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In this paper, an adaptive locomotion control approach for a hexapod robot is proposed.

Inspired from biological neuro control systems, a 3D two-layer artificial center pattern

generator (CPG) network is adopted to generate the locomotion of the robot. The first

layer of the CPG is responsible for generating several basic locomotion patterns and

the functional configuration of this layer is determined through kinematics analysis. The

second layer of the CPG controls the limb behavior of the robot to adapt to environment

change in a specific locomotion pattern. To enable the adaptability of the limb behavior

controller, a reinforcement learning (RL)-based approach is employed to tune the CPG

parameters. Owing to symmetrical structure of the robot, only two parameters need to

be learned iteratively. Thus, the proposed approach can be used in practice. Finally, both

simulations and experiments are conducted to verify the effectiveness of the proposed

control approach.

Keywords: hexapod robot, two-layer CPG, reinforcement learning, adaptive control, bio-inspired

1. INTRODUCTION

In the past decades, a big step has been taken toward the study of legged robots, such as the study
of biped robot (Kim et al., 2020), quadruped robot (Hyun et al., 2014), hexapod robot (Yu et al.,
2016), octopod robot (Grzelczyk et al., 2018), and etc. Most of these legged robots have exhibited
astonish maneuverabilities in a typically structured environment. Among these legged robots, the
hexapod robots have been increasingly attracting attention from scientists and a lot of hexapod
robotic prototypes have been successfully developed (Stelzer et al., 2012; Li et al., 2019; Sartoretti
et al., 2019; Lele et al., 2020; Zhao and Revzen, 2020). Even though these hexapod robots in shape
look very much like the arthropod that the scientists are animating, such as ants or spiders, the
robots developed hitherto are still pretty away from real arthropods. One of the main challenges
lies in the difficulty of controlling the multi-legs of the robots with coordination to a complex
dynamic environment.

To control the locomotion of hexapod robots, from a perspective of cybernetics, two methods
are generally adopted, namely kinematics-based and bio-inspired. The former models the
locomotion patterns via kinematics analysis. As pointed from the study of Ramdya et al. (2017),
three basic locomotion patterns of Drosophila melanogaster have been extracted through biological
study, namely tripod locomotion, quadruped locomotion, and five legs support locomotion.
Based on the analysis of these three basic locomotion patterns, a foot-force distribution model
is established for a hexapod robot walking on an unstructured terrain (Zhang et al., 2014). The
study of Zarrouk and Fearing (2015) investigates the kinematics of a hexapod robot using only one
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actuator and explores the turning issue of the robot. In the
work of Sun et al. (2018), the inverse kinematics of an 18-
degree-of-freedom (DoF) hexapod robot is calculated to control
the dynamicly alternating tripod locomotion of the robot. Since
it is hard to accurately model the kinematics of all the six-
leg crawling modes, most obtained locomotion patterns from
kinematics analysis are rough and trail-and-error strategy is
usually necessary for tuning the rough patterns applied on
the robots. The study from Delcomyn (1980) indicates that
center pattern generators (CPGs), which are mainly located
in the central nervous system of vertebrates or in relevant
ganglia of invertebrates, are primarily responsible for generating
coordinated, rhythmic locomotion patterns of animals in real
time, such as crawling, flying, swimming, and running. Inspired
by the characteristics of the stability and self-adaption of
biological CPGs, artificial CPGs have been extensively studied,
namely the bio-inspired approach, for locomotion generation
of hexapod robots. The notable examples include the studies in
Chung (2015), Zhong et al. (2018), Yu et al. (2020), and Bal
(2021). Through these previous studies, it can be found out that
the bio-inspired method can greatly simplify the locomotion
control problem underlying coordination of multiple legs.

Although the bio-inspired method has been widely and
fruitfully applied in locomotion control of many biomimetic
robots, it still remains a challenge for modulating the CPG
parameters to generate adaptive locomotion for hexapod
robots. The CPG parameters in many studies are determined
by experiences and some researchers adopt data-driven
optimization methods, such as particle swarm optimization
(PSO) method and reinforcement learning (RL), to tune the
parameters. In the work of Juang et al. (2011), a symbiotic
species-based PSO algorithm is proposed to automate the
parameter design for evolving dynamic locomotion of a hexapod

FIGURE 1 | (A) The hexapod robot prototype. (B) The mechanical schematic of the hexapod robot. {OB} is the body frame whose origin is fixed on the body’s mass

center. The robot possesses a rectangular body trunk and six mechanical legs numbered from leg 1 to leg 6. There are three joints and three links in each leg. The

joints are named as hip joint, knee joint and ankle joint from the direction of body to foot tip. The legs can be labeled as linki1, linki2, linki3 with the leg number

i = 1, 2, · · · , 6. For example, the link11 (between hip joint and knee joint), link12 (between knee joint and ankle joint) and link13 (between ankle joint and foot tip) are the

three links of leg 1.

robot, but reducing the computing complexity of the PSO
algorithm is still under research. In addition, the study of
Kecskés et al. (2013) points out that PSO method easily suffers
from the partial optimism and causes the loss of accuracy in
a coordinate system. In locomotion control, there has been
recent success in using RL to learn to walk for hexapod robots.
In the work of Barfoot (2006), a cooperative Q-learning RL
approach is utilized to experimentally learn locomotion for a
6-DoF hexapod robot, but this RL approach may be unable
to deal with the hexapod robots that have higher DoF. The
researchers in Sartoretti et al. (2019) employ A3C RL algorithm
to learn hexapodal locomotion stochastically. Nevertheless, the
performance of the learned controller proposed in the study
is dependent on a large number of iterations. For the different
terrains, the locomotion of a hexapod robot is controlled
through training several artificial neural networks via RL method
separately (Azayev and Zimmerman, 2020), but the training
scenario is limited to the expert policies and thus the adaptivity
of the controller may be inflexible for a dynamic environment.

In this paper, a bio-inspired learning approach is proposed
for locomotion control of a hexapod robot with environment
change. The proposed bio-inspired learning approach can be
characterized by the structure of the learning mechanism.
Biologists have proved the motor patterns of animals are
controlled by neuro systems hierarchically (Fortuna et al., 2004)
and functional configuration of CPGs can be regulated according
to sensory feedback to produce different motor outputs (Hooper,
2000). Therefore, inspired from biological control systems, a
two-layer CPG motion control system is firstly proposed in
this paper to generate locomotion for the robot and then the
parameters of the CPG tuning issue is explored to enhance
the adaptability of the robot. In the proposed bioinspired
control system, the outputs of the first layer of the CPG are
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TABLE 1 | Technical specifications of the prototype.

Parameter
Prototype

Value Unit

Number of servo motor 18 \
Power supply 7.4 DC(V)

Total weight 1.995 kg

Length 24 cm

Width 18.5 cmBody dimension

Height 4.5 cm

Limb linki1
Weight 18.6 g

Length 4.5 cm

Weight 128 g
Limb linki2

Length 7.5 cm

Limb linki3
Weight 56.3 g

Length 13.5 cm

Where i = 1,2, · · · ,6 is the number of six legs.

responsible for generating the basic locomotion patterns, such as
tripod locomotion, quadruped locomotion, and five legs support
locomotion. The second layer of the CPG acting as a Behavior
Layer controls the limb motion of the hexapod robot. In order
to adapt to environment change, through sensory feedback,
basic locomotion patterns can be switched accordingly, and the
limb behavior of the robot is regulated via a RL-based learning
approach. Compared to the pure data-driven locomotion control
approach, only few of the CPG parameters involved with the
limb behavior control need to be learned iteratively. Hence, the
proposed locomotion control approach can be adopted to the
robot practically.

The rest of this paper is organized as follows. Section
2 introduces the model of the hexapod robot. Section 3
details the two-layer CPG controller and explores its dynamics
with numerical studies. Following that, the RL-based learning
approach for refining the CPG parameters is presented in section

4. In section 5, both simulations and experiments are conducted
to verify the proposed locomotion control approach. Finally, the
conclusions and future work are given.

2. MODELING OF A HEXAPOD ROBOT

2.1. The Prototype of the Hexapod Robot
The prototype of the hexapod robot is investigated in this paper
shown in Figure 1A, and the specifications are given in Table 1.

Figure 1B illustrates the mechanical schematic of the hexapod
robot, which consists of 18 servo motors, a microprocessor,
a Bluetooth communication module, a set of mechanical

connectors and several other peripherals. Three motors
(Dynamixel AX-12) equipped in a leg are concatenated together
to act as three joints. A microprocessor (Arduino UNO) is used
for processing sensor data, transferring diagnostic information
via the Bluetooth module, making decisions and controlling
servo motors. Besides that, an external camera (Logitech C930)
is employed to track the position of the robot as feedback signals.

2.2. Modeling
To establish the kinematic/dynamic model of the hexapod robot,
the joint coordinates of each leg i are defined as depicted in
Figure 2.

The kinematic model is represented by Denavit-Hartenberg
(DH) parameters for resolving inverse kinematic of the leg.
According to these fixed frames, the transformation parameters
and DH parameters are demonstrated in Tables 2, 3, respectively.

The relative translation and rotation between the (j − 1)th
and the jth joint coordinates are computed by the transformation
matrix (1):

iT
j−1
j =









cos θij − cosαij sin θij sinαij sin θij aij cos θij
sin θij cosαij cos θij − sinαij cos θij aij sin θij
0 sinαij cosαij dij
0 0 0 1









,

(1)

where especially, the transition matrix between the body
coordinate {OB} and the hip joint coordinate {Oi0} is represented
by (2):

iTB
0 =









cosϕi − sinϕi 0 dxi
sinϕi cosϕi 0 dyi
0 0 1 0
0 0 0 1









. (2)

Consequently, the foot tip coordinate {Oi3} can be transformed
into the body coordinate {OB} by multiplying the previous
matrixs sequentially shown in (3):

iTB
3 = iTB

0 ·i T0
1 ·i T1

2 ·i T2
3

=









cos(ϕi + θi1) cos(θi2 + θi3) − cos(ϕi + θi1) sin(θi2 + θi3) sin(ϕi + θi1) dxi + cos(ϕi + θi1)(li1 + li2 cos(θi2)+ li3 cos(θi2 + θi3))
sin(ϕi + θi1) cos(θi2 + θi3) − sin(ϕi + θi1) sin(θi2 + θi3) − cos(ϕi + θi1) dyi + sin(ϕi + θi1)(li1 + li2 cos(θi2)+ li3 cos(θi2 + θi3)

sin(θi2 + θi3) cos(θi2 + θi3) 0 li2 sin(θi2)+ li3 sin(θi2 + θi3)
0 0 0 1









. (3)

Thus, the position of the foot tip with respect to the body
coordinate {OB} can be derived as given below:





pxi
pyi
pzi





=





dxi + cos(ϕi + θi1)(li1 + li2 cos(θi2)+ li3 cos(θi2 + θi3)
dyi + sin(ϕi + θi1)(li1 + li2 cos(θi2)+ li3 cos(θi2 + θi3)

li2 sin(θi2)+ li3 sin(θi2 + θi3)



 ,

(4)

where [pxi pyi pzi]
T is the position coordinate of the ith foot hip

and θij is the joint angle.

Frontiers in Neurorobotics | www.frontiersin.org 3 January 2021 | Volume 15 | Article 627157

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Ouyang et al. A Hexapod Robot Locomotion Control

FIGURE 2 | Coordinates at different joints of each leg i. {OG} denotes the global coordinate, and {Oik} (k = 0, 1, 2, 3) represents the floating frame whose origin fixed

on the joints or the foot tip. li1, li2, li3 and mi1,mi2,mi3 are the length and mass of the leg links, respectively. And θi1, θi2, θi3 are the rotational joint angles around

Zi0,Zi1,Zi2 axis of the leg.

TABLE 2 | Transformation parameters from the {Oi0} to the {OB}.

Leg i 1 2 3 4 5 6

dxi (mm) 33.5 67 33.5 −33.5 −67 −33.5

dyi (mm) 58 0 −58 −58 0 58

ϕi (
◦) −60 0 60 120 180 −120

The hip joint position is defined as (dxi ,dyi ) and ϕi denotes the direction angle in the body

frame {OB}.

TABLE 3 | Denavit-Hartenberg parameters.

Joint j αij aij dij θij

1 π/2 li1 0 θi1

2 0 li2 0 θi2

3 0 li3 0 θi3

Where j =1,2,3 is the joint number from hip joint to knee joint of each leg. And αij is the link

twist indicating the angle from Zi(k−1) to Zik around Xik , aij is the link length representing the

distance from the intersection of Zi(k−1) and Xik to the origin of Xik , dij is the joint distance

meaning the distance from the intersection of Zi(k−1) and Xik to the origin of Zi(k−1), θij is

the joint angle showing the angle from Xi(k−1) to Xik around Zi(k−1).

The leg of the hexapod robot is a complex joint-link system
connecting the body trunk with the ground. Hence, closed

kinematics chains can be found in the robot system. Since
forces and moments propagate via the kinematics chains among
different legs (Roy and Pratihar, 2013), the kinematics and
dynamics are coupled. The dynamic model of such a coupled
hexapod robot with 18 actuators is derived via Lagrangian-Euler
method as follows:

τ i = Mi(θ)θ̈ i +Hi(θ , θ̇)θ̇ i + Gi(θ)− J
T
i Fi , (5)

where τ i = [τi1 τi2 τi3]
T ∈ R

3 is the joint torque vector of
the ith leg consisting of hip joint torque τi1, knee joint torque

τi2 and ankle joint torque τi3. θ i = [θi1 θi2 θi3]
T ∈ R

3, θ̇ i =
[θ̇i1 θ̇i2 θ̇i3]

T ∈ R
3, θ̈ i = [θ̈i1 θ̈i2 θ̈i3]

T ∈ R
3 are joint angle,

joint angle acceleration, and joint angle jerk vector of the ith
leg, respectively. Mi(θ) ∈ R

3×3 is a inertia matrix of the ith

leg. Hi(θ , θ̇) ∈ R
3×3 is Coriolis forces matrix of the ith leg.

Gi(θ) ∈ R
3 is a link gravitational forces vector of the ith leg.

Fi = [fix fiy fiz]
T ∈ R

3 represents ground reaction forces of

the ith support foot tip with the coordinate {Oi3}. Ji ∈ R
3×3 is

the Jacobian matrix of the ith leg, computed by (6). Moreover,
the position and velocity of the hexapod robot in this work are
transformed to the global coordinate {OG}.

Ji =





−(li1 + li2 cos(θi2)+ li3 cos(θi2 + θi3) sin(θi1) −(li2 sin(θi2)+ li3 sin(θi2 + θi3)) cos(θi1) −li3 sin(θi2 + θi3) cos(θi1)
(li1 + li2 cos(θi2)+ li3 cos(θi2 + θi3) cos(θi1) −(li2 sin(θi2)+ li3 sin(θi2 + θi3)) sin(θi1) −li3 sin(θi2 + θi3) sin(θi1)

0 li2 cos(θi2)+ li3 cos(θi2 + θi3) li3 cos(θi2 + θi3)



 . (6)
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FIGURE 3 | Diagram of the proposed bio-inspired control scheme. The proposed control scheme has a cascaded structure with a feedback loop. It consists of three

parts: (1) A dynamic model (with a embedded PD controller) that computes torque commands to handle robot dynamics subject to mechanical constraints. The

dynamics parameters pb = [px ,py ,pz ]
T , vb = [vx , vy , vz ]

T are the robot body position and velocity vector,respectively; τ , θ , θ̇ indicate the joint torque, angle and angle

velocity, respectively. (2) A two-layer CPG locomotion controller that outputs coordinated signals to generate the basic locomotion. The CPG parameters µ and θ i2i1 are

the inputs representing the amplitude and the phase difference between the hip joint i1 and the knee joint i2 of the leg i, respectively; xij is the output signal. (3) A

DDPG-based RL motion controller that trains the optimal locomotion via the cost function.

FIGURE 4 | Locomotion patterns via the body layer. During each cycle, six legs in the tripod locomotion are separated into two sets of {leg 1, leg 3, leg 5} and
{leg 2, leg 4, leg 6} moving alternately, while in the quadruped locomotion are separated into four sets of {leg 3}, {leg 1, leg 4}, {leg 6}, and {leg 2, leg 5} to move

successively.
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FIGURE 5 | The topology network of the proposed two-layer CPG.

3. LOCOMOTION CONTROLLER VIA CPG

Based on the analysis of the aforementioned mathematical
model, the whole control scheme is proposed as shown in
Figure 3. Inspired by biological arthropods, a hexapod robot
is supposed to exhibit various locomotion in different terrains,
such as tripod locomotion, quadruped locomotion, and five
legs support locomotion (Zhong et al., 2018). Among these
locomotion patterns, the tripod locomotion can achieve the
fastest movement, while the quadruped and five legs support
locomotion are more flexible. In this work, the locomotion
patterns can be judged by velocity criterion according to the
change of terrains.

In nature, CPGs are mainly used for generating coordinated
and rhythmic movements for the locomotion of animals. Based
on the similarity between biological legged animals and hexapod
robots as well as the attractive capability of the CPG-based
model on coupling the dynamics of robots, artificial CPG-
based locomotion controllers are widely adopted to generate the
locomotion behaviors of the biological counterparts. The basic
locomotion patterns of the hexapod robot and the phase relations
of the locomotion patterns are illustrated in Figures 4A,B.

3.1. Two-Layer CPGs Model
Due to complicated couplings and high degrees of freedom on
the hexapod robot, the proposed CPG-based locomotion control
is decomposed into two layers: (1) The body layer consists of

six hip oscillators with bidirectional couplings. (2) The limb
layer includes three oscillators in association with the hip joint,
the knee joint and the ankle joint in every leg, where the knee
joint oscillator and ankle joint oscillator are interconnected with
bidirectional coupling, but the oscillator pair is unidirectionally
controlled by the corresponding hip oscillator in the body layer.

Therefore, the body layer acting as a Conscious Layer
shown in Figures 5A,B provides knowledge to determine the
locomotion mode of the hexapod robot, while the limb layer
acting as a Behavior Layer shown in Figures 5C,D has a major
impact on final motion states and performance.

Considering the stable limit cycle and the explicit interpretable
parameters, Hopf oscillator is a suitable element to construct
CPGs for robotic locomotion (Seo et al., 2010). Hence, in this
work, our CPG model can be described as a set of coupled Hopf
oscillators and each Hopf oscillator is formulated by (7):

{

ẋ = α(µ2 − x2 − y2)x− ωy

ẏ = β(µ2 − x2 − y2)y− ωx
, (7)

where x and y are two state variables, ω is the frequency, α and β

are the positive constants which determine the convergence rate
of the limit cycle. In this paper, x is defined as the output signal of
the oscillator.

Since the hexapod robot in this work has six legs and each leg
has 3 DoF, a network consisted of 18 Hopf oscillators is proposed.
According to the proposed CPG model shown in Figure 5,
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to achieve desired motion of the hexapod robot, multiple
oscillators are needed to be coupled together to guarantee robotic
system synchronization and coordination.Motivated by the work
presented by Campos et al. (2010), the proposed CPG model
connected by the diffusive coupling is described by:

[

ẋij
ẏij

]

=
[

α(µ2 − x2ij − y2ij) −ωij

ωij β(µ2 − x2ij − y2ij)yij

]

[

xij
yij

]

+ k ·
∑

mn6=ij

R(θ
ij
mn)

[

0
xmn+ymn√
x2mn+y2mn

] , (8)

where xij, yij with i = 1, 2, · · · , 6 and j = 1, 2, 3 denote two
state variables. The constant coupling strength k = 0.1 and the
convergence coefficients α = β = 100 are set for all oscillators,
which are determined through a trial-and-error simulation on
the stability of limit cycle in this work. The oscillator frequencies
are unified asωij = ω for simplifying the high-level optimization.

Besides, θ
ij
mn with m = 1, 2, · · · , 6 and n = 1, 2, 3 represents the

phase difference between the joint ij and the joint mn, then an

associated 2D rotation matrix R(θ
ij
mn) is defined as:

R(θ
ij
mn) =

[

cos(θ
ij
mn) − sin(θ

ij
mn)

sin(θ
ij
mn) cos(θ

ij
mn)

]

. (9)

Compared with (7), the coupling relations among different
Hopf oscillators are embedded into the artificial CPG model.
This proposed 3D two-layer CPG model not only can regulate
the basic locomotion patterns of the hexapod robot, but also
fine-tune the motion performance for adapting to environment
change. More information about the superiority of the 3D
topology are demonstrated in our previous work (Niu et al.,
2014). Through this CPG-based locomotion controller, the
coordination can be adjusted with fewer parameters, which
effectively reduce the control dimension and complexity of
the system.

3.2. Simulation of Locomotion Generation
To verify the performance of the proposed CPG-based
locomotion controller, several simulations are conducted. In the
first layer of the network, the phase differences of the body layer
among different hip joints are set as shown in Table 4 to generate
the tripod locomotion or quadruped locomotion. The six body
oscillator parameters in the tripod and quadruped locomotion
are set as amplitude = 1 and frequency = 3.14.

As can be seen from Figures 5A,B, the outputs of the
body layer network are stable and periodic, while the phase
differences between the neighboring oscillators maintain strictly
180 deg for tripod locomotion and 90 deg for quadruped
locomotion, respectively.

Take the tripod locomotion patterns in leg 1 as an example,
the limb layer network firstly receives the corresponding hip
joint signal from the body layer. Secondly, the limb network
outputs two signals to control the knee joint and the ankle joint
interacting with environment. The phase difference between the
knee joint and the ankle joint is limited to 180 deg in each leg with
amplitude = 2 and frequency = 3.14.

As shown in Figure 5C, the phase difference between the
knee joint and the ankle joint is locked in the limb layer.
Moreover, Figure 5D presents the stable limit cycle of the
coupled Hopf oscillators, which alleviates the influence of
disturbances and ensures the smooth tuning of the robot
locomotion. These simulation results show that the proposed
CPG-based locomotion controller carry the potential of excellent
controllability and robustness in unknown and unstructured
terrains via online adjustment.

It should be noted that several parameters play important roles
in the two-layer CPG controller, namely, amplitudes, frequencies,
and phase differences. The CPG allows direct modulation of
these parameters to enhance locomotion adaptability of the
hexapod robot, but the manual tuning process still remain
a challenge. Motivated by the movement of the six-legged
arthropods modulated further via higher controller from brain-
stem level (Yu et al., 2020), a RL-based controller is proposed to
optimize the specialized locomotion patterns automatically in the
next section.

4. LOCOMOTION OPTIMIZATION VIA
REINFORCEMENT LEARNING

4.1. Problem Statement
Locomotion of a hexapod robot can be considered as a Markov
Decision Process (MDP), which is described as an agent
interacting with the environment in discrete time steps. At each
time step t, the state of the agent and the environment can be
jointly described by a state vector s ∈ S, where S is the state space.
The agent takes an action at ∈ A, after which the environment
advances a single time step and reaches a new state st+1 through
an environment state-transition distribution P : S × A × S →
[0, 1]. Each state-action transition process is evaluated by a scalar
reward functionR : S×A → R. At the beginning of each episode,
the agent finds itself in a random initial state s0 ∼ ρ(s). Thus, the
MDP is defined as a tuple (S,A,R,P, ρ) (Tan et al., 2018).

In the MDP, the agent selects the action a under the state
s through a stationary policy π : S → P(A), which is defined
as a function mapping states into probability distributions over
actions. The set of all stationary policies is denoted as 5. Give a
performance measurement function as:

J(π) = E
ς∼π

[

∞
∑

t=0

γ tR(st , at , st+1)], (10)

where γ ∈ [0, 1) is the discount factor and ς denotes a trajectory
under the policy π . The objective of the RL is to select a optimal
policy π∗ that maximizes J(π), i.e.,

π∗ = argmax
π∈5

J(π). (11)

However, lack of complete freedoms when training the hexapod
robot could suffer from some failed actions, such as collisions,
falls, and inaccessible locomotion for a real robot. To tackle these
issues, the actions of the hexapod robot should be constrained
by several conditions such as acceleration, velocity, and torque
constraints, which ensures the robot safe exploration.
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TABLE 4 | Phase differences in corresponding locomotion.

Phase differences
Locomotion patterns

Tripod (deg) Quadruped (deg)
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Similar to the MDP, a constrained Markov Decision Process
(CMDP) is defined as a tuple (S,A,R,C,P, d, ρ). The difference
between the MDP and the CMDP is that the policies are trained
under additional cost constrains C in the latter. Each cost
function Cl : S × A × S → R maps transition tuples into costs
with the limit cl. Thus, the discounted cost of policy π with cost
function Cl (Achiam et al., 2017) is represented by:

JCl
(π) = E

ς∼π
[

∞
∑

t=0

γ tCl(st , at , st+1)]. (12)

where l is the number of the constraints.
The set of feasible stationary policies in a CMDP is

5C = {π ∈ 5 : ∀l, JCl
(π) <= cl}, (13)

and the reinforcement learning problem in a CMDP is
formulated as:

π∗ = argmax
π∈5C

J(π). (14)

4.2. Deep Deterministic Policy Gradient
Algorithm
Hexapod robots are multiple-input-multiple-output (MIMO)
systems, so generally both the state space and the action space
are high-dimensional and continuous. While many of stochastic
policy gradient-based RL methods require massive and time-
consuming search in such a vast space, deterministic policy
greatly improve learning rates without sampling in the action
space. Deep deterministic policy gradient (DDPG) (Lillicrap
et al., 2016) as a model-free, off-policy RL algorithm, which
could deal with unprocessed, high-dimensional sensory inputs
and learn policies in a high-dimensional continuous action space
via deep function approximators, has been widely accepted for
robot control. Adaptive locomotion control of a hexapod robot is
a challenging task due to the high-dimensional observations and
continuous actions. In this work, the DDPG-based reinforcement
learning optimization approach is proposed and illustrated in
Figure 6.

Significantly, the DDPG combines an actor-critic method with
deep neural networks (DNNs), and it shows stable performance
in tough physical control problems including complex multi-
joint movements and unstable contact dynamics. Besides,

compared with the on-policy and stochastic counterparts such
as proximal policy optimization (PPO), the off-policy and
deterministic feature of DDPG ensures a more sample-efficient
learning owing to the ability of generating a deterministic action.

The proposed DDPG algorithm is applied on learning the
adaptive control policy π for the hexapod robot. The control
policy π is assumed to be parameterized by θπ . Specifically,
the RL problem of learning the optimal control policy is
converted into learning the optimal value θπ . Considering that
Policy Gradient is utilized for continuous action space, DDPG
algorithm actually combines Policy Gradient with an actor-critic
network. The parameter vector θπ is updated in the direction that
maximizes the performance measurement function J(π). The
direction, defined as the action gradient, is the gradient of J(π)
with respect to θπ which can be calculated as follows:

∇θπ J(π) = E[∇aQ(s, a)∇θπ π(s)], (15)

where the action gradient of the performance measurement
function J(π) depends on the action-value function Q(s, a),
which is unknown and need to be estimated. To achieve the
estimation, a critic network Q parameterized by θQ is used to
approximate the action-value function and an actor network
based on the current state offers control policy π that outputs
the deterministic action in continuous space. In DDPG, the
actor network and critic network are approximated by DNNs
which can be learned via policy gradient method and error back
propagation, respectively.

The use of neural networks for learning action-value function
and control policy tends to be unstable. Thus, DDPG employs
two important ideas to solve this problem.

REMARK 1. A copy of the critic network and actor network: a
target critic network and a target actor network are constructed

and parameterized by vector θQ
′
and θπ ′

, respectively. These two
target networks are adopted to calculate the target values, and
the parameters Q′and π ′ in the two target networks slowly track
the parameters Q and π in the original critic and actor network
as follows:

θQ
′
= κθQ + (1− κ)θQ

′
, (16)

θπ ′
= κθπ + (1− κ)θπ ′

, (17)
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FIGURE 6 | The DDPG-based reinforcement learning structure.

where κ is positive and κ << 1. The updating mechanism is
called soft update, which avoids non-stationary target values and
enhances the stability.

REMARK 2. Another challenge using neural networks for RL is
the assumption that the samples are independently and identically
distributed. Obviously, when the samples are generated from
sequential exploration in an environment for the robot locomotion,
this assumption is violated. To solve this, the replay buffer is used in
DDPG. The replay buffer is a finite-size cache filled with transition
samples. At each time step, both the actor network and the critic
network are updated by sampling a mini batch uniformly from
the buffer. Since DDPG is an off-policy learning algorithm, the
replay buffer can be large where the algorithm benefits from a set
of uncorrelated transitions. At each time step, the critic network θQ

is updated by minimizing the loss:

L =
1

H

∑

h=1

(Yh − Q(sh, ah|θQ))2, (18)

where

Yh = rh + γQ′(sh+1,π
′(sh+1|θπ ′

)|θQ
′
), (19)

and h is the time step. H is the size of the mini batch sample.
The actor network θπ is updated using the sampled

policy gradient:

∇θπ J =
1

H

∑

h=1

∇aQ(s, a|θQ)|s=sh ,a=π(sh)∇θπ π(s|θπ )|sh , (20)

4.3. Observation Space
The hexapod robot interacts with the environment through
observations and actions. In order to apply DDPG on a practical
system, the observation space is required to match the real robot

and provides enough information for the agent to learn the task.
In this work, a MDP observation vector ot at time t is defined as:

ot =< pb, vb,O, θ , θ̇ , τ ,A >, (21)

where O is the body orientation. A is the policy output including
the amplitude and phase difference in the limb layer of the CPG.

In addition, the observation space consists of only part of
the states, so the MDP can not be fully described. For example,
the hexapod robot can not identify terrain types without any
use of exteroceptive sensors. Hence, the process is referred as a
Partially Observable Markov Decision Process (POMDP). Since
in our work, the hexapod robot interacts with the environment
through a continuous trajectory rather than a discrete action, we
find that our observation space is sufficient enough for learning
the desirable tasks.

4.4. Action Space
The control policy outputs the coupling parameters of the limb
layer of the CPG which determine the intra-limb coordination as
well as the adaptation to different terrain types. The action space
is defined as follows:

at =< µ, θ i2i1 >, (22)

The action vector is transmitted as the input of the CPG network
which generates the joint positions for each joint actuators.

The two-layer CPG network is chosen as the locomotion
generator instead of learning joint position commands directly
like most of the other studies (Hwangbo et al., 2019; Tsounis
et al., 2020). There are three reasons for this: (1) the CPG network
constrains the basic locomotion of the robot, which reduces the
search space and accelerates the learning; (2) compared to 18
joint position or joint torque commands, learning symmetric
CPG coupling parameters lowers the dimension of the action
space; (3) the CPG network outputs smooth joint position
commands, which are easier to be realized in the real robot.
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TABLE 5 | Reward terms.

Term Expression

Forward velocity vx

Energy consumption |τ · θ̇ | + τ 2

4.5. Network Architecture
In DDPG, the critic network and actor network are
parameterized as deep neural networks. Figure 7 provides
a graphical depiction of the NN model. The model is similar to
the network architecture implemented in Fujimoto et al. (2018)
and is proved to perform well. The critic network is composed
of five hidden layers including three fully-connected (FC) layers
and two ReLU layers. The actor network consists of six hidden
layers including three fully-connected (FC) layers, two ReLU
layers and a Tanh layer. The output modulates the proposed
two-layer CPG parameters.

4.6. Reward Function
In this work, the environmental adaptability of the hexapod robot
is measured by two criteria: one is the heading velocity of the
robot and the other is the energy consumption of the robot. In
general, precise reward function in robotics is one of the main
challenges in solving the RL problem. Due to the constraints in
RL, the reward function is simplified to encourage faster heading
velocity and penalize higher energy consumption.

Table 5 shows the detailed reward terms. The velocity reward
term motivates the robot to move forward as fast as possible,
and it is tuned so that the robot receives a reward for a positive
velocity up to a certain point. The penalty term is used to
optimize the energy consumption of the robot. Hence, the reward
term and the penalty term is intergraded into the reward function
rt as follows:

rt = Kv · vx − Ke · (|τ · θ̇ | + τ 2), (23)

where Kv and Ke are the positive weights.

4.7. Guided Constrained Costs
In this work, two types of constrains are introduced into the
proposed RL method (Gangapurwala et al., 2020). The first is the
performance constraint, which restricts the hexapod robot into
the region with potential good performance. The second is the
safety constraint to avoid the robot exploring the region where
damages may occur.

(1) Performance Constraint Costs: These costs are directly
added to the reward function, as shown in Table 6. The
constraint costs are guided by the kinematic model of
the hexapod robot and help to improve the locomotion
performance. For example, the Joint Speed term and Torque
term are the limits of the actuator performance of the robot.
In our control scheme, each supporting leg of the hexapod
robot moves symmetrically, so the Orientation term and
Height term are given to limit the robot from swinging
too much.

TABLE 6 | Performance constraint costs.

Term Expression

Joint speed ‖max(|θ̇ | − θ̇max , 0)‖2

Torque ‖max(|τ | − τmax , 0)‖2

Orientation ‖O‖2

Height ‖zc − zc0‖2

θ̇max and τmax refer to the maximum outputs of the robot actuator. zc and zc0 are the

current and original body height of the hexapod robot. Orientation and Height limit the

swing range of robot body.

TABLE 7 | Safety constraint costs.

Term Expression

Joint speed bool(θ̇ > θ̇max )

Torque bool(τ > τmax )

Fall bool(zc < 0)

Roll bool(O > O
limit )

bool(·) is a general Boolean judgement function.

(2) Safety Constraint Costs: For the cases when control policy
outputs actions that cause the robot to land on unstable
and unrecoverable states and damage the robot, the safety
constraints are introduced in Table 7. The Fall term and
Roll term are given to judge whether the robot falls or rolls
over. If the control policy outputs the commands that robot
can not carry on (see Joint Speed and Torque) or the robot
falls and rolls over (see Fall and Roll), the training episode
is terminated directly. The training steps explored in this
episode are abandoned and a negative terminal reward is
added to the last training step in the reformatted episode
samples. This control policy avoids inefficient explorations
of some constrained regions because the training episode is
terminated if any safety constraint costs is true.

5. SIMULATIONS AND EXPERIMENTS

The proposed bio-inspired learning scheme is used to shape
the hexapod robot locomotion. We evaluate the feasibility and
performance of the motion policy via four different terrains in
both simulations and experiments.

5.1. Simulations
The aim of these simulations is to guarantee the convergence of
RL algorithm and obtain the theoretical maximum velocity of the
hexapod robot in forward motion under different terrains.

The hexapod robot is modeled corresponding to the
dimensions and mass of the actual hexapod robot prototype
where the contact friction dynamics are determined by material
surfaces. There are five main parameters for simulations: (1)
learning rates for actor-critic network are set as 0.005 and 0.001,
respectively; (2) the maximum number of episodes and steps in
an episode are set as 1,400 and 200, respectively; (3) the sampling
time is similar to the CPG cycle time which is 1 s; (4) the
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FIGURE 7 | The network architecture of the proposed DDPG-based RL.

FIGURE 8 | The RL training simulation in an episode.

FIGURE 9 | The motion trajectory of the hexapod robot.
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FIGURE 10 | The average reward of reinforcement learning in the tripod locomotion.

FIGURE 11 | The average reward of reinforcement learning in the quadruped locomotion.

frequency of the proposed two-layer CPG network is fixed on
0.5. The contact friction coefficients are modified according to
different ground materials. The training process of an episode
is randomly chosen in Figure 8 and the motion trajectory is
displayed in Figure 9.

From the two figures, it is noted that the hexapod robot

walks well in the tripod locomotion without obvious offset in the

direction of Y and Z axis. For a forward motion, we would like to

emphasize that the sideslip in the vertical direction will cause an
extremely uncertain deviation for the whole movement direction
and posture. Therefore, the nearly tiny offset in Y axis illustrates
the effectiveness of the proposed motion control scheme. As can
be seen on Z axis, the slight fluctuation with the body height
also reflects the control stability of the robot under the benefit
of physical constraints.

In the training process, the observations are acquired from
the hexapod dynamic model and the actions directly modulate

the amplitude µ and phase difference θ
ij
mn in the limb layer

of the CPG network. The reward function is given in the
aforementioned section. At the end of 1,400 episodes, the average
reward converges to a stable value in three terrain types as
shown in Figure 10. The average training time in these terrains
is approximately 6 h.

During learning processes, zero initial values drive the
hexapod robot to swing around the origin and the value of
reward function is equal to zero. After postures adapting and
actions updating, the robot locomotion continuously becomes
smoother. As the motion stability performance is improved, the
reward value increases over time. Finally, the accumulative data
samples help the robot reach the best motion state under the
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FIGURE 12 | The RL training experiment in different terrains.

specific locomotionmode and the reward function also converges
to the biggest value. Compared with the movements in a sand
paper and a soft sand, the steady velocity in a flat environment
is a bit faster, but the convergence rate is conversely slower.
As can be seen from the whole learning episodes, there are no
obvious differences of the learning trend among three terrains.
Besides, although the learning processes may suffer from several
asymmetric and non-natural looking, even defective locomotion,
the hexapod robot will finally converge to a stable and optimal

locomotion under the limitation of several presetting constraints

in the proposed DDPG-based learning approach.
As mentioned in section 3, tripod locomotion can be the

fastest but inflexible. Therefore, when encountering complex
and harsh terrains such as a slope or stones, the robot

will switch to flexible locomotion modes such as quadruped
locomotion or five legs support locomotion. In order to exhibit
the locomotion flexibility derived from the proposed 3D two-
layer CPG controller, an up-slope (10 deg) terrain is simulated
and the quadruped locomotion is generated for repeating the
aforementioned training process. The result of the average
reward is represented in Figure 11.

Although the hexapod robot also accomplishes a fast
convergence in an up-slope after 1,400 episodes, the average
reward in such a tougher terrain is obviously lower than
the stable value in a flat. Moreover, based on excellent
adjustment characteristics of the proposed 3D two-layer CPG
controller, the hexapod robot is endowed with the capability
of locomotion transitions for adapting to complicated and
unstructured terrains.

5.2. Experiments
Similarly, four experiments on different terrain surfaces, namely,
flat, sand paper, soft sand, and up-slope, are conducted to
validate the adaptivity and robustness of the proposed bio-
inspired learning approach in practical scenarios. The training
time is set as 5 s in each episode and other parameters set in these
experiments are the same as simulation parameters. In addition,
the simulation results can reduce the experimental training time
through offering the hexapod robot an initial policy that performs
the best in the simulations.

Firstly, environmental adaptability under individual
locomotion mode has been tested. Here, the most common
locomotion, tripod locomotion, is adopted as the training mode
in three different terrain surfaces. The neural network in RL-
based algorithm evolves three corresponding policies to make
the robot perform well on the specific surfaces. The experiment
scenes are shown in Figures 12A–I, where the same robot crawls
on different contact surfaces.

During the repetitive episodes in the threementioned terrains,
the actual velocity of the hexapod robot with regard to the CPG
tuning parameters, namely, the amplitudeµ and phase difference

θ
ij
mn in the limb layer are recorded. All these raw data are fitted
and the learning results are shown in Figures 14A–C.

As can be seen from these figures, the results in different
terrains have similar characteristic (the convex surface), but there
are obvious differences in specific nodes. For example, when
the amplitude is 1 with phase difference is 0.1, the velocity of
the robot crawling on the flat will drop significantly from its
maximum speed, but it decreased slowly on the soft sand.
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Next, the quadruped locomotion in an up-slope (10 deg)
is trained to evaluate the adaptability of different locomotion
mode generated by the 3D two-layer CPG network (especially the

FIGURE 13 | The RL training experiment in an up-slope.

body layer). The experimental platform and the learning result
are illustrated in Figures 13A–C, 14D, respectively. As observed
in this experiment, the quadruped locomotion performs well
and stably in up-slope environment showing a different trend
compared with tripod locomotion, which explains the impact of
basic locomotion patterns to the robot behavior.

Finally, the maximum velocities in the four terrains are
calculated as listed in Table 8. It is noticed from Table 8 that the
hexapod robot runs fastest on the flat under tripod locomotion
while it runs slowest under quadruped locomotion on the up-
slope. Compared with the body length (BL) of the hexapod
prototype (24 cm), the maximum velocity is 1/3 ∼ 1/2 BL from
7.35 to 13.10 (cm/s) in the preset terrains. As can be seen, since
the surface friction coefficients of the chosen Sand Paper and
Soft Sand terrain belong to the category of sand which may be
similar to some extent, the difference of maximum velocity is
not obvious.

TABLE 8 | The maximum velocity in different terrains.

Terrain types
Velocity(cm/s)

Simulations Experiments

Flat 22.27 13.10

Sand paper 19.87 11.86

Soft sand 15.40 11.72

Up-slope 13.05 7.35

FIGURE 14 | The hexapod robot velocity in different terrains.
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It should be also emphasized that, suffering from inaccuracies
in modeling process as well as environment construction
uncertainties, several deviations between simulation model and
actual experiment exist inevitably. For instance, the parametric
variables in simulation are fixed, while all the variables
are inherently floating in the experiments. Nevertheless, the
simulation results still have a certain association with the
experimental results, which effectively offer prior information at
the beginning of experiment settings and greatly accelerate the
convergence rate in the actual system.

In summary, it can be concluded from the experimental
results that the proposed 3D two-layer CPG network and the
DDPG-based RL algorithm can provided the hexapod robot
with excellent maneuverability and environmental adaptability
performance while the stability and robustness of the overall
control scheme can be also achieved.

6. CONCLUSION

This paper aims to investigate an adaptive locomotion control
approach for a hexapod robot. Inspired by biological neuron
control systems, the proposed locomotion controller is composed
of a set of coupled oscillators, namely an artificial CPG network.
The novelty of the CPG controller lies in its 3D two-layer. The
first layer of the CPG is able to control the basic locomotion
patterns according to the environment information, while a
RL-based learning algorithm is adopted for fine-tuning the
second layer of the CPG to regulate the behavior of robot

limbs. Several numerical studies and experiments have been

conducted to demonstrate the valid and effectiveness of the
proposed locomotion controller. The navigation of the robot in
a complex and dynamic environment will be explored in the next
research phase.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

All authors contributed to the theory and implementation of
the study. WO designed the whole locomotion control scheme,
proposed the two-layer CPG, and wrote the first draft of the
manuscript. HC modeled the hexapod robot and carried on
the experiments. JP offered the simulation of the reinforcement
learning part. WL corrected the paper formation and text
required for the journal. QR determines the final Abstract,
Introduction, and Conclusion. All authors contributed to
manuscript revision, read, and approved the submitted version.

FUNDING

This work was supported by the National Natural Science
Foundation of China (No. 61773271) and Open Research Project
of the State Key Laboratory of Industrial Control Technology,
Zhejiang University, China (No. ICT20066).

REFERENCES

Achiam, J., Held, D., Tamar, A., and Abbeel, P. (2017). “Constrained policy

optimization,” in 2017 34th International Conference on Machine Learning

(ICML) (Ningbo), 30–47.

Azayev, T., and Zimmerman, K. (2020). Blind hexapod locomotion

in complex terrain with gait adaptation using deep reinforcement

learning and classification. J. Intell. Robot. Syst. 99, 659–671.

doi: 10.1007/s10846-020-01162-8

Bal, C. (2021). Neural coupled central pattern generator based smooth gait

transition of a biomimetic hexapod robot. Neurocomputing 420, 210–226.

doi: 10.1016/j.neucom.2020.07.114

Barfoot, T. D., (2006). Experiments in learning distributed control for a hexapod

robot. Robot. Auton. Syst. 54, 864–872. doi: 10.1016/j.robot.2006.04.009

Campos, R., Matos, V., and Santos, C. (2010). “Hexapod locomotion: a

nonlinear dynamical systems approach,” in 2010 36th Annual Conference

on IEEE Industrial Electronics Society (IECON) (Glendale, CA), 1546–1551.

doi: 10.1109/IECON.2010.5675454

Chung, H.-Y., Hou, C. C., and Hsu, S. Y. (2015). Hexapod moving in complex

terrains via a new adaptive cpg gait design. Indus. Robot 42, 129–141.

doi: 10.1108/IR-10-2014-0403

Delcomyn, F. (1980). Neural basis of rhythmic behavior in animals. Science 210,

492–498. doi: 10.1126/science.7423199

Fortuna, L., Frasca, M., and Arena, P. (2004). Bio-Inspired Emergent Control of

Locomotion Systems. Singapore: World Scientific. doi: 10.1142/5586

Fujimoto, S., Van Hoof, H., and Meger, D. (2018). “Addressing function

approximation error in actor-critic methods,” in 35th International Conference

on Machine Learning (Stockholm), 2587–2601.

Gangapurwala, S., Mitchell, A., and Hacoutis, I. (2020). Guided constrained policy

optimization for dynamic quadrupedal robot locomotion. IEEE Robot. Autom.

Lett. 5, 3642–3649. doi: 10.1109/LRA.2020.2979656

Grzelczyk, D., Szymanowska, O., and Awrejcewicz, J. (2018). Kinematic and

dynamic simulation of an octopod robot controlled by different central pattern

generators. Proc. Instit. Mech. Eng. Part I J. Syst. Control Eng. 233, 400–417.

doi: 10.1177/0959651818800187

Hooper, S. L. (2000). Central pattern generators. Curr. Biol. 10, 176–177.

doi: 10.1016/S0960-9822(00)00367-5

Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsounis, V., Koltun, V., et al.

(2019). Learning agile and dynamic motor skills for legged robots. Sci. Robot.

4:eaau5872. doi: 10.1126/scirobotics.aau5872

Hyun, D. J., Seok, S. O., Sang, O., Lee, J., and Kim, S. (2014). High speed

trot-running: implementation of a hierarchical controller using proprioceptive

impedance control on the MIT cheetah. Int. J. Robot. Res. 33, 1417–1445.

doi: 10.1177/0278364914532150

Juang, C.-F., Chang, Y. C., and Hsiao, C. M. (2011). Evolving gaits of a

hexapod robot by recurrent neural networks with symbiotic species-based

particle swarm optimization. IEEE Trans. Indus. Electron. 58, 3110–3119.

doi: 10.1109/TIE.2010.2072892

Kecskés, I., Székics, L., Fodor, J. C., andOdry, P. (2013). “PSO andGA optimization

methods comparison on simulation model of a real hexapod robot,” in 2013

IEEE 9th International Conference on Computational Cybernetics, Proceedings

(ICCC) (Tihany), 125–130. doi: 10.1109/ICCCyb.2013.6617574

Kim, D., Jorgensen, S., Lee, J., Ahn, J., Luo, L., and Sentis, L. (2020).

Dynamic locomotion for passive-ankle biped robots and humanoids

using whole-body locomotion control. Int. J. Robot. Res. 39, 936–956.

doi: 10.1177/0278364920918014

Frontiers in Neurorobotics | www.frontiersin.org 15 January 2021 | Volume 15 | Article 627157

https://doi.org/10.1007/s10846-020-01162-8
https://doi.org/10.1016/j.neucom.2020.07.114
https://doi.org/10.1016/j.robot.2006.04.009
https://doi.org/10.1109/IECON.2010.5675454
https://doi.org/10.1108/IR-10-2014-0403
https://doi.org/10.1126/science.7423199
https://doi.org/10.1142/5586
https://doi.org/10.1109/LRA.2020.2979656
https://doi.org/10.1177/0959651818800187
https://doi.org/10.1016/S0960-9822(00)00367-5
https://doi.org/10.1126/scirobotics.aau5872
https://doi.org/10.1177/0278364914532150
https://doi.org/10.1109/TIE.2010.2072892
https://doi.org/10.1109/ICCCyb.2013.6617574
https://doi.org/10.1177/0278364920918014
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Ouyang et al. A Hexapod Robot Locomotion Control

Lele, A. S., Fang, Y., Ting, J., and Raychowdhury, A. (2020). “Learning to

walk: spike based reinforcement learning for hexapod robot central

pattern generation,” in 2020 2nd IEEE International Conference on

Artificial Intelligence Circuits and Systems (AICAS) (Genova), 208–212.

doi: 10.1109/AICAS48895.2020.9073987

Li, T., Lambert N., Calandra, R., Meier, F., and Rai, A. (2019). Learning

generalizable locomotion skills with hierarchical reinforcement learning.

arXiv:1909.12324v1. doi: 10.1109/ICRA40945.2020.9196642

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2016).

“Continuous control with deep reinforcement learning,” in International

Conference on Learning Representations (San Juan).

Niu, X., Xu, X., Ren, Q., and Wang, Q. (2014). Locomotion learning for an

anguilliform robotic fish using central pattern generator approach. IEEE Trans.

Indus. Electron. 61, 4780–4787. doi: 10.1109/TIE.2013.2288193

Ramdya, P., Thandiackal, R., Cherney, R., Asselborn, T., Benton, R., Ijspeert, A. J.,

et al. (2017). Climbing favours the tripod gait over alternative faster insect gaits.

Nat. Commun. 8:14494. doi: 10.1038/ncomms14494

Roy, S. S., and Pratihar, D. K. (2013). Kinematics, dynamics and power

consumption analyses for turning motion of a six-legged robot. J. Intell. Robot.

Syst. 74, 663–688. doi: 10.1007/s10846-013-9850-6

Sartoretti, G., Paivine, W., Shi, Y., Wu, Y., and Choset, H. (2019). Distributed

learning of decentralized control policies for articulated mobile robots. IEEE

Trans. Robot. 35, 1109–1122. doi: 10.1109/TRO.2019.2922493

Seo, K., Chung, S. J., and Slotine, J. J. E. (2010). CPG-based control

of a turtle-like underwater vehicle. Auton. Robots 28, 247–269.

doi: 10.1007/s10514-009-9169-0

Stelzer, A., Hirschmüller, H., and Görner, M. (2012). Stereo-vision-based

navigation of a six-legged walking robot in unknown rough terrain. Int. J.

Robot. Res. 31, 381–402. doi: 10.1177/0278364911435161

Sun, Q., Gao, F., and Chen, X. (2018). Towards dynamic alternating tripod trotting

of a pony-sized hexapod robot for disaster rescuing based on multi-modal

impedance control. Robotica 36, 1048-1076. doi: 10.1017/S026357471800022X

Tan, J., Zhang, T., Coumans, E., Iscen, A., Bai, Y., Hafner, D., et al. (2018).

Sim-to-real: Learning agile locomotion for quadruped robots. arXiv [Preprint]

arXiv:1804.10332.

Tsounis, V., Alge, M., and Lee, J. (2020). Deepgait: planning and control of

quadrupedal gaits using deep reinforcement learning. IEEE Robot. Autom. Lett.

5, 3699–3706. doi: 10.1109/LRA.2020.2979660

Yu, H., Gao, H., and Deng, Z. (2020). Enhancing adaptability with local

reactive behaviors for hexapod walking robot via sensory feedback

integrated central pattern generator. Robot. Auton. Syst. 124:103401.

doi: 10.1016/j.robot.2019.103401

Yu, H., Gao, H., Ding, L., Li, M., Deng, Z., Liu, G., et al. (2016). Gait

generation with smooth transition using cpg-based locomotion control

for hexapod walking robot. IEEE Trans. Indus. Electron. 63, 5488–5500.

doi: 10.1109/TIE.2016.2569489

Zarrouk, D., and Fearing, R. S. (2015). Controlled in-plane locomotion of

a hexapod using a single actuator. IEEE Trans. Robot. 31, 157–167.

doi: 10.1109/TRO.2014.2382981

Zhang, H., Liu, Y., Zhao, J., Chen, J., and Yan, J. (2014). Development of a bionic

hexapod robot for walking on unstructured terrain. J. Bion. Eng. 11, 176–187.

doi: 10.1016/S1672-6529(14)60041-X

Zhao, D., and Revzen, S. (2020). Multi-legged steering and slipping

with low dof hexapod robots. Bioinspir. Biomimet. 15:045001.

doi: 10.1088/1748-3190/ab84c0

Zhong, G., Chen, L., Jiao, Z., and Li, J. (2018). Locomotion control and gait

planning of a novel hexapod robot using biomimetic neurons. IEEE Trans.

Control Syst. Technol. 26, 624–636. doi: 10.1109/TCST.2017.2692727

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Ouyang, Chi, Pang, Liang and Ren. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 16 January 2021 | Volume 15 | Article 627157

https://doi.org/10.1109/AICAS48895.2020.9073987
https://doi.org/10.1109/ICRA40945.2020.9196642
https://doi.org/10.1109/TIE.2013.2288193
https://doi.org/10.1038/ncomms14494
https://doi.org/10.1007/s10846-013-9850-6
https://doi.org/10.1109/TRO.2019.2922493
https://doi.org/10.1007/s10514-009-9169-0
https://doi.org/10.1177/0278364911435161
https://doi.org/10.1017/S026357471800022X
https://doi.org/10.1109/LRA.2020.2979660
https://doi.org/10.1016/j.robot.2019.103401
https://doi.org/10.1109/TIE.2016.2569489
https://doi.org/10.1109/TRO.2014.2382981
https://doi.org/10.1016/S1672-6529(14)60041-X
https://doi.org/10.1088/1748-3190/ab84c0
https://doi.org/10.1109/TCST.2017.2692727
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Adaptive Locomotion Control of a Hexapod Robot via Bio-Inspired Learning
	1. Introduction
	2. Modeling of a Hexapod Robot
	2.1. The Prototype of the Hexapod Robot
	2.2. Modeling

	3. Locomotion Controller via CPG
	3.1. Two-Layer CPGs Model
	3.2. Simulation of Locomotion Generation

	4. Locomotion Optimization via Reinforcement Learning
	4.1. Problem Statement
	4.2. Deep Deterministic Policy Gradient Algorithm
	4.3. Observation Space
	4.4. Action Space
	4.5. Network Architecture
	4.6. Reward Function
	4.7. Guided Constrained Costs

	5. Simulations and Experiments
	5.1. Simulations
	5.2. Experiments

	6. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


