3 balance (shown in the purple dotted line and the
purple arrow between the ILC2 and ILC3). In ILC3s, both AhR and RORgt bind to the Il22 locus (yellow ovals in the ILC3) and promote IL-22 and antimicrobial
peptide secretion (green arrows and dots). AhR ligands bind to AhR and enhance ILC3s to secrete IL-22 and prevent intestinal epithelial cells (IECs) from becoming
transformed via the DNA damage response (DDR) (as shown in the purple dotted line). AhR ligands may also directly act on IECs to prevent malignant
transformation. Vitamin A/RA signaling (indicated as red arrows and atRA as yellow arrows): RA induces the expression of gut-homing receptors CCR9 and a4b7 on
both ILC1s and ILC3s and guides them to migrate to the gut. RA can also convert some airway ILC2s to regulatory ILCs (ILCreg), which express IL-10, in the
inflamed tissues in the presence of the cytokines IL-33 and IL-2. In pancreatic-islets, IL-33 activates local ILC2s and the IL-33-ILC2 axis imprints RA-producing
activity in DCs or macrophages and promotes insulin secretion by b cells. RA and atRA promote IL-22-producing NCR+ ILC3s and IL-17-producing ILC3s. A vitamin
A-deprived diet enhances ILC2 functions and associated cytokines, including IL-4, IL-5, and IL-13 (indicated in red arrow between the ILC2 and ILC3), and showed
resistance to parasitic infection. Meanwhile, the vitamin A-deprived diet suppresses ILC3s and their cytokines (red-dotted line between the ILC2 and ILC3). Solid lines
represent the enhanced signaling pathways, while the dotted lines represent the suppressed signaling pathways.
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ILC3s (20). AhR activation promotes induction of cytochrome
P450 1 (CYP1) enzymes, which in turn oxygenate dietary AhR
ligands and further diminish their toxicity. As such, the excessive
induction of CYP1 enzymes severely depletes natural AhR
ligands, causing the reduction of ILC3s and IL-22 in the GI
tract. In contrast, supplementary oral intake of natural AhR
ligands reverses such effects on IL-22-producing ILC3s, which
indicates that dietary AhR ligands are a major contributor to AhR
induction and its feedback (20).
VITAMIN A METABOLITES, RETINOIC
ACID (RA) AND ALL-TRANS RA (ATRA),
REGULATE DEVELOPMENTAL
PATHWAYS AND MIGRATION OF
ILC SUBSETS

Vitamin A, a fat-soluble vitamin, is enriched in vegetables like
squash, sweet potatoes and carrots, fruits such as papaya and
nectarine, dairy products, beef and lamb livers, several sea fishes,
and so on. Vitamin A deficiency is a global public health concern,
particularly in children, leading to poor health conditions (46).
Importantly, mammals cannot synthesize vitamin A but can only
obtain it from food sources.

Of note, vitamin A bioactive metabolites are the regulators of
the immune system, because our body cannot directly utilize
vitamin A. One active metabolite of vitamin A, RA, not only
enhances the visual process and neurogenesis, but also drastically
impacts immune responses and has great therapeutic potential in
autoimmune diseases (47–50). Migratory dendritic cells (DCs)
Frontiers in Immunology | www.frontiersin.org 4
convert vitamin A to RA in the mouse epithelial tissues,
including the intestine, skin, lung, as well as in the associated
draining lymph nodes (51). It has also been suggested that
sufficient vitamin A intake is essential for regulating adaptive
immunity as RA triggers Th cells to react to mucosal
inflammation via RA receptor alpha (RARa) (50).

In addition, the interplay between RA and ILCs has recently
become clearer. Evidence regarding how RA interacts with ILC3s
emerged first. Mielke et al. found that intestinal NCR+ ILC3s
express RAR encoding Rara and Rarg genes, and RA promoted
IL-22-producing NCR+ ILC3s both in the steady state and under
colitis conditions in mice (52) (Figure 1). Likewise, atRA sustains
ILC3s and IL-22 production and protects the intestinal epithelium
from invasion by pathogens via the expression of the atRA-
dependent transcription factor Hypermethylated in cancer 1
(HIC1) (27). Several studies demonstrate RA’s critical role in
controlling ILC3s in both antenatal and postnatal stages. van de
Pavert et al. have revealed that sufficient dietary retinoids are
essential for the development of LTi cells in the fetus, and for
LTi-dependent embryonic lymphoid organ formation (26). Also, a
vitamin A-deprived diet hinders the proliferation of ILC3s and the
maturation of secondary lymphoid tissues (53). RA signaling not
only affects ILC3s but also ILC2s. Indeed, it has been reported that
mice fed a vitamin A-deprived diet suffered from profoundly
diminished ILC3s and reduced IL-22 and IL-17 in the gut,
meanwhile ILC2s and their corresponding cytokines such as IL-
13, IL-4, and IL-5 were elevated (25). A vitamin A-deprived diet
leads to IL-13-producing ILC2 expansion under helminth infection
to eliminate the worms, probably via increased acquisition and
utilization of fatty acids (25, 29). On the other hand, exogenous
delivery of RA resulted in a dramatic accumulation of ILC3s,
TABLE 1 | Micronutrients and associated signaling pathways that affect innate lymphoid cells (ILCs).

Dietary Source / signaling pathway Targeted ILCs Descriptions and other impacts Refs

AhR ligands / AhR signaling

ILC3s Anti-bacterial infection; formation of cryptopatches and ILFs (18)
ILC3s IL-22 secretion; anti-colon cancer (19)
ILC3s IL-22 secretion; balance between cytochrome P450 1 (CYP1) activation and its feedback (20)
ILC3s AhR-RORgt interaction for IL-22 secretion; anti-enteric infections (21)
ILC3s IL-22 secretion; formation of cryptopatches and ILFs in postnatal phase; Notch dependent and

independent regulation
(22)

ILC2s & ILC3s Inhibit ILC2; sustain ILC3 to control ILC2-ILC3 balance;
Enhance ILC2 immunity against helminth infection in AhR KO mice

(23)

ILC1s / NK cells Loss of memory-type immunity by lack of AhR expression (24)

Vitamin A / RA signaling

ILC2s & ILC3s Enhance ILC2 and type 2-cytokine production, IL-4, IL-5 and IL-13 in Vitamin A-insufficient
(VAI) diet
ILC2 induction upon helminth infection under VAl diet; Reduce IL-22-producing ILC3 upon VAl diet

(25)

LTi cells Modulate embryonic lymphoid organogenesis; control the efficacy of offspring immunity (26)
ILC3s Reduce IL-22-producing ILC3s via HIC1; anti-bacterial infections (27)
ILC1s & ILC3s CCR9 and a4b7 gut homing receptor activation; gut homing functions (28)
ILC2s Upregulation of fatty acid usage in the absence of RA (29)
ILC2s Induce ILCreg from ILC2s in human inflamed airway in vitro (30)
ILC2s IL-33 activated pancreatic-islet ILC2s and imprint RA-producing functions to DCs and

macrophages; enhance insulin secretion
(31)

NK cells Infiltration of NK cells into tumor region; promote NK cell cytotoxicity (32, 33)

Vitamin D / VDR signaling

ILC3s IL-22 secretion; enhance host defense against experimental colitis (34, 35)
ILC3s Upregulation of VDR in human NKp44+ILC3s; downregulation of IL-23R pathway and cytokines (36)
ILC3s Increase IL-22-producing ILC3s by depletion of VDR;

Induction of dysbiosis with less susceptible to C. rodentium by VDR depletion
(37)
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whereas it impaired the maturation of ILC2s (25). Absence of
vitamin A or impaired RA signaling resulted in changes in the gene
expression profile of ILC2s, e.g., decreased expression of the
hexokinase-encoding gene hk2 and upregulated expression of
Peroxisome proliferator-activated receptor alpha (Ppara), and
ILC2s alternatively uptake more fatty acids to survive and resolve
helminth infection (29). These observations suggest that RA
differentially promotes ILC subsets rather than universally
enhancing ILCs. Hence, vitamin A metabolites are flexible and
influential mediators in innate immunity.

A couple of years ago, Wang and coworkers reported a novel and
distinct IL-10-expressing-ILC subgroup, regulatory ILC (ILCreg), in
both mouse and human intestines (54). In this study, the authors also
showed that ILCreg represses the activated ILC1s and ILC3s that are
driven by the inflammation in the gut (54). On the other hand, Bando
and colleagues recently indicated that there was no clear evidence
supporting the universal existence of ILCreg in murine small and
large intestines, neither in the steady state nor under experimental
colitis conditions (55). Instead, ILC2s might be the predominant
source of the anti-inflammatory cytokine IL-10, although IL-10
expression on ILC2s could be induced by IL-2, IL-4, IL-27, and IL-
10 itself in vitro (55). Indeed, evidence showed that RA, together with
IL-2 and IL-33, could stimulate some airway ILC2s to transform into
IL-10-producing ILC2s, termed ILC210s, in vitro (56). In accordance
with this finding, another in vitro experiment verified that RA
expressed by epithelial cells could switch human ILC2s to IL-10-
producing ILC2s (named ILCregs in this report), in inflamed tissue in
the respiratory tract but not the tissues in healthy subjects (30).
Therefore, RA has an influential role in mediating ILC development
and functions during the inflammatory state. Notably, this study also
pointed out that airway ILCregs are genetically distinct from intestinal
ILCregs due to the key ILC2 markers they express, i.e., GATA3 and
ST2, but not Id3 (30). The crosstalk between vitaminA and ILC2s has
also been assessed in the pancreatic islets of diabetic mice. IL-10-
producing ILC2s, rather than conventional ILC2s, are mainly
responsible for protecting the pancreatic islets (57). Indeed,
pancreatic islet mesenchymal-derived IL-33 stimulates ILC2s to
secrete IL-13 and colony-stimulating factor 2, which in turn elicit
pancreatic DCs and macrophages to convert vitamin A to RA,
ultimately enhancing insulin secretion by islet b cells (31). Thus,
proper interactions between RA and ILC2s could be beneficial in
maintaining homeostasis in multiple organs including the lung,
intestine and pancreas.

The mechanisms of ILC migration have only recently been
characterized. It has been well characterized that chemokine (C-
C motif) ligand 25 (CCL25) binds to C-C motif chemokine
receptor 9 (CCR9), which is highly expressed by the GI tissues, to
mediate gut homing of various immune cells (58). In addition,
lymphocyte integrin a4b7 has also been shown to selectively
adhere to the mucosal vascular addressin MAdCAM-1, which is
expressed by mucosal venules and directs lymphocyte traffic to
the gut mucosa (59). Indeed, a recent study found that RA
induces the expression of several gut homing receptors, including
CCR9 and a4b7, on ILC1s and ILC3s respectively (28), upon
exposure of peripheral ILCs to RA. Both CCR9 and a4b7 guide
ILC1s and ILC3s to migrate to the gut (28). On the other hand,
ILC2s did not undergo this program. ILC2 precursors in the
Frontiers in Immunology | www.frontiersin.org 5
bone marrow intrinsically express CCR9, which dictates their
migration to the intestine without RA signaling (28).
Collectively, RA acts as a powerful mediator that uses diverse
and sophisticated programs to regulate ILC-migration and ILC-
related immune responses (Table 1 and Figure 1).
THE VITAMIN D SIGNALING PATHWAY
MODULATES ILC3 AND ALLEVIATES
INTESTINAL INFLAMMATION

Vitamin D is a fat-soluble vitamin that is mainly produced
endogenously when ultraviolet rays from sunlight strike the skin
and trigger vitamin D synthesis. Vitamin D is also naturally present
in some foods, such as red meat, ocean fish, and eggs, and in
fortified milk. It plays an important role in regulating calcium
absorption and facilitating normal immune functions (60).

The active forms of vitamin D, including 1a, 25-
Dihydroxyvitamin D3 (1,25D3) and 1,25-Dihydroxyvitamin D
(1,25D), together with atRA may control Th17 and regulatory T
cell (Treg) development and suppress multiple experimental
autoimmune diseases in the gut, brain, and skin (61–63).
Vitamin D and vitamin D receptor (VDR) are potent
immunoregulatory factors involved in adaptive and innate
immunity and dysbiosis (37, 64). It has already been reported
that immune cells such as Th17 cells, DCs and macrophages
express a high level of VDR (65). Furthermore, emerging evidence
indicates that enteric ILC3s, which express the IL-23R, are a
significant target for vitamin D signaling in immune responses,
as VDR expression by ILC3s is even higher than by Th17 cells (34).
Konya and colleagues have further verified that human ILC3s
activated by IL-23 and IL-1b respond vigorously to 1,25D,
upregulating numerous VDR-associated genes (36). Meanwhile,
1,25D suppresses the IL-23R pathway and IL-23-associated
cytokines such as IL-22, IL-17F in ILC3s (36). Similarly, in
endogenous vitamin D ligand-deficient (Cyp27B1 KO) mice, a
vitamin D sufficient diet could recover the impaired vitamin D
signaling pathway, promote IL-22 secreting ILC3s, and prevent
acute enteric inflammation. Conversely, a vitamin D deficient diet
fails to do so (35). In agreement with these basic studies, vitamin D
deficiency is also an independent risk factor for inflammatory
bowel diseases (IBD) (36, 66). Several clinical trials also suggest
that vitamin D is beneficial in patients with IBD by regulating the
composition of bacteria in the gut (67, 68).

Despite these insights, the crosstalk between vitamin D, VDR,
and ILCs is complicated and not yet fully understood. A study that
used VDR KO mice indicated that the deletion of VDR enhanced
IL-22-producing ILC3s in the small intestine (37). It subsequently
reshaped the gut microbiome, and the VDR KO mice were less
susceptible to Citrobacter rodentium (C. rodentium) (37). Although
still controversial, He et al. reported that vitamin D/VDR signaling
controlled the development and proliferation of ILC3s, mainly LTi-
like ILC3s in the gut in a commensal bacteria-independent manner
and dramatically enhanced host defense against C. rodentium (34)
(Table 1). Further study is needed to clarify the mechanisms of how
vitamin D regulates ILCs.
April 2021 | Volume 12 | Article 670632
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DIETARY NUTRIENTS ACTIVATE NK
CELLS AND PROMOTE
IMMUNOTHERAPY AGAINST CANCER

NK cells, which express surface markers such as NK1.1 and NKp46
in mice and NK1.1, NKp44, CD16, and CD56 in humans, have
potent cytotoxic functions and reside within tissues or circulate in
the blood (1). Unlike other ILCs, NK cells have long been known for
their essential role in mediating immune responses and their anti-
cancer properties (69). They also play defense roles against viral,
bacterial, and parasitic infections. However, in patients who suffer
from cancer, NK-cell activity is often impaired (70, 71).

Recently, a work from Song and collaborators showed that atRA
recruits NK cells to infiltrate tumors and exert their cytotoxic
function in a melanoma mouse model (32). Likewise, atRA
improves the lytic activity of the antitumor agent, anti-CD38
monoclonal antibody, against multiple myeloma cells (33).
Furthermore, vitamin D could enhance the function of NK cells.
Supplementary vitamin D could act as a stimulator of splenic NK
cells in a mouse model but not in obese mice (72).

Herbs have also been found to activate NK cells. Herbs
originated in ancient times and have been used since in our daily
diets. Curcumin is a major chemical of Curcuma longa plants that
belongs to the ginger family, and it is a common spice in Asian
cuisines like curry powders (73). Several studies have suggested that
curcumin is an immunotherapeutic agent against tumors (74, 75).
Indeed, curcumin has been reported to recruit activated NK cells to
glioblastoma stem cells and eliminate the tumor cells in a mouse
model (76). Asian ginseng, one of the most widely used herbs
globally, has also been extensively investigated for its antimicrobial
and anticancer capabilities (77). One group reported that ginseng
extracts rely on the IFN-g pathway to promote NK cell cytotoxic
activity, while ginsenoside itself hardly showed any NK cell-
promoting ability (78). An in vitro analysis established that wild
ginseng extracts significantly potentiated NK cell antitumor activity
via upregulated IL-2 responsiveness and granzyme B, a cytotoxic
protease secreted by NK cells to cause apoptosis of target cells (79).
CONCLUDING REMARKS AND
PERSPECTIVES

The crosstalk between ILCs and food-derived microelements has
provided a new perspective on innate immunity; natural
compounds acquired from our daily diet control and regulate
innate immunity through various mechanisms. Nevertheless,
several fundamental issues have not yet been addressed.

As we discussed earlier, it is apparent that the sources of AhR
ligands are still under debate. Despite the anti-inflammatory actions
of dietary AhR ligands, we also have to consider the contradictory
observations of AhR ligands in tumorigenesis; AhR ligands have
both pro-cancer and anti-cancer effects (15). Thus, their therapeutic
efficacy needs to be explored more thoroughly.

To note, intestinal ILCreg’s existence is controversial, and it
has been proposed that intestinal ILCregs might be a subset of
Frontiers in Immunology | www.frontiersin.org 6
ILC2s rather than an independent cell type distinct from ILCs or
Tregs (30, 55). And further investigation is required to clarify the
function and differentiation of ILCreg in the gut.

Striking evidence has shown that vitamins are essential
micronutrients to maintain health, and more importantly, they
serve as important immunoregulators. From what we have
discussed above, it clearly suggests that supplementary vitamin
A could be beneficial for mucosal tissue integrity under
inflammation stress, especially for young children, although
further clinical trials are needed to confirm its effects.
Although evidence suggested that an adequate level of vitamin
D in the bloodstream may lower the risk of colorectal cancer (67,
80), and vitamin D plays critical roles in innate immunity, its
functions are still controversial.

Compelling data have indicated that herbs enhance NK cell
actions and are beneficial in cancer treatment. Nonetheless, studies
focused on other ILCs and herbs are lacking. Besides, most studies
regarding NK cells and herbs are restricted to in vitro assessment.
However, an herb Daikenchuto, which is composed of Asian
ginseng, pepper and processed ginger, has been intensively
investigated for its anti-inflammatory effects and colonic transit
activity (81, 82). Daikenchuto could be a promising drug to
overcome GI inflammation and gut dysmotility and deserves
more in-depth investigation. Therefore, a more comprehensive
understanding of the molecular effects of herbs on ILCs is in
high demand.

In conclusion, food-derived micronutrients are indispensable
to innate immunity and protect the mucosal barrier from
damage and maintain the host microenvironment. Further
studies are needed to validate a wider variety of micronutrient
effects on promoting human health and understanding disease
pathogenesis, which may eventually provide insight for therapies
in immune-related diseases and contribute to drug development.
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