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Abstract

In this paper, a new prediction approach is proposed for ocean vessel heave compensation

based on echo state network (ESN). To improve the prediction accuracy and enhance the

robustness against noise and outliers, a generalized similarity measure called correntropy is

introduced into ESN training, which is referred as corr-ESN. An iterative method based on

half-quadratic minimization is derived to train corr-ESN. The proposed corr-ESN is used for

the heave motion prediction. The experimental results verify its effectiveness.

Introduction

When operating on sea, a vessel is inevitably affected by waves, wind and ocean currents,

thereby moving away from the desired position horizontally and vertically [1]. The vertical

motion of the vessel, also called heave motion, which is undesirable for offshore installations,

offshore drilling and other tasks on sea because it reduces the work efficiency, causes damage

to safety manufacturing system, facility and operation. To reduce this passive effects, heave

compensation technologies were proposed to remove vessel’s heave motion from the load,

which results in the decoupling of load motion from ship motion [2]. Now, heave compensa-

tion is popular in underwater conveying systems for oil and gas fields, payload transfer

between vessels. Heave compensation technology can be classified into two classes, namely

passive heave compensation (PHC) and active heave compensation (AHC). Compared to

PHC, AHC can provide higher decoupling efficiency. AHC system is a close-loop system, in

which the ship’s heave motion is measured and fed back to a controller. Then, the controller

drives an actuator to move in an opposite direction of the heave motion. Some research result

show that a controller with heave motion prediction is helpful in creating an AHC system,

which results in 100% effectiveness in heave motion decoupling [2]. Furthermore, heave

motion prediction can be used to partially correct a large phase lag within the controller struc-

ture [3]. Hence, heave motion prediction is an important issue to AHC.

Though it is important, the research works on heave motion prediction are not so much. In

the past years, many works focused on the ship’s roll motion prediction [4, 5]. In the literature,
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researchers utilize autoregressive (AR), autoregressive moving average (ARMA) and moving

average (MA) models to construct prediction model from time series for heave motion predic-

tion. In [6], a heave motion model was constructed from time series based on autoregressive

(AR) model, the model’s parameters were estimated using a robust estimation, i.e., iteratively

reweighted least squares techniques. In [7], a method was proposed to predict vessel’s vertical

motion for the purpose of forming an active compensation system. The proposed method

firstly formulated a linear model of the wave-induced motion based on the dominant modes,

which was obtained from fast Fourier transformation and peak detection algorithm. Then, the

amplitude and phase of each mode was estimated using Kalman filter. In [1], support vector

regression (SVR) combined particle swarm optimization (PSO) was adopted for heave motion

prediction. In the proposed method, PSO was used to optimize the super parameter of SVR.

However, the above models are only effective for linear system prediction. Since ship’s heave

motion is a complex nonlinear system, it is necessary to develop a nonlinear prediction model

for heave motion.

In this paper, a nonlinear model is developed for heave motion prediction based on each

state network (ESN). ESN is a class of recurrent neural network (RNN), whose hidden layer

(also called “dynamic reservoir”) contains many randomly and sparsely connected neural

units. In ESN, only the output weights need to be trained and other weights are randomly set,

and thus the training complexity of ESN is reduced. Furthermore, ESN can be found many

applications in system identification and control [8, 9], wind speed and direction forecasting

[10], emotion recognition [11], etc. Apart from successful applications, many research works

had been done to improve the performance of ESN, which mainly focus on constructing more

efficient dynamic reservoir. The leaky integrator echo state network [12], reservoirs with bio-

logical properties [13], hierarchical reservoirs [14], and simple cycle reservoir [14] are just a

few examples. When training ESN, not only the basic ESN but also the improved variants, the

mean square error (MSE) criteria is used. The advantage of adopting MSE is that it can obtain

the least square solution and lead to training simplicity. However, MSE is sensitive to noises

and outliers, and inefficient for non-Gaussian error distribution. An alternative solution to

this problem is to utilize the criterion based on correntropy. Correntropy, proposed by Santa-

maria [15], is recognized as more flexible and robust to noise or outlier than MSE. Owing to

this, a correntropy based ESN is proposed to predict the heave motion.

The rest of this paper is organized as follows. In Section 2, the basic of ESN is introduced.

The correntropy based ESN is given in Section 3. The experiments for heave motion using cor-

rentropy based ESN are presented in Section 4. Finally, the concluding remarks are presented

in Section 5.

The basic of ESN

ESN is a recurrent neural network, whose structure is shown in Fig 1. An ESN consists of an

input layer, a hidden layer and an output layer. The hidden layer is also called dynamic reser-

voir. The neural units in reservoir are sparsely connected each other. Different from other

RNNs, the input weights Win, the weights between reservoir units Wx and the feedback weight

Wfb are predetermined randomly without being trained, only the output weights Wout should

be trained. This characteristic greatly reduces the computation complexity. The training of

ESN is divided into two stages. Firstly, the training data is fed into ESN and the state of reser-

voir X(t) is calculated and updated as

xðt þ 1Þ ¼ f ðWxXðtÞ þW inuðt þ 1ÞÞ; ð1Þ

where X(t) 2 RN is the state of reservoir at time instant t, u(t) 2 RL is the external input at time
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instant t, Wx 2 RN×N is the reservoir weight matrix and Win 2 RN×L is the input weight matrix.

f(�) is the activation function, usually the tanh function is adopted. For leaky integrator ESN,

the state is updated as

Xðt þ 1Þ ¼ aXðtÞ þ ð1 � aÞ � f ðWxXðtÞ þW inuðt þ 1ÞÞ; ð2Þ

where α is called leaking rate. The output of ESN is computed as

yðtÞ ¼ gðzðtÞWoutÞ; ð3Þ

where y(t) 2 R1×M is the output of ESN at time instant t, z(t) = [XT(t) uT(t + 1)] 2 R1×(N+L) is

the concatenation of reservoir states and input vectors and Wout 2 R(N+L)×M the output weight

matrix, g(�) is a nonlinear mapping function. In practice, the nonlinear function g(�) is selected

as linear function. Therefore, the output can be written as

yðtÞ ¼ zðtÞWout: ð4Þ

Let
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; ð5Þ

one can get

Y ¼ ZWout; ð6Þ

then, the optimal output weight matrix is obtained as

Wout ¼ ðZTZÞ� 1ZTY: ð7Þ

Fig 1. Structure of ESN.

https://doi.org/10.1371/journal.pone.0217361.g001
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Correntropy based ESN

Correntropy

In information theoretic learning (ITL), correntropy is a local similarity measure between two

random vectors. It is regarded as a generalization of correlation function. Given two arbitrary

random variables A and B, their correntropy is defined as

VsðA;BÞ ¼ E½ksðA;BÞ�; ð8Þ

where kσ(�) is the kernel function that satisfies Mercer’s theorem with kernel size σ and E[�]

denotes the mathematical expectation. In practice, only a finite number of samples are avail-

able and the real joint probability density of A and B is unknown. Therefore, the mathematical

expectation is approximated by arithmetical average as

V̂ sðA;BÞ ¼
1

M

XM

i¼1

ksðai; biÞ: ð9Þ

In this paper, the Gaussian kernel function is selected, its expression is as follows

ksðai; biÞ ≜ Gðai; biÞ ¼ exp �
ðai � biÞ

2

2s2

� �

: ð10Þ

Therefore, Eq (9) can be rewritten as

V̂ sðA;BÞ ¼
1

M

XM

i¼1

exp �
ðai � biÞ

2

2s2

� �

: ð11Þ

The closer between A and B is, the larger the correntropy is. Compared with MSE, correntropy

is not sensitive to noises or outliers and lead to more robust estimation.

Training ESN based on regularized correntropy criterion

In the training phase of ESN, the MSE is replaced by correntropy in order to improve the per-

formance of ESN. Furthermore, to enhance the generalization of ESN, a L2 norm regulariza-

tion term is added. The new criteria for training ESN is given as

JðWoutÞ ¼ max
Wout

XM

i¼1

exp �
kyðiÞ � zðiÞWoutk

2

2s2

� �

� gkWoutk
2

" #

: ð12Þ

The new criteria (12) is not quadratic any more. In this paper, the half-quadratic optimization

is used to solve the optimization problem (12).

Proposition 1 For GðzÞ ¼ exp � kzk
2

2s2

� �
, there exists a convex conjugated function φ, such

that

GðzÞ ¼ sup
a2R�

a
kzk2

2s2
� φðaÞ

� �

: ð13Þ

Moreover, for a fixed z, the supremum is reached at α = −G(z).
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Hence, introducing (13) into the objective function (12), the following augmented objective

function can be obtained,

ĴðWout;αÞ ¼ max
Wout;α

XM

i¼1

ai
kyðiÞ � zðiÞWoutk

2

2

2s2
� φðapÞ

� �

� lkWoutk
2

" #

; ð14Þ

where α = (α1, α2, . . ., αM) stores the auxiliary variables appeared in the half-quadratic optimi-

zation. Moreover, for a fixed Wout, the following equation holds

JðWoutÞ ¼ ĴðWout;αÞ: ð15Þ

The optimal problem (14) can be solved via the following iterative manner,

atþ1
i ¼ � exp �

kyðiÞ � zðiÞWoutk
2

2s2

� �

; ð16Þ

and

Wout
tþ1
¼ argmax

Wout
ðZWout � YÞTLðZWout � YÞ � gWoutWoutT

ð17Þ

where τ denote the τth iteration and Λ is a diagonal matrix with its primary elements

Lii ¼ � a
tþ1
i . The optimal problem (17) is easy to be solved, one can set the partial derivative of

ĴðWout;αÞ with respective to W to zero, and yields

@ĴðWout;ατþ1Þ

@Wout
¼ 2ðZTLZ � gIÞWout � 2ZTLY ¼ 0: ð18Þ

Therefore,

Wout
tþ1
¼ ðZTLZ � gIÞ� 1ZTLY: ð19Þ

After some iterations, the objective function (14) converges. The strict proof can be referred to

[16].

Experimental results

In this section, the simulation studies are conducted to verify the effectiveness of the proposed

method. All the algorithms are implemented in Matlab 2016b programming language and run

in a ThinkPad T440 notebook computer with Intel Core™ i5-4200U processor, 8G random

access memory (RAM). The heave motion data is taken from [17]. The data is measured from

a simulation platform of wave movement with an accelerometer. The sampling frequency is

100Hz. The measured data is normalized into [0, 1], which is shown in Fig 2 (The data can be

referred to S1 Fig).

Data preprocessing

The measured data contains many components including sudden vibration, high frequency

component generated by fluctuating oil pressure and direct component [18]. Therefore, the

original data is preprocessed by a simple filtering operation. The frequency domain filtering

method based on Fast Fourier Transform (FFT) is applied to the original measured signal. The

filtering is performed in frequency domain. A low-pass filter between 0 and 15 Hz is adopted
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and its frequency response is as follows,

Hðf Þ ¼

(
1; 0 < f < 15

0; others
ð20Þ

The filtered data is shown in Fig 3 (The data can be referred to S2 Fig).

Prediction results

The filtered data is used for prediction experiments. Let y(k), k = 1, 2, � � �, n denotes the heave

motion time series. In this paper, a three-order model is used for prediction, i.e., y(k − 1), y(k
− 2), y(k − 3) is used to predict y(k). For the purpose of comparison, an autoregression (AR)

model and original ESN are also implemented and used for prediction. The RMSE (root mean

Fig 2. Heave motion data.

https://doi.org/10.1371/journal.pone.0217361.g002

Fig 3. Heave motion data after filtering.

https://doi.org/10.1371/journal.pone.0217361.g003
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square error) is used to evaluate the prediction performance, which is defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1
½yðkÞ � ŷðkÞ�2

N

r

; ð21Þ

where y(k) is the real measured value at time k and ŷðkÞ is the predicted value, N is the number

of data points used for training or test.

In experiments, the whole data is partitioned into two parts, the first 70% is used for train-

ing and the rest 30% is used for testing. The parameters of ESN are set as follows. The size of

reservoir is 1000, λ in (17) is set to 10−6 and σ in (10) to 0.1. The maximum number of iteration

in correntropy based ESN is 200. If the error of objective function value between successives

iteration is less than a given tolerance, then the iterations break out and the algorithm termi-

nates. The tolerance is set to 10−5. The training results and error are shown in Fig 4 (The data

can be referred to S3 Fig). Fig 5 (The data can be referred to S4 Fig) shows the one-step predic-

tion results and prediction error. It can be seen that the training and prediction error of the

proposed method are the smallest.

Fig 4. The training results and error. Top: training result, Bottom: the training error.

https://doi.org/10.1371/journal.pone.0217361.g004
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To objectively evaluate the performance of the referenced methods, Table 1 lists the RMSE

in training and prediction phase of the referenced methods.

Conclusions

A correntropy based ESN is proposed to predict heave motion for the purpose of heave com-

pensation. The proposed approach adopts correntropy instead of MSE as the error criterion

for ESN training, which is called corr-ESN. An iterative training algorithm is derived using

half quadratic optimization theory. Since the correntropy is insensitive to noise and outliers,

Fig 5. The one-step prediction results and error. Top: prediction result, Bottom: the prediction error.

https://doi.org/10.1371/journal.pone.0217361.g005

Table 1. RMSEs in training and prediction phase of different methods.

AR ESN corr-ESN BP ELM

Trainging 0.0073 5.7923E-6 3.8741E-13 0.0067 0.0056

Predictioin 0.0310 0.0206 0.0088 0.0224 0.0531

https://doi.org/10.1371/journal.pone.0217361.t001
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the corr-ESN is more accurate than ESN for heave motion prediction. Simulation results vali-

date the effectiveness of the proposed method.
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