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A wild plant called Skunk Cabbage is known to heat itself 
and keep its body warm before spring. We study its homo-
thermal maintenance mechanism from a mesoscopic 
point of view. We take the increment process of the tem-
perature time series and consider it as ‘elastic’ force that 
always tries to backlash its temperature to an intrinsic 
target temperature. We then propose a kind of extended 
Poisson distribution for the model of the ‘elastic’ force. 
The hypothesis testing result by Kolmogorov-Smirnov 
test suggests that the proposed distribution is a plausible 
candidate of the model for the ‘elastic’ force, on the tem-
perature range in which the system is in equillibrium. In 
addition, it turns out that the parameters in the model 
captures well the linear behaviour of the expectations of 
the ‘elastic’ force at each of the present temperatures and 
similarly, the constancy of the variances of the force. 
Especially, the linearity of the expected increments over 
displacements of tempertures indicates that the backlash 
might be considered to be like the elastic force of a spring 
as described by Fuch’s law.
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Background and Problem
Skunk Cabbage is a plant of the family Araceae that grows 

wildly in cold marshes. It has the special feature of being 
equipped with a heating organ called a spadix. The organ 
generates heats continuously for several days before spring 
and retains its temperature at about 22~24°C, in order to 
 nurture its seeds effectively [1]. We have been interested in 
the temperature control mechanism and have obtained par-
tial results on the mechanism from various points of view. 
Microscopically, we have shown from the molecular or 
 cellular biological points of view that particular molecules 
governing mitochondorial respiration in exothermic cells 
perform an important function in heat generation [2–5].

Regarding the temperature control, or more specifically, 
the homothermal maintenance, we have found that the spadix 
temperature and the amount of respiratory metabolism have 
an inverse correlation. In the temperature range in which the 
homothermal maintenance works well, the lower (resp., 
higher) the spadix temperature is, the higher (resp., lower) 
the respiratory activity becomes. We thus have come to 
believe that the maintenance is based on so called Le 
 Chatelier’s principle [6, p. 150]: when the equilibrium state 
of a system is subjected to a disturbance, the composition  
of the system adjusts to tend to minimise the effect of the 
 disturbance. We will consider this principle with the distur-

As a temperature control mechanism of the Skunk Cabbage, we have found that, around the Central Temperature (CT), the operation to rebound 
the temperatures to the CT is done linearly with respect to temperature displacements from the CT in average; also, variance takes a constant value 
there. Both sample mean and sample variance show good agreement with their model parameters of the proposed mixed Poisson model.
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of behaviour the plant tends to present when the ambient 
temperature falls or rises. Thus, we might be confronted with 
the problem of how an ‘elastic’ force is working when the 
spadix temperature falls to lower or rises to higher than  
its target temperature. Does it resemble a simple harmonic 
oscillation?

Of course, it cannot be a simple harmonic oscillation, 
because the ‘elastic’ force in the spadix is not of constant 
periodicity. What kind of principle is behind the background? 
Such arguments might capture what the microscopic phe-
nomena leads to, and also, what causes the macroscopic 
 phenomena; thus, we might need some mesoscopic study 
that bridges the micro- and macroscopic phenomena.

In this paper, by analysing the above-mentioned ‘elastic’ 
force, we find that the control of homothermal maintenance 
is always achieved in accordance with the balance of the 
exothermic and endothemic potentials. When the tempera-
ture has fallen (or, risen), even though the ‘elastic’ force to 
raise (resp., lower) the temperature is stronger, the opposite 
force to lower (resp., raise) the temperature exists the same 
time. This conflict can be considered to be necessary in order 
to enable the unidirectional temperature control without 
feedback.

As a result, to describe the ‘elastic’ force in terms of the 
greater and lesser strength of exo- and endothermic poten-
tials, we propose a mixed Poisson model. On this basis, we 
obtain another understanding of the mechanism through 
which the ‘elastic’ force is generated. Essentially, it resem-
bles seasaw.  Having a higher potential at one of the two states 
automatically implies the state changes to another (opposite) 
one of lower potential. In addition, the higher or lower the 
spadix temperature becomes beyond the target temperature, 
the stronger the ‘elastic’ force to return the temperature to the 
target becomes; see Materials and Methods section. Indeed, 
the average behaviour of the ‘elastic’ force, as a function of 
the present temperature, fits well with its theoretical values 
derived from the Poisson model. This might also imply the 
plausibility of the model.

At the end of this introductory section, we remark on the 
basic scope of this study. Although we analyse the time 
series data like in Figure 1 above, we do not consider fitting 
a time series model to the data. Such model fitting might be 
considered in the future, but we do not intend to do so, at 
least not in a classical way. This is because, as mentioned in 
the scientific articles above, the homothermal maintenance 
mechanism is considered to be driven according to chaos, 
which is a nonlinear system. In fact, in our preliminary 
investigation, the data have presented a sharp self-similarity 
(see [12,13] for self-similarity). Thus, we do not expect that 
conventional linear models like autoregressive (AR) and 
autoregressive moving-average (ARMA) to work for the 
data here. However, nonlinear models like fractionally inte-
grated ARMA [12,13] might be candidates of the model. 
But, rather, our purpose is not just the time series modeling. 
Our final goal, though, is not just the time series modeling, 

bance being temperature change.
In addition, macroscopically, we have revealed from the 

applied mathematics point of view that the time series data 
of the spadix temperature presents a chaotic behaviour [7,8]. 
In particular, the temperature control mechanism has an 
intrinsic dynamics characterised by a ‘Zazen Attracter’ [7]. 
It is the first chaotic phenomenon discovered in plants 
[9–11].

Figure 1 shows sample data of the spadix temperature 
time series. Its first part presents the homothermal mainte-
nance stage (the female stage) in which the temperature 
 control is performed effectively. In the latter part, the control 
no longer works well. The phase of the control system thus 
changes.

From these results, the elements of the microscopic and 
macroscopic mechanisms have become gradually become 
understood. However, knowing the microscopic genes or 
enzymes committed to the mechanism does not lead imme-
diately to an understanding of the macroscopic chaos, and 
vice versa; at present, only fragmentary elements have been 
obtained, but these have not been linked organically. Conse-
quently, a complete understanding of the mechanism remains 
to be acquired. We do not know the relationship of the chaos 
and the homothermal maintenance.

On the other hand, a plant does not have nervous system 
in general, and thus can neither sense ambient temperature 
nor provide temperature information as feedback to the ner-
vous system to determine the control at each instant. That is, 
the mechanism must be a unidirectional one that achieves 
the appropriate control of the spadix temperature in a simple 
manner. However, with the present situation, as described 
above, we do not yet have a higher standpoint to be able to 
infer the biological strategy of the Skunk Cabbage for the 
homothermal maintenance.

Given this situation, we investigate the mechanism from 
another point of view in this paper. We analyse the time 
series data of the spadix temperature to determine the kinds 

Figure 1 A sample of time series data X(t) of spadix temperatures.
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case, but typically a little bit less range may be supposed in 
this paper.

The activation is considered to be the operation that raises 
the temperature, and the inactivation the operation that lowers 
it. We have thus speculated that during the female period, 
there may be a critical point of temperature x = x0∈X such 
that if x < x0 (resp., x > x0) then an action works so as to raise 
(lower) the temperature. Let us call such an x0 the CT.

Let y(t) = X(t + 1) – X(t) be increments of X(t). The thermal 
sensor is a needle-like device and is connected to a digital 
thermometer. The sensor is inserted into the spadix of each 
of the individuals, and the thermometer displays the tem-
peratures in 0.1°C steps. Thus X(t) and y(t) are in 0.1°C steps 
in this paper. The sensors continue to measure the tempera-
ture data every minute and record it in micromemory for 
several days. Figure 1 presents a sample time series of X(t).

We are interested in y(t) rather than X(t) itself. As men-
tioned above, the plant tries to raise (lower) its temperature 
when the present temperature is lower (higher) than the CT 
x0. The strength of the backlash may depend on the displace-
ments (X(t) – x0) and the amount of backlash may appear as 
the jumps y(t); What embodies the action, backlash from the 
present temperature x toward x0, is just the y(t). Thus we will 
investigate the temperature control mechanism through y(t), 
rather than through X(t) itself. In addition, the formation of 
the histogram of y(t) is in fact better than that of X(t).

Figures 2 (a) and (b) are the histograms of X(t) and y(t) of 
the same sample, respectively. For this sample, the value 
range of X(t) is approximately 18~25°C; the range depends 
on the individuals, with some being 21~27°C and others 
20~25°C, for example. All of the samples used in this study 
are taken from the same place and same period (data lengths 
are different). As for y(t), every sample has zero median and 
mode, and the concentricity of the histogram is high.

The histogram of y(t) in Figure 2 (b) is nearly symmetric. 
The jumps y(t) to higher temperatures from lower and to 
lower temperatures from higher have similar value frequen-
cies. Thus, the ‘elastic’ force for both directions are basically 
the same, on the whole.

Overview of the ‘Elastic’ force
We would like to characterise the temperature dependence 

of y(t) on the present temperatures x or |x – x0|. This leads to 

which is an identification of the time series class, but to 
reveal the homothermal maintenance mechanism, including 
the relationship with chaos dynamics, of the mysterious yet 
charming plant.

This goal requires approaching from several points of 
views as described above, and a key concept is the phase 
transition model with a linear system of equilibrium state 
(we suppose that a neighbourhood of the central temperature 
(CT) corresponds to this state) and a nonlinear system of 
nonequilibrium state (outside of the CT neibourhood might 
corresponds to this state). Indeed, it will be revealed in this 
paper that the time series representing an equilibrium state 
shows a linear behaviour on average in a neighbourhood of 
the CT, indicating that the behaviour of the equilibrium state 
is linear.

The remainder of the paper is organised as follows. We 
begin with explaining the basic facts and overviewing  
the ‘elastic’ force in Materials and Methods section. The 
extended Poisson model is proposed, along with the distribu-
tion of the ‘elastic’ force, in Results and Discussion section, 
and then the model is validated through hypothesis testing. 
We then show that two characteristics of the average behaviour 
are captured well by the Poisson parameters. Conclusion 
section presents concluding remarks.

Materials and Methods
Time series data of spadix temperatures

We have several time series data of spadix temperatures, 
collected in the field, like Shizukuishi, Iwate prefecture, 
Japan (see Supplementary Tables S1). The dataset and 
 MATLAB program codes used in the study are uploaded at 
ResearchGate [14,15] and are open for free access.

Let us denote the spadix temperature by X(t), t ≥ 0 and let 
X be its value range. Figure 1 presents a sample of X(t).  
As seen in the figure, the spadix temperature has roughly 
remained constant throughout the female period. It is reported 
[16] that the respiratory metabolic system of the plant is 
 activated when the spadix temperature falls, and inactivated 
when the temperature rises; in addition, the lower (resp., 
higher) the temperature falls (rises), the stronger (weaker) 
the activity becomes. The activity is thus inversely correlated 
with the temperature increases. X is 15~30°C in broadest 

Figure 2 Histogram of X(t) (top) and y(t) (bottom).
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Of the histograms in Figure 4, those in (b) are mostly 
symmetric and have high concentricity, in contrast to those 
in (a) and (b). The histograms in (a) have the positive part 
superior to the negative part, and conversely, those in (c) 
have the negative part superior to the positive part; in both 
cases, the concentricity is not as high as in (b).

In (a), the plant might try to raise the temperature to the 
CT from below as much as possible, resulting in a distribu-
tion that is biased to the right with high dispersion. In (b), the 
plants tend to remain in their current states close to the CT 
and do not jump substantially,with the result that the con-
centricity around the origin is high. In (c), the plant might 
attempt to lower the temperature to the CT from above as 
much as possible, resulting in a distribution that is biased to 
the left with high dispersion.

Using a boxplot can be helpful, in general, in understand-
ing the rough outline of a distribution, but in the present 
case, this does not work. While the expected values E[Y∆(x)] 
are very close to zero for every x, standard deviations are 
relatively large, resulting in boxes that appear to be similar. 
It is for that reason that we examine the histograms here, as 
in Figure 4.

Results and Discussion
Model of the ‘elastic’ force: extended poisson distribu tion

In the previous section, we recognised the temperature 
control visually from the ‘elastic’ force towards the CT in 
the female period. This result might suggest that

● The larger the displacement of the present temperature 
from the CT is, the stronger the ‘elastic’ force is.

This might imply that the control system has a potential 
energy, which is thought to be a function of displacements  
|x – x0|, of the ‘elastic’ force, and the greater the displace-
ments are, the greater the energy become automatically.  
In this section, we consider modelling of the ‘elastic’ force 
for each value of x.

First, let us take note of an important observation regard-
ing the ‘elastic’ force. In the histogram in Figure 5, we see 
that when the present temperature is in less than the CT, not 
only does the ‘elastic’ force raise the temperature towards 
the CT, but also, the force to fall further is in effect exists at 
the same time (although the latter is weaker than the former). 
Similarly, when the present temperature is greater than the 
CT, both the ‘elastic’ force to raise the temperature and the 
force to lower it are in effect. As for the coexistence of the 
‘elastic’ force for both directions, we recall the chemical 
reactions taking place in the spadix [16]. This is an exo-
thermic reaction generating heats through a dehydrogenase 
reaction changing starch absorbed from the roots into pro-
tons and water. This is, in fact, a reversible reaction, i.e. the 
endothermic reaction also occurs at the same time. These 
reactions are represented by the following expression:

considering the tendency on the set of values

Y(x) =Δ { y(t)|X(t) = x, t∈T},   x∈X (1)

where T is the female period and X is the value set of X(t) for 
t∈T. An image of the Y(x) is shown in Figure 3. In the time 
series data, we determine T by sight. We often call the ele-
ments of Y(x) ‘elastic force’ at x, since they correspond to the 
action on the present temperatures X(t) = x to backlash to CT.

We draw the histogram of Y(x) for each of the x values to 
recognise the tendency visually. However, they are field data 
of natural phenomena and are often noisy, with the result 
that it is difficult to recognise the tendency in a straightfor-
ward way. Here we have only one sample time series for 
each of the individual plants. We then consider taking a kind 
of averaged data by considering the following Y∆(x) instead 
of Y(x): for Δ = 0, 0.1, 0.2, ...

Y∆(x) =Δ { y(t)| |X(t) – x| ≤ Δ, t∈T}. (2)

Taking Δ = 0 reduces Y∆(x) to Y(x). The data X(t) we are 
using in this paper have lengths of thousands. For every x, 
Y∆(x) consists of tens to hundreds of elements (In data anal-
ysis, we consider Y∆(x) only for those values of x for which 
Y∆(x) contains more than 20 elements). As in the case of Y(x), 
we call Y∆(x) the ‘elastic force’ in the neighbourhood of x.

In Figures 4 (a)~(c), the histograms of Y∆(x) with Δ = 0.4 
of the sample same as in Figures 1 and 2 are depicted. Figure 
4 (a) is for those values of x that are less than the CT, x = 19.8, 
20.4, 20.8 and 21.0°C. Similarly, (b) is for values close to the 
CT, x = 21.6, 22.0, 22.2, 22.4°C, and (c) is greater values, 
x = 22.6, 22.8, 23.0, 23.2°C. As a result of the ‘averaging’ 
over x ± 0.4, noise relating to the original Y(x) is suppressed 
somewhat, revealing the above tendency more clearly.

With Y(x) or Y∆(x) so defined, we now define the CT. We 
set it to be a particular value x = x0∈X such that |E[Y(x)]| or 
|E[Y∆(x)]| are minimal. Typically, it is ≃0. Actually, a very 
precise definition of the CT may not be necessary, for the 
time being. Later a method of determining the CT in a more 
objective way will be suggested. See Results and Discussion 
section.

Figure 3 Investigate tendency of increments Y(x).
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Figure 4 Histogram of Y(x) for several x, Δ = 0.4. (a) lower side than CT. (b) neighbourhood of CT.
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k1
                             k2

RH2  ⇌  R + 2H+
 + 2e–  →  H2O, (3)

k′1                           +
1 O22

where RH2 represents a carbohydrate (starch) for a respira-
tory substrate R, H+ is a proton, and e– is an electron. The 
first half of the expression is the reversible reaction, with the 
reaction constants k1 for exothermicity and k′1 for endother-
micity. The plant thus generates heat by decomposing starch 
(energy source) absorbed from the roots. The latter half 
 reaction, finally generating water, is an irreversible reaction. 
In this paper, we are thinking of the modeling only for the 
first half, the state referred to as pre-equilibrium.

Our assumptions for pre-equilibrium modeling are thus as 
follows:

● The exo- and endothermic reactions are taking place  
at the same time. The total increase or decrease of the 
 spadix temperature is a result of balancing of the two 
reaction intensities. Depending on the magnitudes of 
the displacements from the CT, the ‘elastic’ force in 
opposite directions towards the CT change.

Further:

Figure 4 (c) higher side than CT.

Figure 5 Histogram of Y(x), x = 21.0°C and CT = 22.0°C.
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while the total temperature decreasing by 0.2°C degrees 
consists of all of the combinatorial patterns (number of 
 exothermicity factors, number of endothermicity factors) =  
{(k, k + 2)|k = 0, 1, 2, ...}. Hence, we are led to consider

px(k) =Δ P( y(t)|X(t)=x = 0.1× k) 
= ∑

l≥0
 p1(k + l, x) p2(–l, x),   k∈Z. (6)

An example of this extended Poisson distribution with 
λ1 = 0.3 and λ2 = 0.2 is shown in Figure 6. It can be seen  
that λ2 < λ1 corresponds to the greater or lesser probability 
weights. In addition, the expectation and variance of the 
extended Poisson distribution is given as follows (see Mean 
and Variance in Supplementary Text S1):

Ex[y] = ∑
k∈Z

(0.1k) px(k) = 0.1[λ1– λ2] (7)

Varx[y] = ∑
k∈Z

(0.1k – Ex[y])2
 px(k) = (0.1)2[λ1+ λ2]. (8)

The expectation can take either nonnegative or nonpositive 
real number values.

The left-hand column of Figure 7 (a) contains the histo-
grams y∆(x), Δ = 0 and the fitting results of the extended 
Poisson distribution for the lower temperatures x = 19.8, 
20.4 and 20.8°C for the same sample as in Figure 1. We 
derived the fitting for the histogram using the least squares 
method. The right-hand column of Figure 7 (a) is y∆(x), 
Δ > 0. Similarly, Figure 7 (b) shows the neighbourhood of 
the CT, x = 21.0, 21.2 and 21.4°C, and Figure 7 (c) shows for 
greater values of x, x = 22.4, 22.6 and 23.0°C. In our search 
for the best values for λ1 and λ2, we take the pitch of their 
values as 0.005. The data we used in this paper showed no 
difference for results with smaller pitches.

For the histograms in (b), the fit is not as bad as it might 
be, i.e. not bad with Δ = 0. However, the fit for the histo-

● When x is less (resp., greater) than the CT, the ‘elastic’ 
force works at a constant rate so as to restore the equi-
librium state, i.e. to return to the CT, but owing to 
 randomness, the force fluctuates around the rate.

Based on the above assumptions, we considered the fol-
lowing model of spadix temperature distribution caused by 
exo- and endothermicity coexistence and their balancing. 
Note that the temperature data are in 0.1°C steps.

Let k = 0, 1, 2, .... Letting the temperature be raised by 
0.1°C degrees results in particular virtual exothermic factors 
being generated in appropriate units, and letting the tem-
perature be lowered by 0.1°C degrees results in particular 
virtual endothermic factor being generated in appropriate 
units.

Then, if the virtual exothermic factors are generated in k 
units, the temperature increases by 0.1 × k°C degrees, and if 
the virtual endothermic factors are generated in k units, the 
temperature decreases by 0.1 × k°C degrees. We denote the 
generation rates of the factors by λ1 = λ1(x) and λ2 = λ2(x) > 0 
[mol/s] respectively. Our model then assumes that the num-
bers of units of generation per unit time obey a Poisson dis-
tribution of intensity λ1 and λ2, respectively:

p1(k, x) = P (  
k units of amount of the 
 exothermic factor generated | X(t) = x )

= 
[λ1(x)]k

e–λ1(x),
k!  (4)

p2(–k, x) = P (  
k units of amount of the 
 endothermic factor generated | X(t) = x )

= 
[λ2(x)]k

e–λ2(x)
k!  (5)

for k = 0, 1, 2, .... In general, a Poisson distribution represents 
the probabilities of the number k of events occuring in a unit 
time, and the Poisson intensity λ > 0 is the mean of the num-
ber of events generated [17,18]. In the present case, we use 
two Poisson distributions for each of the exo- and endother-
mic factors. This raises the question of how to represent the 
number of units of the endothermic factors? If we were to 
think of only the exo- or endothermic factors independently, 
we might use only the usual Poisson distribution. Then, 
however, it would be difficult to represent the exo- and endo-
thermicity coexistence and their balancing. It would thus be 
useful to define a Poisson distribution such as taking non-
positive values are formally considered. That is, endothermic 
factor generation is thought of as if exothermic factors are 
generated in negative amounts.

Then, through a combination of the two Poisson distribu-
tions, we represent the total amount of temperature increase 
or decrease, as in Figure 6. For example, the total tem-
perature increasing by 0.1°C degrees consists of all of the 
combinatorial patterns (number of exothermicity factors, 
number of endothermicity factors) = {(k +1, k)|k = 0, 1, 2, ...}, 

Figure 6 An extended Poisson distribution representing the simul-
taneous generation of exothermal and endothermal factors.
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in Figure 7 (b). Therefore, we consider Y∆(x), Δ > 0, to model 
the average behaviour in the neighbourhood of each x. 
Below we will show that the average behaviour is linear with 
respect to x, suggesting that the tendency of Δ = 0 and Δ > 0 
are close to each other. In addition, the model is at least not 
rejected when testing the hypothesis as in the next section.

Before going to the Hypothesis testing, let us remark plau-
sibility of the extended Poisson distribution. The tempera-
ture of an object may be considered to vary continuously in 
general, apart from the restriction that measuring devices can 
record the temperatures only in discrete values. On the other 
hand, the Poisson distribution is a probabilistic model for 
counting data taking nonnegative integer values. Neverthe-
less, we think the modeling the temperature displacements 
with the Poisson-like distribution is meaningful, due to the 
following reasons:

grams in (a) and (c) is not good. Because the data length of 
Y∆(x), Δ = 0 is not sufficient, the histogram itself presents no 
meaningful shape. However, for Δ > 0, the histograms show 
meaningful shapes, and the fits are good. For Δ = 0, we 
should not say that ‘the model fails’, but rather, that the his-
togram shaping itself is not yet perfected.

For Δ > 0, indeed the histogram shaping is better than for 
Δ = 0, suggesting that we might be able to argue for a par-
ticular tendency. However, how are we to consider results 
drawn from the y∆(x), Δ > 0? Does it have the same tendency 
as that of Δ = 0?

Unfortunately, we cannot say that the tendency is pre-
cisely the same in general. However,we can say that the 
distribu tion of Y∆(x), Δ > 0 presents an average behaviour in 
the neighbourhood of x and an approximate distribution of 
Y(x). In any event, we can consider the tendency at those 
values of x, as they are only for values near the CT, as shown 

Figure 7 Fitting the extended Poisson dist. to YΔ(x). (a) x = 19.8, 20.4, 20.8°C, from top to bottom.
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certain normalized sum of Poisson distributions [20]. 
Therefore, the Poisson distributions can be considered  
to be ‘seeds’ of the heavy-tailed distributions, and it is 
 natural to use Poisson distributions as a model for the 
innovations.

3. In this paper, the available data are only of the 0.1°C step, 
anyway. At least for this discrete data, fitting the Poisson- 
like distribution is not strange; the model fits very well, 
indeed. Rather, we might accept the fitting result and con-
sider why the model fits in such a good manner.

Hypothesis testing for the extended poisson model
In this section, we perform the hypothesis testing for the 

plausibility of Extended Poisson model px(k) fitted to the 
data Y∆(x). Since the hypothesis testing is not the mainstream 
of the paper although it is necessary, readers who are not 
interested in it may skip this section.

1. We use the extended Poisson distribution as an approxi-
mation of a continuous distribution model. The smaller 
the breadth of the classes in the histogram becomes, the 
closer the histogram may approximate a continuous distri-
bution. In fact, it is well known that some discrete-valued 
distributions like Poisson, binomial, etc. approach to a 
continuous normal distribution.

2. As in the Supplementary Material, the histogram of the 
increment set Y(x) or Y∆(x) are of high kurtosis, which 
may be expected to approach to a non-Gaussian distribu-
tion. This corresponds to the fact that the temperature 
 control is based on a nonlinear system and not on a classi-
cal diffusion. This further indicates that the innovation 
sequences Y(x) or Y∆(x) are distributed according to a 
heavy-tailed distribution like stable distributions [19, see 
Chapter 6 and Fig. 6.3]. The stable distribution and other 
heavy-tailed distributions are known to be generated by 

Figure 7 (b) x = 21.5, 22.0, 22.2°C, from top to bottom.



244 Biophysics and Physicobiology Vol. 15

and its estimated frequency as shown above, the KS test con-
siders the statistic

Dn =
Δ sup

z
   | F̂n(z) – F(z)| . (10)

Then, it is shown that √n Dn asymptotically obeys the KS 
distribution given by

L(z) = 1 – 2 
∞
∑
j=1

(–1) j–1e–2j2z2,   z∈R. (11)

The KS test then rejects H0 when √n Dn > c for percentiles c 
of L(z). For example, the 95% and 99% percentiles for large 
values of n are 1.358 and 1.628, respectively [24, p. 70].

Supplementary Table S2 shows the results of the KS test 
for samples 1 to 12. For each sample, we performed the test 
for several values of Δ and for significance levels 5% and 

We use the Kolmogorov-Smirnov (KS) test [21–23], which 
is well-suited for fitting a histogram of real data to a model 
distribution. The KS test measures a discrepancies between 
two empirical cumulative distribution function (CDF). Here 
we take, as one of the CDF, the prospective model CDF i.e. 
the extended Poisson distribution.

We denote the empirical CDF of Y∆(x) as F̂n= F̂n(z), z∈R, 
for data length n, i.e.

 F̂n(z) = 
1
n   

n

∑
j=1

 Ij(z),   Ij(z) = { 1 yj ≤ z,
0 yj > z  for   yj∈Y∆(x)

 (9)
and the CDF of the estimated extended Poisson distribution 
as F(z), respectively.

We take the null hypothesis H0: F̂n~F and the alternative 
hypothesis H1: otherwise. For the frequency of the data Y∆(x) 

Figure 7 (c) x = 22.4, 22.7, 23.0°C, from top to bottom.
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CT, the jumps take positive values towards CT, and above 
CT, the jumps take negative values towards CT. The red line 
in the neighbourhood of CT in the Figure is the model fitted 
using least squares. Also, the figure may suggest that we can 
now determine the CT as the intersection point of this red 
line and η∆ = 0 as well.

While it might be desirable to test the significance of the 
linearity itself, one cannot apply the basic form of the statis-
tical inference for linear regression, because Y(x) or Y∆(x) 
follow a extended Poisson distribution, rather than a normal 
distribution. Even though one might think of applying the 
generalised linear model [5] in which regression errors 
might not necessarily be normal, our extended Poisson 
model is in fact not even the generalized linear model. 
Hence, it is difficult to apply a hypothesis testing for lin-
earity, and we do not consider such testing in this paper. 
Instead, we look at the correlation coefficient Cov[X, η∆] /  
[Var[X]Var[η∆]]1/2 as a measure of goodness of fit to a straight 
line. We thus report our results in this paper from the point of 
view of data analysis.

The correlation coefficient in the above-mentioned linear-
ity takes real values in [–1, 1]. A value closer to –1 or +1 
indicates a better fit. In particular, a value just equal to –1 or 
+1 implies that a straight line fits the data perfectly. In the 
present case, if we take Δ to be somewhat large then the 
 correlation coefficient appears to approach –1. In fact, the 
values are 0.95 – 0.99. This suggests, from data analysis, the 
plausibility of the linearity. The linearity,

η∆(x) = –k(x – x0) (13)

for a constant k > 0 and CT x0, is the same form as the elastic 
force of a spring to return to its original length when it is 
expanded or contracted. The temperature control is done 
based on the principle of a spring (Fuch’s law) in average.

This linearity in the average of the jumps Y∆(x) of the tem-
perature control is captured by the parameters of extended 
Poisson model. That is, the fitted linear model and the 
parameter 0.1[λ1(x) – λ2(x)] in Eq. (7) take mostly very close 
values. See Figures 8 and 9. The estimability itself of η∆(x) 
by 0.1[λ1(x) – λ2(x)] was expected for each x. What is found 
here is the linearity of η∆(x), and the additional plausibility of 
the extended Poisson model: there could be cases such that 
the model happens to appear to be good for for each x, but 
turns out not to be, when it is thought of as a model for all 
x∈X. However our model, proposed for each x, turns out to 
be good for all x∈X, simultaneously as well. Thus, the 
dependence of η∆(x) on x is captured by λ1(x) – λ2(x) as the 
linearity. In addition, this might be a reason for investigating 
Y∆(x) instead of Y(x).

Let us further consider the temperature control mecha-
nism at equilibrium. The control is based on the balancing of 
exothermic reaction and endothermic reaction in pre-equi-
librium in the left half of (3). Let [RH2] be concentration of 
molecules RH2, and let [R] and [H+] be the concentration of 

1%. For all samples, we found that as Δ becomes larger the 
range of x for which H0 is not rejected becomes broader. 
Some samples are ‘good’, meaning that H0 is not rejected for 
most values of x as they stand, i.e. with Δ = 0, whereas other 
samples gain more ‘not rejected’ gradually as Δ increases. 
Anyway, ‘not rejected’ increases with Δ for every sample. 
We increased the Δ until all or most of x become ‘not 
rejected’. For all samples, we take the range of x for which 
the size |Y∆(x)| is more than 30. Sample 5 is a special one that 
has all ‘not rejected’ for Δ = 0. From the Table, we consider 
that our extended Poisson model to be validated as a plausi-
ble candidate of the model for these sample data, for the tem-
peratures around CT.

Finally we mention the inapplicability of the χ2 test. 
Although we wanted to use the χ2 test [22,23] together with 
the KS test, we found it difficult to use. This is because the 
histograms of Y∆(x) basically have high concentricity, i.e. 
they have very small tail probabilities, whereas the number 
of classes k = –5, ..., 5 for the histogram of Y∆(x) itself is 
small, due to the fact that our data have a 0.1°C step preci-
sion, which might not be minute enough. Classes with small 
tail probabilities (around k = –5 or 5), as is suggested in gen-
eral and small expected frequencies (e.g., less than 5) should 
be summed up into a new single class in order to preclude 
inaccuracy in the χ2 test [25]. But this reduces the effective 
number of classes.

Hence, the degree of freedom of the χ2 distribution-which 
is given by (number of effective classes)-1-(number of esti-
mated parameters in model fitting) and must be one or 
 more-ends up being zero in many cases. This defect might 
be overcome if the data precision, which is presently 0.1°C, 
is improved by using a smaller step. We hope for future 
availability of such precise data.

Temperature dependence of equilibrium characteristics 
captured by poisson parameters

Here, we consider the temperature dependence of the (con-
ditional) expectation η(x) =Δ [E[y(t)|X(t) = x]. We are inter-
ested in whether the dependence relationship can be described 
well by the Poisson parameters at least partially.

We first plotted the sample mean of Y(x), x∈T as in Figure 
8 (top). This does not appear to provide us with helpful 
insights into the relationship. Therefore, as in previous sec-
tions, we consider taking the expectation under the ‘average’ 
with Δ. We thus consider

η∆(x) =Δ Ex[Y∆(x)] = E[y(t)| |X(t) – x| ≤ Δ] (12)

for Δ = 0, 0.1, 0.2, .... Especially, when Δ = 0, it reduces to 
η(x). Figure 8 plots the η∆(x): (middle) is Δ = 0.4 and (bot-
tom) is Δ = 0.8.

As seen in the figure, the larger the Δ, the clearer the lin-
earity tendency of η∆(x) over x becomes. In every case, the 
left half of the straight line contains positive values, and the 
right half negative. This corresponds to the fact that below 
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considered to have merits as follows:

● In order for plants that do not have sensors to perceive 
environmental information to perform the appropri-
ate temperature control, the automatic switching of 
 exothermic reaction ⇌ endothermic reaction occurs.

● If a particular amount of energy was consumed for the 
switching itself, a loss of the energy occurs. In an 
intensely cold environment, the plant would prefer to 
use energy mostly for exothermicity itself as far as 
 possible. The above mechanism, which does not have 
additional function modules for the switching, causes 
no loss of energy.

Thus, we may say that the mechanism of switching of the 
exothermic reaction ⇌ endothermic reaction is remarkably 

R and H+, respectively. Then, from chemical reaction kinetics 
[6], we have

d[RH2]
dt  = –k1[RH2] + k′1 [R][H+]2[e–]2,{ d[R]

dt  = k1[RH2] – k′1 [R][H+]2[e–]2. 
(14)

Adding the two equations leads to [RH2] + [R] ≡ const. This 
indicates that the kinetics is such that if the exothermic 
 reaction is exacerbated, then the reverse reaction, i.e. the 
endothermic reaction, is automatically switched to promo-
tion, as on a seesaw. [R] = const. – [RH2] implies that when 
the  exothermicity is exacerbated and hence [RH2] is much 
consumed, or, [RH2] remains small, then [R] becomes large, 
and hence endothermicity promotion begins. This might be 

Figure 8 Linear behaviour of ηΔ(x) in pre-equilibrium. Δ = 0, 0.4 and 1.0, from top to bottom.
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broader than we expected. We anticipated that such a con-
stant region would be just a small neighbourhood of the CT. 
The plant can be considered to be coping with the homother-
mal maintenance by equipping this broad constant region. 
Because the constant region is considered to be exactly the 
homothermal maintenance region, the broad region might be 
a merit for the plant.

A more detailed analysis, such as a quantitative evaluation 
of the constant region or a characterisation of the region 
width of each individual, might be desirable as future work.

Conclusion
In this paper, as a partial study to elucidate the tempera-

ture control mechanism of Skunk Cabbage, we considered 

simple and well constructed.
We have pointed out above that in the pre-equilibrium, the 

‘elastic’ force is a linear function of x on an interval around 
the CT. It is the behaviour of the expectation η∆(x). How 
about the variance? Because [λ1(x) + λ2(x)] essentially rep-
resents the variance as in Eq. (8), we plot the variance of 
Y∆(x), x∈X and its prospective model (0.1)2[λ1(x) + λ2(x)] in 
Figure 10.

In the Figure, we can see that on the linearity region of 
0.1(λ1 – λ2), the variances are mostly constant. In addition, 
the model of variance, (0.1)2[λ1(x) + λ2(x)] show good agree-
ment with the variance. Here as well, the larger the Δ, the 
clearer the tendency of (0.1)2[λ1(x) + λ2(x)] = const. becomes. 
What is observed commonly from these is that for particular 
large values of Δ or greater, the constant region is much 

Figure 9 The larger the Δ becomes, the better the fit of 0.1(λ1 – λ2) to ηΔ(x). Δ = 0, 0.4 and 0.8, from top to bottom (The same sample as Fig. 10).
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investigating the mechanism. We strongly hope that we will 
be able to develop a method to show the theoretical plausi-
bility, i.e. hypothesis testing framework, for the linearity of 
the mean or constancy of variance for this extended Poisson 
distribution.

The data available this time was of 0.1°C steps, enabling 
us to treat the data as if it obeyed a discrete distribution, and 
we considered a extended Poisson distribution on 0.1 × k 
(k∈Z). However, we think that this treatment is only provi-
sional, because if we think of the exothermic or endothermic 
reactions at the molecular level, a huge number of molecules 
(in fact, of the order of Avogadro number) are involved in 
the reactions. That is, a single generation of product of the 

the modelling of the homothermal maintenance in pre- 
equilibrium, through a data analytic study. For a kind of 
averaged increments Y∆(x) for each x, we proposed an 
extended Poisson model. Through hypothesis testing, we 
showed the plausibility of the model. It turned out that the 
temperature dependence of the expectation of Y∆(x) can be 
considered to be linear, and the linearity agrees well with 
0.1[λ1 – λ2]. In addition, the temperature dependence of the 
variance of Y∆(x) can be considered to be a constant with 
unexpectedly broad range. This constant also agrees well 
with the prospective model (0.1)2[λ1 + λ2]. The proposed 
extended Poisson model might thus be not only a good can-
didate for the distribution of each x, but also a good means of 

Figure 10 ηΔ(x) and (0.1)2(λ1 + λ2). (a) (top) sample 12 with Δ = 1.0, (bottom) sample 6 with Δ = 1.2.
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using the extended Poisson model is still an important step, 
because a discrete model can be expected to serve as a par-
ticular case reducible from a continuous model to be devel-
oped in the future.

In addition, we introduced a kind of averaging by Δ in the 
data in order to extract clearer tendencies. We would like to 
make the meaning, plausibility or appropriate magnitude of 
the Δ clearer in the future.

Finally, we would like to proceed to the analysis of the 
nonequiilibrium state, i.e. the latter half of the reactions in 
Eq. (3). To do that, we think we expect to have to elucidate 
the relationship of the extended Poisson model and the 
 ‘elastic’ force, as well as the related dynamical system that 

exothermal or endothermal reactions at one moment causes 
a minute increase or decrease in temperature; the limit of  
the sum of such minute increases or decreases will appear  
as a macroscopic increase or decrease of temperature. In  
the present case, the relevant distribution is not Gaussian. 
Hence, the limit theorem will be a noncentral limit theorem. 
The extended Poisson distribution has a cusp-like peak at the 
origin for small values of the intensities λ1 and λ2. Thus, in 
the female period, there corresponds a singular distribution 
due to the noncentral limit theorem and the critical phenom-
ena. A continuous model might actually be desirable for 
understanding these elements of the mechanism.

Nevertheless, the discrete model treatment in this paper 

Figure 10 (b) (top) sample 10 with Δ = 1.0, (bottom) sample 7 with Δ = 0.6.
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can describe the seesaw from various points of view, such as 
molecular biology, data analysis, phase transition in non-
equilibrium physics and mathematical modelling. Among 
them, the approach from physical point of view as in [26,27] 
may be of a useful clue.

There also are thermogenic plants like Lotus, Dracuncu-
lus vulgaris other than the Skunk Cabbage, that perform the 
control for homothermal maintenance, as reported in [28]. 
However,to the best of our knowledge, mathematical or data 
analyses as in this paper have not been done so far. It is 
desired in the future to clarify if such other plants have a 
similar mechanism characterized by the pre-equilibrium.
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