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In support of the hypothesis of the endosymbiotic origin of eukaryotes, much evidence has been found to support the idea
that some organelles of eukaryotic cells originated from bacterial ancestors. Less attention has been paid to the identity of
the host cell, although some biochemical and molecular genetic properties shared by archaea and eukaryotes have been
documented. Through comparing 507 taxa of 165-18S rDNA and 347 taxa of 235-28S rDNA, we found that archaea and
eukaryotes share twenty-six nucleotides signatures in ribosomal DNA. These signatures exist in all living eukaryotic
organisms, whether protist, green plant, fungus, or animal. This evidence explicitly supports the archaeal origin of
eukaryotes. In the ribosomal RNA, besides A2058 in Escherichia coli vs. G2400 in Saccharomyces cerevisiae, there still exist
other twenties of sites, in which the bases are kingdom-specific. Some of these sites concentrate in the peptidyl transferase
centre (PTC) of the 235-28S rRNA. The results suggest potential key sites to explain the kingdom-specific spectra of drug
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Introduction

The parts of the theory of endosymbiosis that focus on the
origins of mitochondria, plastids, and other organelles of
eukaryotic cells are well known and widely accepted [1—4].
Meanwhile, regarding the origin of the nucleus, several different
hypotheses remain hotly debated [5]. Some biochemical or
molecular genetic properties that are shared by archaea and
cukaryotes have been documented [6,7], and the monophyletic
group constituted by archaea and eukaryotes was named Neomura
[6]. Among the shared properties of neomurans, some are well
known, such as the similar ribosomal sensitivity of neomurans to
antibiotics or toxins. The spectra of ribosomal sensitivity to
antibiotics are associated with the structures of the ribosomes.
However, due to the complexity of ribosomes, it is difficult to
obtain their fine crystal structures, especially for eukaryotic
ribosomes. To date, Saccharomyces cerevisiae and Tetrahymena thermo-
plila are the sole eukaryotic species whose ribosomal structures
have been determined completely [8] or partially [9] at the
resolution of approximately 4 angstroms. Additionally, it is still
necessary to refine the structure to a higher resolution to reduce
errors [10]. The inability to achieve a higher resolution currently
makes it impossible to collect abundant information on different
types of eukaryotic organisms to conduct comparative studies of
the three dimensional structures of ribosomes.

In addition to the difficulties with structural studies of
ribosomes, it is also difficult to align the ribosomal genes (rDNA)
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of eukaryotes due to the intron sequences and the length variations
in various regions of the rDNA [11,12]. To date, many ribosomal
signatures shared between Archaea and Bacteria have been
identified [13]. The full lengths of the intron free regions of the
small subunit (SSU) of eukaryotic rDNA vary from approximately
1,500 nucleotides or shorter (e.g., Fornicata, Microsporidia,
Mikrocytos and Parabasalidea) to approximately 4,500 nucleotides
or longer (e.g., Euglenida: Distigma). The full length of the large
subunit (LSU) in eukaryotic rDNA ranges from approximately
2,500 (e.g., Microsporidia) to approximately 5,200 nucleotides or
even longer (e.g., Euglenida: FEuglena). This variation in length
makes it very difficult to align eukaryotic rDNA using current
alignment software. Benefiting from the results of the comparative
studies of the secondary structures of rRNAs, the regions of rDNAs
with variable lengths can be conveniently positioned and removed
a priort from the original rDNA sequence of any species [12]. The
improved alignment results of this study greatly facilitated the
detection of group-specific nucleotides or indels between the three
kingdoms.

In the sequence sampling of this study, both the species
diversity and length diversity were taken into account. For the
species diversity, the SAR clade (= Stramenopila+Alveolata+R-
hizaria) [14], green plants, fungi, and animals were sampled to
the class level, whereas Bacteria, Archaea and the stem groups of
Eukaryota were sampled to the order level. For the length
diversity, complete or nearly complete sequences with extreme
lengths were included.
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Results and Discussion

The alignment of the rDNA sequences revealed that ten sites in
the 165-18S rDNA and sixteen sites in the 235-28S rDNA are
shared by all eukaryotes and all archaea but not by bacteria
(Table 1 and Figures 1, 2, 3, Files S1, S2, S3, S4, S5, S7, S8, S9,
S10, S11, S12, S13, S14, S15). The corresponding nucleotides of
Escherichia  coli and S. cerevisiae are listed, and the position
numbering of the nucleotide follows that of previous studies on
ribosomal structures [15,16]. Some of these sites are located in
known key functional regions of ribosomes [8,17,18]. The most
noteworthy site is A2058 in E. coli (File S12). This base has been
shown to be a key site in determining the reaction phenotype to
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Table 1. Ribosomal nucleotides exclusively shared between the three kingdoms.

Base Sharing Bacteria Archaea Eukaryota

SSU rDNA 124 orders E. coli 21 orders 362 classes/orders S. cerevisiae
A E H T340 - - (A412) - (T413)
A E Y T358 G430

A E C C507 G G553

A E S -C514 BG HR G561

A E R G537 C Y C584

A E R G585 C Y T632

A E A A716 C B C927

A E Y C756 G R A967

A E G G966 T Y T1191

A E A A1110 G G G1330

B, A - (C1203) - (A1204) (Y)-(A) N G1435

LSU rDNA 104 orders E. coli 21 orders 222 classes/orders S. cerevisiae
A E VGN (C385G386T387 - - --- (G281) - - - (G282)
A E - (G411) - (A412) M Y T305

A E - (A739) - (C740) T N T871

A E C C995 (D) - (R) (N) - (N) (G1164) - (A1165)
A E A A1665 G G G1897

A E Y C1908 G G G2251

A E R G1922 C C C2265

A E C C1925 T T T2268

A E T T1995 C C C2338

A E A A2058 G G G2400

A E - (T2257) - (C2258) A R A2626

A E T T2390 M M C2760

A E AYA A2430T2431A2432 A A A2801

A E C C2496 K T T2865

A E R A2513 Y Y T2882

A E Y T2571 R A A2940

B, A C C1075 C D G1250

B, A A A1614 w C C1846

B, A - (C1843) - (C1844) (S) - (N) N T2203

B, A A A2033 A G G2375

B, A G G2490 G T T2859

B, A T T2613 T A A2982

B, E Y C2466 G Y T2835

In the first column, A stands for archaea, E stands for eukaryotes, and B stands for Bacteria.

doi:10.1371/journal.pone.0029468.t001

antibiotics in the MLSgK family, thus explaining the spectra of
drug action [18-20]. Only one site is specifically shared by
eukaryotes and bacteria (Table 1 and Figure 3). This result
explicitly supports the hypothesis that eukaryotic ribosomes,
whether larger or smaller than prokaryotic ribosomes, evolved
from archaeal ribosomes.

It appears that many clues of the endosymbiotic origin of eukaryotes,
which happened approximately 1-2 billion years ago [6,21], have been
eroded, and only a few remain. The limited remaining clues will
mevitably lead to some difficulties in determining the complete scheme
of the archaeal origin of eukaryotes, especially the formation of the
nuclear membrane of eukaryotes [22] and the chimeric properties of
cukaryotic genomes [23]. However, the double layers of the nuclear
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Figure 1. Secondary structure of the 18S rRNA of Saccharomyces cerevisiae. The asterisks in different colours mark the nucleotides specifically
shared by different organisms, black: cellular organisms; red: archaea and eukaryotes; and blue: eukaryotes. The bases marked in different colours represent
those bases that have been determined to have a specific function: orange: in bridging the small and large subunits, purple: in the A, P and E sites.

doi:10.1371/journal.pone.0029468.9001
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Figure 2. Secondary structure of the 25S rRNA of Saccharomyces cerevisiae. The asterisks in different colours mark the nucleotides specifically
shared by different organisms, black: cellular organisms; red: archaea and eukaryotes; and blue: archaea and bacteria. The bases marked in different
colours represent those bases that have been determined to have a specific function: orange: in bridging the small and large subunits, purple: in the
A, P and E sites; and green: in antibiotic resistance sites in the PTC.

doi:10.1371/journal.pone.0029468.g002
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Figure 3. Secondary structure of the 25S rRNA of Saccharomyces cerevisiae. The asterisks in different colours mark the nucleotides specifically
shared by different organisms, black: cellular organisms; red: archaea and eukaryotes; blue: archaea and bacteria; and yellow: bacteria and eukaryotes.
The bases marked in different colours represent those bases that have been determined to have a specific function: orange: in bridging the small and
large subunits, purple: in the A, P and E sites; and green: in antibiotic resistance sites in the PTC.

doi:10.1371/journal.pone.0029468.g003

membrane may originate from the endoplasmic reticulum and have conjecturing whether an archaea or a bacterium served as the host cell
different mechanism of origin from those of mitochondria and of endosymbiosis, the former requires fewer hypothesised evolutionary
chloroplasts [1,6,24-28]. In addition, the chimeric genome can be changes.

explained by lateral gene transfer from organelle to nucleus and by In addition to the nucleotides specifically shared between
fusion between an archaea and a bacterium [23,29-31]. Thus, when archaea and eukaryotes, one site in SSU rDNA and six sites in
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Figure 4. The front view of the tertiary structures of the rRNAs of £. coli (A 16S, B 23S) and S. cerevisiae (C 18S, D 25S). The accession
numbers of these structures in the Protein Data Bank are 212U, 212V, 302Z and 3058, respectively. The pellets in different colours mark the
nucleotides specifically shared by different organisms, black: cellular organisms; red: archaea and eukaryotes; blue: archaea and bacteria; and yellow:
bacteria and eukaryotes. The functional sites are shown in different colours; orange: in bridging the small and large subunits, purple: in the A, P and E
sites, green: in antibiotic resistance sites in the PTC.

doi:10.1371/journal.pone.0029468.g004
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LSU rDNA were found to be shared by all types of eukaryotes but
not by archaea and bacteria (Table 1 and Figures 1, 2, 3, Files S6,
S9, S10, S11, S12, S15, S16). These signatures can be viewed as
the synapomorphies of Eukaryota and support that all living
eukaryotes have a single origin.

Among the nucleotides that are conserved among all cellular
organisms, or in both Archaea and Eukaryota, or just in
eukaryotes, some have been determined to be as essential
nucleotides in the A, P and E sites or in the bridges between the
small and the large subunits of ribosomes [8,9,16,17,32-36]
(Figures 1, 2, 3, 4). These nucleotides witness the congruence
between the independent results of bioinformatics and structural
biology. However, compared to the knowledge of structural
biology to date, there exist differences in two areas. The first is that
the functions of many conserved or group-specific nucleotides are
still unknown. Because these nucleotides may have key functions,
they deserve to be paid more attention in structural biology studies
in the future. In fact, in the story of A2058 of E. coli and
homologous G2400 of yeast, structural biologists had suggested
that there exist other potential phylogenetic differences involved in
drug action [37-39]. Given the existence of group-specific indels

and substitutions in the peptidyl transferase centre (PTC) region of

the 235-28S subunit, for instance (Figure 3), which is probably the
most ancient and key part of the 235-28S rRNA [20,40], it is
reasonable to postulate that there may exist corresponding group-
specific functions. Additionally, as is the case for A2058—G2400,
there exist other mutations from bacterial A to eukaryotic G, such
as A1110—G1330 in SSU rDNA and Al1665—G1897 and
A2033—G2375 in LSU rDNA (Table 1, Files S5, S10, S12).
The other difference is that some nucleotides that have been
identified in structural studies as having important functions are
not fully conserved. This result may suggest the structural diversity
of these positions among different types of organisms. The results
of this work explicitly support the hypothesis that eukaryotic
ribosomes evolved from archaeal ribosomes. In addition, all types
of eukaryotes, from protists to human beings, have a single origin.
The novel conserved or group-specific sites among the three
kingdoms provide clear information about the sites that may be
critical to the structures and functions of ribosomes. These sites
should be experimentally investigated in structural biology studies
in the future.

Materials and Methods

The methods of the annotation of the regions of rDNA with
variable lengths followed those of a comparative study of the
secondary structure of eukaryotic 18S rRNAs (Xie et al. 2010). In
total, 507 taxa for 16-18S rDNA (Table S1) and 347 taxa for 25—
28S rDNA were included in this study (Table S2). The alignment
was performed using MUSCLE in MEGAS [41,42], with a few
manual revisions. The information on the conserved nucleotides is
based on the program BioEdit [43].

Supporting Information

Table S1 Taxon sampling of SSU rDNAs. There are 124
taxa for bacteria, 21 taxa for archaca and 362 taxa for eukaryotes.

(XLS)

Table §2 Taxon sampling of LSU rDNAs. There are 104
taxa for bacteria, 21 taxa for archaea and 222 taxa for eukaryotes.

(XLS)

File S1 The screen capture 1 of the alignment of SSU
(16-18S) rDNAs. This screen capture is corresponding to the red
lines 1-2 of the SSU rDNA part of Table 1. The asterisks in
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different colors mark the nucleotides specifically shared by
different organisms, black: cellular organisms, red: archaea and
cukaryotes.

(PDF)

File 2 The screen capture 2 of the alignment of SSU
(16-18S) rDNAs. This screen capture is corresponding to the red
lines 3-6 of the SSU rDNA part of Table 1. The asterisks in
different colors mark the nucleotides specifically shared by
different organisms, black: cellular organisms, red: archaea and
eukaryotes.

(PDF)

File S3 The screen capture 3 of the alignment of SSU
(16-18S) rDNAs. This screen capture is corresponding to the red
lines 7-8 of the SSU rDNA part of Table 1. The asterisks in
different colors mark the nucleotides specifically shared by different
organisms, black: cellular organisms, red: archaea and eukaryotes.

(PDF)

File S4 The screen capture 4 of the alignment of SSU
(16-18S) rDNAs. This screen capture is corresponding to the red
line 9 of the SSU rDINA part of Table 1. The asterisks in different
colors mark the nucleotides specifically shared by different
organisms, black: cellular organisms, red: archaea and eukaryotes.
(PDF)

File S5 The screen capture 5 of the alignment of SSU
(16-18S) rDNAs. This screen capture is corresponding to the red
line 10 of the SSU rDNA part of Table 1. The asterisks in different
colors mark the nucleotides specifically shared by different
organisms, black: cellular organisms, red: archaea and eukaryotes.
(PDF)

File S6 The screen capture 6 of the alignment of SSU
(16-18S) rDNAs. This screen capture is corresponding to the
blue line of the SSU rDNA part of Table 1. The asterisks in
different colors mark the nucleotides specifically shared by
different organisms, black: cellular organisms, blue: archaea and
bacteria.

(PDF)

File S7 The screen capture 1 of the alignment of LSU
(23-28S) rDNAs. This screen capture is corresponding to the red
lines 1-2 of the LSU rDNA part of Table 1. The asterisks in
different colors mark the nucleotides specifically shared by
different organisms, black: cellular organisms, red: archaea and
eukaryotes.

(PDF)

File S8 The screen capture 2 of the alignment of LSU
(23-28S) rDNAs. This screen capture is corresponding to the
red line 3 of the LSU rDNA part of Table 1. The asterisks in
different colors mark the nucleotides specifically shared by
different organisms, black: cellular organisms, red: archaea and
cukaryotes, blue: archaeca and bacteria, yellow: bacteria and
eukaryotes.

(PDF)

File S9 The screen capture 3 of the alignment of LSU
(23-28S) rDNAs. This screen capture is corresponding to the red
line 4 and the blue line 1 of the LSU rDNA part of Table 1. The
asterisks in different colors mark the nucleotides specifically shared
by different organisms, black: cellular organisms, red: archaea and
cukaryotes, blue: archaea and bacteria.

(PDF)

File S$10 The screen capture 4 of the alignment of LSU
(23-28S) rDNAs. This screen capture is corresponding to the red
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line 5 and the blue line 2 of the LSU rDNA part of Table 1. The
asterisks in different colors mark the nucleotides specifically shared
by different organisms, black: cellular organisms, red: archaea and

cukaryotes, blue: archaea and bacteria.
(PDF)

File S11 The screen capture 5 of the alignment of LSU
(23-28S) rDNAs. This screen capture is corresponding to the red
lines 6-8 and the blue line 3 of the LSU rDNA part of Table 1.
The asterisks in different colors mark the nucleotides specifically
shared by different organisms, black: cellular organisms, red:
archaea and eukaryotes, blue: archaea and bacteria.

(PDF)

File S12 The screen capture 6 of the alignment of LSU
(23-28S) rDNAs. This screen capture is corresponding to the red
lines 9-10 and the blue line 4 of the LSU rDNA part of Table 1.
The asterisks in different colors mark the nucleotides specifically
shared by different organisms, black: cellular organisms, red:
archaeca and eukaryotes, blue: archaea and bacteria.

(PDF)

File S13 The screen capture 7 of the alignment of LSU
(23-28S) rDNAs. This screen capture is corresponding to the red
line 11 of the LSU rDNA part of Table 1. The asterisks in different
colors mark the nucleotides specifically shared by different
organisms, black: cellular organisms, red: archaca and eukaryotes.

(PDE)
File S14 The screen capture 8 of the alignment of LSU

(23-28S) rDNAs. This screen capture is corresponding to the red
lines 12—13 of the LSU rDNA part of Table 1. The asterisks in
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