
viruses

Article

A Conserved Residue, Tyrosine (Y) 84, in H5N1
Influenza A Virus NS1 Regulates IFN Signaling
Responses to Enhance Viral Infection

Ben X. Wang 1,2, Lianhu Wei 1,3,4, Lakshmi P. Kotra 1,3,4, Earl G. Brown 5 and Eleanor N. Fish 1,2,*
1 Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto,

ON M5G 2M1, Canada; ben.wang@mail.utoronto.ca (B.X.W.); william.wei@utoronto.ca (L.W.);
lkotra@uhnresearch.ca (L.P.K.)

2 Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
3 Center for Molecular Design and Preformulations, University Health Network, 101 College Street, Toronto,

ON M5G 1L7, Canada
4 Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto,

144 College Street, Toronto, ON M5S 3M2, Canada
5 Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa,

451 Smyth Road, Ottawa, ON K1H 8M5, Canada; ebrown@uottawa.ca
* Correspondence: en.fish@utoronto.ca; Tel.: +1-416-340-5380

Academic Editor: Andrew Mehle
Received: 9 May 2017; Accepted: 10 May 2017; Published: 12 May 2017

Abstract: The non-structural protein, NS1, is a virulence factor encoded by influenza A viruses (IAVs).
In this report, we provide evidence that the conserved residue, tyrosine (Y) 84, in a conserved putative
SH2-binding domain in A/Duck/Hubei/2004/L-1 [H5N1] NS1 is critical for limiting an interferon
(IFN) response to infection. A phenylalanine (F) substitution of this Y84 residue abolishes
NS1-mediated downregulation of IFN-inducible STAT phosphorylation, and surface IFNAR1
expression. Recombinant IAV (rIAV) [H1N1] expressing A/Grey Heron/Hong Kong/837/2004
[H5N1] NS1-Y84F (rWSN-GH-NS1-Y84F) replicates to lower titers in human lung epithelial cells
and is more susceptible to the antiviral effects of IFN-β treatment compared with rIAV expressing
the intact H5N1 NS1 (rWSN-GH-NS1-wt). Cells infected with rWSN-GH-NS1-Y84F express higher
levels of IFN stimulated genes (ISGs) associated with an antiviral response compared with cells
infected with rWSN-GH-NS1-wt. In mice, intranasal infection with rWSN-GH-NS1-Y84F resulted
in a delay in onset of weight loss, reduced lung pathology, lower lung viral titers and higher ISG
expression, compared with mice infected with rWSN-GH-NS1-wt. IFN-β treatment of mice infected
with rWSN-GH-NS1-Y84F reduced lung viral titers and increased lung ISG expression, but did not
alter viral titers and ISG expression in mice infected with rWSN-GH-NS1-wt. Viewed altogether,
these data suggest that the virulence associated with this conserved Y84 residue in NS1 is, in part,
due to its role in regulating the host IFN response.

Keywords: influenza A viruses; non-structural protein 1; interferon-β; interferon signaling;
interferon-stimulated genes

1. Introduction

H5N1 avian influenza A viruses (IAVs) that infect poultry and migratory birds pose a significant
threat to global health and, since 2003, there have been 858 confirmed cases of H5N1 IAV infection in
humans with a mortality rate of 53% [1]. While annual vaccines are effective in preventing seasonal
IAV infections, they have limited use in the event of an outbreak of a newly emergent strain. Currently,
the neuraminidase inhibitors oseltamivir (Tamiflu) and zanamivir (Relenza) are antivirals available to
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treat IAV infections. However, drug-resistant strains of IAVs, including pandemic H1N1 and H5N1,
have been isolated [2–4].

Given the direct antiviral and immunomodulatory effects of interferons (IFNs)-α/β [5] and the
importance of the innate immune response for limiting viral infection and spread [6], IFNs present
as candidate broad-spectrum antivirals with the potential to act as a first-line treatment for existing
and newly emergent IAV infections [7,8]. In a previous report, we provided evidence for the antiviral
effects of IFN-α in limiting H5N1 and pandemic H1N1 2009 IAV replication in primary human lung
cells [9]. Moreover, mice lacking a functional type I IFN receptor, IFNAR, exhibit significantly more
weight loss and a more rapid time to death when infected with various IAVs including H5N1 and
H1N1 subtypes, compared with mice with an intact IFN system [10,11]. Not surprisingly, IAVs have
evolved mechanisms to evade and disrupt host IFN production, IFN signaling and IFN-inducible
antiviral effector functions [9,12].

The non-structural protein 1 (NS1) is a virulence factor encoded by IAVs and is expressed in the
nucleus and cytoplasm of host cells during the earliest stages of infection [13,14]. Functional as a dimer,
NS1 is comprised of an N-terminal dsRNA-binding domain and a C-terminal protein-binding effector
domain [15–17]. In the context of limiting an IFN response to infection, NS1 inhibits IFN-β production
by preventing the activation of retinoic acid-inducible gene 1 (RIG-I) products [18,19]. In addition,
NS1 can prevent the maturation of host mRNAs, including IFN-α/β mRNAs, by binding to and
inhibiting cleavage and polyadenylation specific factor 4, 30 kDa subunit (CPSF4), and poly(A)-binding
protein II (PABPII) [20,21]. Consequently, IAVs lacking NS1, or expressing truncated forms of NS1,
induce higher levels of IFN-α/β mRNA expression and IFN production, and have been proposed as
live-attenuated vaccines [22–24]. In addition to inhibiting the production of IFNs-α/β, in an earlier
publication we provided indirect evidence that IAVs may also limit IFN signaling, mediated by NS1
disrupting IFN-inducible phosphorylation of signal transducer and activator of transcription (STAT) 1
and STAT2 [9].

The IAV NS1 N-terminal effector domain contains a Src homology (SH)3 and a putative
SH2-binding motif, that are important for direct binding with p85β, the inhibitory subunit of
phosphatidylinositol-3-kinase (PI3K) [25–27]. Binding of NS1 to the internal SH2 (i-SH2) domain
of p85β leads to the activation of the PI3K-protein kinase B (AKT) pathway, to enhance viral replication.
A tyrosine (Y) to phenylalanine (F) substitution at the strictly conserved residue 89 (Y89F) in the H1N1
NS1 putative SH2-binding domain prevented binding of NS1 to p85β, thus abrogating NS1-mediated
AKT phosphorylation [25,26]. Additionally, this Y89F in the NS1 of IAV PR8 reduced virulence in
infected mice [28].

SH2 domains are well-conserved motifs found in many intracellular signaling proteins, such as
those responsible for initiating IFN-α/β signaling pathways [29,30] and may present as targets for
NS1–host protein interactions that affect the host innate immune response to IAV infection. In this
study, we used site-directed mutagenesis to alter the conserved Y84 residue within H5N1 NS1 in order
to characterize its role in limiting the host IFN signaling response. In the context of IAV infection,
we used reverse genetics to generate recombinant IAVs (rIAVs) [H1N1] encoding either a wildtype
or mutant H5N1 NS1 and confirmed the importance of this putative SH2-binding domain for virus
replication, providing evidence for its contribution to evasion of the host IFN response.

2. Materials and Methods

2.1. Cells and Reagents

Human cervical carcinoma HeLa cells, lung adenocarcinoma epithelial A549 cells, embryonic kidney
HEK293T cells, Madin-Darby canine kidney (MDCK) cells, and mouse embryonic fibroblasts (MEFs)
were purchased from ATCC (Manassas, VA, USA). STAT1+/+ and STAT1−/− MEFs were provided by
Dr. Leonidas C. Platanias (Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA). All cells
were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal calf
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serum (FCS), 100 U/mL penicillin, and 100 µg/mL streptomycin (Invitrogen, Waltham, MA, USA) at
37 ◦C and 5% CO2.

Human IFN-β-1a (Avonex, specific activity 1.2 × 107 U/mL), murine IFN-β1 (specific activity
3.6 × 107 U/mL), and an anti-human IFNAR1 antibody (unconjugated, clone AA3) were provided by
Darren P. Baker (BiogenIdec, Cambridge, MA, USA). An anti-human IFNAR2 antibody (unconjugated,
clone MMHAR-2) was purchased from PBL Assay Science (Piscataway, NJ, USA). An anti-mouse IgG
(Alexa Fluor 647, H+L) was purchased from Invitrogen as a secondary antibody. Antibodies specific
for human phospho (p)-AKT (Ser473), AKT, p-STAT1 (Tyr701), STAT1, p-STAT2 (Tyr690), STAT2,
and HA-Tag (6E2) were purchased from Cell Signaling Technology (Danvers, MA, USA). An antibody
specific for human α-tubulin was purchased from Sigma-Aldrich (St. Louis, MO, USA) and horseradish
peroxidase (HRP)-conjugated anti-rabbit IgG and anti-mouse IgG secondary antibodies were purchased
from GE Healthcare Life Sciences (Marlborough, MA, USA). Antibodies specific for mouse CD11b
(BV421, clone M1/70) and CD45 (BV605, clone 30-F11) were purchased from BioLegend (San Diego,
CA, USA). Antibody specific for mouse Ly6G was purchased from eBioscience (San Diego, CA, USA).
Respective isotype control antibodies were purchased from BioLegend and eBioscience.

2.2. Mice

Male C57BL/6 mice, aged 6–8 weeks, were purchased from Taconic (Hudson, NY, USA) and
housed in a pathogen-free environment. All experiments were approved by the Animal Care
Committee of the Toronto General Hospital Research Institute.

2.3. In Silico Modeling

The crystallized structure of A/Puerto Rico/8/1934 [H1N1] NS1 and p85β i-SH2 domain complex
(RCSB Protein Data Bank: 3L4Q) [31] was used to construct a model of avian A/Vietnam/1203/2004
[H5N1] NS1 (RCSB Protein Data Bank: 3F5T) [15] and p85β i-SH2 domain complex using SYBYL-X
(Certara, Princeton, NJ, USA). The NS1 subunit from 3L4Q was removed and replaced with the NS1
subunit from 3F5T. Molecular interactions between 3F5T and the p85β i-SH2 domain subunit of 3L4Q
were visualized.

2.4. Plasmids and Site-Directed Mutagenesis

Plasmid pBudCE4.1 (Invitrogen) co-expressing A/Duck/Hubei/L-1/2004 [H5N1] NS1
complementary DNA (cDNA; HA-tagged) and green fluorescent protein (GFP) was generated
as previously described [9]. Plasmid encoding A/Grey Heron/Hong Kong/837/2004 [H5N1] NS
gene was provided by Dr. Leo L.M. Poon (University of Hong Kong, Hong Kong). Plasmids
(pLLB) [32] encoding the eight A/WSN/33 [H1N1] gene segments (HA, NA, NP, NS, PA, PB1, PB2, M)
were provided by Dr. Earl G. Brown (University of Ottawa, Ottawa, ON, Canada). The A/Grey
Heron/Hong Kong/837/2004 [H5N1] NS gene was cloned into the pLLB plasmid using homologous
recombination as described previously [32]. Site-directed mutagenesis was performed to introduce
a Y84F mutation in pBudCE4.1-NS1-HA-GFP and pLLB-A/Grey Heron/Hong Kong/837/2004
[H5N1]-NS using the QuikChange Site-Directed Mutagenesis Kit and XL1-Blue supercompetent cells
purchased from Agilent Technologies (Santa Clara, CA, USA) following the manufacturer’s protocol.
Complimentary oligonucleotide primers (forward 5′GCCGGCTTCACGCTTCCTAACTGACATGAC3′,
reverse 5′GTCATGTCAGTTAGGAAGCG TGAAGCCGGC3′) containing the desired Y84F mutation were
synthesized by ACGT Corporation (Toronto, ON, Canada). The resulting pBudCE4.1-NS1-Y84F-HA-GFP
plasmid and pLLB-A/Grey Heron/Hong Kong/837/2004 [H5N1] NS-Y84F gene were sequenced by
ACGT Corporation to confirm the Y84F mutation.

2.5. Transfections

HeLa cells were seeded in 6-well plates at 2 × 105 cells/well in 2 mL 10% FCS DMEM and
incubated at 37 ◦C in 5% CO2 for 24 hours (h). Cells were transfected with 1.25 µg/well of
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pBudCE4.1-GFP (vector), pBudCE4.1-NS1-HA-GFP (NS1-wt), or pBudCE4.1-NS1-Y84F-HA-GFP
(NS1-Y84F) using Lipofectamine™ LTX Reagent (Invitrogen) following the manufacturer’s protocol
and as previously described [9].

2.6. Western Immunoblots

Transfected HeLa cells were either left untreated or treated with 1 × 103 U/mL IFN-β-1a for
15 minutes (min) at 37 ◦C. Cells were lysed on ice using lysis buffer containing 1% Triton X-100,
0.5% NP-40, 150 mM NaCl, 10 mM Tris [pH 7.4], 1 mM EDTA, 1 mM EGTA, 0.2 mM Na3VO4, 0.2 mM
PMSF, 10 µg/mL Aprotinin, 2 µg/mL Pepstatin A, and 1 mM Na4P2O7. An amount of 25 µg of each
sample lysate was used for Western immunoblots. Sample lysates were denatured in 5× sample
reducing buffer and resolved by SDS-PAGE. Proteins were transferred onto a nitrocellulose membrane
and blocked with 5% BSA TBS-0.1% Tween-20 (TBS-T) for 1 h at room temperature. Membranes were
probed with primary antibodies at a 1:1000 dilution in TBS-T overnight at 4 ◦C and secondary antibodies
at a 1:10,000 dilution in TBS-T for 1 h at room temperature. Immunoblots were developed and proteins
were visualized using SuperSignal West Pico Chemiluminescent Substrate Kit (Thermo Scientific,
Waltham, MA, USA) following the manufacturer’s protocol. Band intensities were quantitated by
densitometry using ImageJ software (National Institutes of Health, Bethesda, MD, USA).

2.7. Reverse Genetics

The 5 × 105 HEK293T cells were transfected using Lipofectamine 2000 (Invitrogen) following the
manufacturer’s protocol. Twenty-four hours before transfection, HEK293T cells were seeded in 6-well
plates coated with poly-D-lysine (Sigma-Aldrich). An amount of 1 µg of each pLLB plasmid encoding
one of the A/WSN/33 [H1N1] gene segments (HA, NA, NP, NS, PA, PB1, PB2, M) was transfected into
the HEK293T cells to generate wildtype rA/WSN/33 virus as previously described [33]. pLLB-A/Grey
Heron/Hong Kong/837/2004 [H5N1] NS and pLLB-A/Grey Heron/Hong Kong/837/2004 [H5N1]
NS-Y84F were used in place of pLLB-A/WSN/33 [H1N1] NS to generate rWSN-GH-NS1-wt and
rWSN-GH-NS1-Y84F respectively. Sixteen hours post-transfection, medium was replaced with 0%
FCS DMEM containing 1 µg/mL tosyl phenylalanyl chloromethyl ketone (TPCK)-treated trypsin
(Sigma-Aldrich). Forty-eight hours post-transfection, medium containing viral progeny was overlayed
onto a monolayer of MDCK cells for 72 h. Viral yield was determined by plaque assay.

2.8. Virus Infection

2.8.1. In Vitro

The 2 × 105 A549 cells, STAT1+/+ and STAT1−/− MEFs were seeded in 24-well plates for 24 h and
then washed twice with phosphate buffer solution (PBS) and infected in triplicate with each of the
rA/WSN/33 viruses at a multiplicity of infection (MOI) of 0.01 in the presence of 0.5 µg/mL (MEFs)
or 1 µg/mL (A549) TPCK-treated trypsin. Medium was collected at the indicated times post-infection
and viral titers were determined by plaque assay in MDCK cells.

2.8.2. In Vivo

C57BL/6 mice 8–10 weeks of age were anesthetized by intraperitoneal injection with ketamine
(Ketalean, Bimeda, Cambridge, ON, Canada) and xylazine (Rompun, Bayer, Mississauga, ON, Canada),
and infected intranasally with 1 × 105 plaque-forming units (PFU) of rA/WSN/33-GH-NS1-wt,
or rA/WSN/33-GH-NS1-Y84F diluted in 50 µL of PBS. Infected mice were monitored daily for
weight-loss and sacrificed by cervical dislocation on days 1 and 3 post-infection. Lungs from infected
mice (n = 5) were harvested, weighed, and stored at −80 ◦C. The lungs were then thawed and
mechanically homogenized on ice in 500 µL of serum-free DMEM containing 1 µg/mL TPCK-treated
trypsin. The homogenized lung tissues were centrifuged at 12,000× g and the supernatants were used
to determine lung viral titers by plaque assay.



Viruses 2017, 9, 107 5 of 21

Lungs were also harvested for flow cytometry analysis of neutrophil infiltration (n = 5).
Lungs were perfused by slowly injecting 10 mL of PBS into the right ventricle of the heart. The lungs
were mashed and incubated at 37 ◦C for 30 min in the presence of 1 mM CaCl2, 1.8 mM MgCl2,
1 mg/mL collagenase D (Roche, Penzberg, Germany) and 1 mg/mL DNase I (Thermo Scientific).
Isolated cells were passed through a 70 µm cell strainer to obtain a single-cell suspension and red
blood cells were lysed using ammonium-chloride-potassium (ACK) lysing buffer (150 mM NH4Cl,
10 mM KHCO3, and 0.1 mM Na2EDTA) for 5 min on ice. Cells were counted using a hemocytometer.
Additional lungs were harvested on days 1 (wt, n = 5; Y84F, n = 4) and 3 (wt, n = 5; Y84F, n = 3)
post-infection for histology. Lungs were placed into embedding cassettes and fixed using 4%
formalin-PBS (Sigma-Aldrich) and stored at 4 ◦C.

2.8.3. IFN-β Treatment In Vivo

Infected C57BL/6 mice were treated with 1× PBS or 1 × 105 U of murine IFN-β1 diluted in
1× PBS by intraperitoneal injection at 8 h post-infection.

2.9. Plaque Assay

The 5 × 105 MDCK cells were seeded in 6-well plates for 24 h until they formed an 80% confluent
monolayer. Samples containing rIAVs were serially diluted in serum-free DMEM containing 1 µg/mL
TPCK-trypsin. MDCK cells were washed twice with PBS and infected with 800 µL of the serially diluted
rIAVs. Infected MDCK cells were incubated at 37 ◦C for 1 h to allow virus adsorption. An amount of
2 mL of 0.65% agarose diluted in serum-free DMEM in the presence of 1 µg/mL TPCK-trypsin was then
overlaid onto the infected MDCK cells. MDCK cells were incubated at 37 ◦C for 72 h, then fixed using
a 3:1 methanol:acetic acid solution. Plaques were enumerated to determine the viral titer, recorded as
the number of PFU/mL of medium or PFU/g of lung tissue.

2.10. RNA Extraction and cDNA Synthesis

RNA was extracted and purified from infected A549 cells and the homogenized lung tissues
of infected mice using the RNeasy Mini Kit (Qiagen, Venlo, The Netherlands), according to the
manufacturer’s protocol. cDNAs were synthesized using 0.5 µg/sample of RNA, random primers,
and M-MLV reverse transcriptase (Invitrogen), following the manufacturer’s protocol. cDNAs were
also synthesized from 1 µg of RNA purified from uninfected A549 cells and MEFs treated for 16 h with
1 × 103 U/mL of human IFN-β-1a and 1 × 103 U/mL of murine IFN-β1, respectively.

2.11. qPCR

Quantitative polymerase chain reaction (qPCR) was performed using the LightCycler FastStart
DNA Master SYBR Green PLUS I kit (Roche) and a LightCycler (Roche), following the manufacturer’s
protocol as described previously [34]. Primers for target IFN stimulated genes (ISGs; Table 1)
were synthesized by ACGT Corporation. Standard curves for each gene were generated using
cDNAs from uninfected A549 cells and MEFs treated with 1 × 103 U/mL of human IFN-β-1a and
1 × 103 U/mL of murine IFN-β1, respectively. qPCR data were analyzed using LightCycler Data
Analysis Software (Roche).
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Table 1. List of human (h), mouse (m) and influenza A virus (IAV) qPCR primers used in this study.

Gene Forward Primer (5′-3′) Reverse Primer (5′-3′)

(h) HPRT1 TCCTCCTCTGCTCCGCCACC TCACTAATCACGACGCCAGGGCT
(h) MxA GATGATCAAAGGGATGTGGC AGCTCGGCAACAGACTCTTC

(h) EIF2AK2 ACTTGGCCAAATCCACCTG CCCAGATTTGACCTTCCTGA
(m) HPRT1 CATAACCTGGTTCATCATCGC TCCTCCTCAGACCGCTTTT
(m) ISG15 CCCCAGCATCTTCACCTTTA TGACTGTGAGAGCAAGCAGC
(m) OAS1 AGTTCTCCTCCACCTGCTCA GGCTGTGGTACCCATGTTTT

(m) EIF2AK2 CTGTTGCAAGGCCAAAGTCT GAACAAATCGTGACCGGAGT
(m) IFNA4 TATGTCCTCACAGCCAGCAG TTCTGCAATGACCTCCATCA
(m) IFNB1 CCCAGTGCTGGAGAAATTGT CCCTATGGAGATGACGGAGA
(m) CXCL1 TCTCCGTTCCTTGGGGACAC CCACACTCAAGAATGGTCGC
(m) CXCL2 TCCAGGTCAGTTAGCCTTGC CGGTCAAAAAGTTTGCCTTG

(IAV) M AGATGAGTCTTCTAACCGAGGTCG TGCAAAAACATCTTCAAGTCTCTG

qPCR: quantitative polymerase chain reaction; CXCL: C-X-C motif chemokine ligand; EIF2AK2: eukaryotic
translation initiation factor 2 alpha kinase 2; HPRT: hypoxanthine-guanine phosphoribosyltransferase; IFN:
interferon; ISG: IFN stimulated gene; M: matrix; MxA: myxovirus resistance 1; OAS: 2′-5′-oligoadenylate synthetase.

2.12. IFN-β ELISA

IFN-β production in the lungs of rIAV-infected C57BL/6 mice and by rIAV-infected A549
cells was quantified using the Legend Max ELISA kit (BioLegend) and the Verikine IFN-β
enzyme-linked immunosorbent assay (ELISA) kit (PBL Assay Science), respectively, following the
manufacturers’ protocols. Culture medium and homogenized lung supernatants—diluted with 500 µL
DMEM—containing viral progeny, were stored at −80 ◦C prior to use.

2.13. FACS Analysis of IFNAR1 and IFNAR2 Expression

Twenty-four hours post-transfection, HeLa cells were harvested using Versene (Gibco, Waltham,
MA, USA). Cells were washed with fluorescence-activated cell sorting (FACS) buffer (2% FCS in
PBS) and resuspended in 200 µL of FACS buffer containing anti-human IFNAR1 or anti-human
IFNAR2 at a 1:100 dilution for 45 min on ice. Cells were then washed three times and resuspended
in 200 µL of FACS buffer containing anti-mouse IgG (Alexa Fluor 647) at a 1:100 dilution
for 30 min on ice. Untransfected and transfected HeLa cells incubated with anti-mouse IgG
(Alexa Fluor 647) alone were used as controls. Flow cytometry was performed using a FACSCalibur
(BD Biosciences, San Jose, CA, USA) and data were analyzed using FlowJo software (FlowJo, Ashland,
OR, USA). Cells were gated based on GFP expression.

2.14. Histology and Identification of Lung Neutrophils

Harvested lungs were embedded in paraffin and 5 µm thin sections containing multiple lobes
were mounted onto slides and stained with hematoxylin and eosin (H&E). Sections were scanned using
an Aperio ScanScope XT slide scanner (Leica Biosystems, Wetzlar, Germany) at 20×magnification and
images were analyzed using Aperio ImageScope software (Leica Biosystems).

Single cell suspensions were prepared from lung aspirates and cells were blocked with mouse
serum (Sigma-Aldrich) for 15 min on ice prior to staining. The 5 × 105 cells/sample were stained with
antibodies specific for mouse CD45, CD11b and Ly6G, or the appropriate isotype control antibodies
for 45 min on ice. Compensations were conducted using anti-rat/hamster Ig, κ beads (BD Biosciences)
and isotype control antibodies. Flow cytometry was performed using a LSR II (BD Biosciences) and
data were analyzed using FlowJo software (FlowJo).

2.15. Statistical Analyses

An unpaired Student’s t-test was used to analyze differences among groups. A paired Student’s
t-test was used to analyze differences among groups where n represents the same treatment from
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three independent experiments. p-values < 0.05 were considered statistically significant (* p < 0.05,
** p < 0.01, and *** p < 0.001).

3. Results

3.1. A Y84F Mutation in the H5N1 NS1 Conserved Putative SH2-Binding Domain Affects the Ability for NS1
to Upregulate AKT Phosphorylation

In an earlier publication, we provided evidence that cells expressing the A/Duck/Hubei/2004/L-1
[H5N1] NS1 are less responsive to the antiviral effects of IFN, exhibiting reduced IFN-inducible STAT1,
STAT2 and STAT3 phosphorylation, thereby affecting the downstream events associated with STAT
activation [9]. We have extended our studies to investigate the mechanism(s) whereby NS1 invokes
these effects. Phosphorylation-independent binding of H1N1 NS1 to the p85β subunit of PI3K results in
the phosphorylation of AKT, mediated by the catalytic activity of the p110 subunit, thereby enhancing
viral replication [25,26]. This NS1-p85β binding has been ascribed to an SH2-binding domain in NS1,
since a tyrosine to phenylalanine mutation at residue 89 (Y89F), within this domain, abrogated NS1
binding to host cell p85β and reduced IAV replication [25,26,28]. Notably, a number of IFN-inducible
signaling effectors have SH2 domains, including STATs, from which we infer that a similar mechanism
of NS1 binding to host transcription factors or signaling effectors may reduce IFN-inducible responses.

The A/Duck/Hubei/L-1/2004 (H5N1) NS1 is evolutionarily distinct from both A/Puerto
Rico/8/34 [H1N1] and A/WSN/33 [H1N1] NS1 proteins, and contains a five amino acid deletion at
residues 80–84. Due to these differences in the NS1 amino acid sequences, we generated an in silico
model of the H5N1 NS1-p85β i-SH2 interaction, using published crystallized structures of an H1N1
NS1 and p85β i-SH2 complex (PDB: 3L4Q, green) [31] and an H5N1 NS1 (A/Vietnam/1203/2004)
containing the same five amino acid deletion (PDB: 3F5T, red) [15] (Figure 1A). This in silico model
shows that residue Y84 in the H5N1 NS1 putative SH2-binding domain may interact via hydrogen
bonding with residue D569 in the p85β i-SH2 domain and that a Y84F substitution eliminates this
interaction (Figure 1B).

Figure 1. In silico modeling of the Y84F (tyrosine to phenylalanine) mutation in the putative Src
homology 2 (SH2)-binding domain of A/Duck/Hubei/L-1/2004 [H5N1] non-structural protein 1 (NS1).
(A) Ribbon diagrams of the A/Vietnam/1203/2004 [H5N1] H5N1 NS1 (PDB: 3F5T) and p85β complex,
based on a crystallized structure of the H1N1 NS1 and p85β internal SH2 (i-SH2) domain complex
(PDB: 3L4Q). (B) Ribbon diagrams showing the effect of the Y84F mutation on NS1-p85β binding.
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Accordingly, we used site-directed mutagenesis to introduce the Y84F mutation within the
conserved H5N1 NS1 putative SH2-binding domain, to examine its contribution to NS1-mediated
down-regulation of IFN-inducible STAT phosphorylation and IAV virulence. In a first series of
experiments, we examined the effects of expression of the wildtype NS1 (NS1-wt) or Y84F mutation
(NS1-Y84F) in HeLa cells on AKT phosphorylation, a signaling effector downstream of PI3K.
The objective was to demonstrate that, in contrast to NS1-wt, which is known to induce AKT
phosphorylation, NS1-Y84F would fail to increase AKT phosphorylation. As anticipated, the results
in Figure 2 reveal that 24 h post-transfection, cells expressing NS1-wt exhibit a 1.5-fold increase
(significant p < 0.01) in AKT phosphorylation compared with cells expressing NS1-Y84F.

Figure 2. H5N1 NS1-Y84F is unable to upregulate protein kinase B (AKT) phosphorylation. HeLa cells
were transfected with vector alone, vector carrying the NS1-wt complementary DNA (cDNA) (�),
or NS1-Y84F cDNA (�). 24 hours (h) post-transfection, cells were lysed and lysates were resolved
by SDS-PAGE and immunoblotted with an anti-phospho (p)-AKT (Ser473) antibody. The blot was
then stripped and re-probed with an antibody against AKT. A separate aliquot of the same cell lysate
was resolved by SDS-PAGE and immunoblotted with antibodies against HA (NS1) and α-tubulin.
Band intensities were quantitated and the relative induction in p-AKT was determined, normalizing
to AKT. Data are presented as the mean +/− standard error (SE) and are representative of three
independent experiments. ** p < 0.01.

3.2. A Y84F Mutation Abrogates NS1-Mediated Inhibition of Type I IFN Signaling

Next, we performed a series of experiments to examine the effects of the Y84F mutation on the
ability of NS1 to regulate the type I IFN signaling response. As mentioned, we have shown that
H5N1 NS1 expression in HeLa cells inhibits IFN-inducible STAT1 and STAT2 phosphorylation [9].
Here, we show that the levels of IFN-inducible STAT1 and STAT2 phosphorylation are unaffected
in cells expressing the mutant NS1-Y84F, compared with a reduction in cells expressing NS1-wt
(Figure 3). Having demonstrated that expression of NS1-wt reduces cell surface IFNAR1 expression [9],
we likewise examined whether the NS1-Y84F mutant would affect IFNAR1 cell surface expression.
The data in Figure 4 reveal that in contrast to NS1-wt expression, which reduces IFNAR1 but
not IFNAR2 expression, NS1-Y84F expression has no effect on IFNAR1 or IFNAR2 expression.
The reduction in surface IFNAR1 expression in cells transfected with NS1-wt is similar in magnitude
to the reduction observed in cells which have been treated with IFN-β (data not shown).



Viruses 2017, 9, 107 9 of 21

Figure 3. The Y84F mutation abrogates H5N1 NS1-mediated inhibition of interferon (IFN)-inducible
signal transducer and activator of transcription (STAT) phosphorylation. HeLa cells were transfected with
vector alone, or vector carrying the NS1-wt cDNA (�), or NS1-Y84F cDNA (�). 24 h post-transfection,
cells were either left untreated or treated with 1000 U/mL of IFN-β for 15 minutes (min). Cells were
lysed, lysates resolved by SDS-PAGE and immunoblotted with antibodies against p-STAT (Tyr701),
p-STAT2 (Tyr690), or HA (NS1). Blots were then stripped and re-probed with antibodies against STAT1
or STAT2. Band intensities were quantitated and the relative induction in p-STAT1 and p-STAT2 was
determined, normalizing to STAT1 and STAT2, respectively. Data are presented as the mean +/− SE and
are representative of three independent experiments.

Figure 4. NS1-Y84F does not affect IFN-α/β receptor subunit (IFNAR) 1 expression. HeLa cells were
transfected with vector alone (
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3.3. Effects of the Conserved Putative SH2-Binding Domain in NS1 on Virus Replication

To further examine the importance of this Y84 residue within the putative SH2-binding
domain in H5N1 NS1, we generated rIAVs expressing either the H5N1 NS1-wt or NS1-Y84F:
rWSN-GH-NS1-wt and rWSN-GH-NS1-Y84F, respectively. Time course studies in A549 human
lung epithelial cells revealed that rWSN-GH-NS1-wt grows to approximately 100-fold higher titers
than rWSN-GH-NS1-Y84F (Figure 5A). For both rIAVs, viral titers increase up to 36 h post-infection,
then decline at 48 h. These data support earlier published data [28] that the conserved putative
SH2-binding domain of H1N1 NS1 is important for IAV replication in vitro. In addition, A549 cells
infected with rWSN-GH-NS1-Y84F produced approximately 1.7-fold and 2.6-fold more IFN-β than
cells infected with rWSN-GH-NS1-wt.

Figure 5. The Y84F mutation inhibits recombinant IAV (rIAV) [H1N1] replication and enhances IFN-β
production in human A549 lung epithelial cells. (A) A549 cells were infected with rWSN-GH-NS1-wt
(#) or rWSN-GH-NS1-Y84F ( ) at a multiplicity of infection (MOI) of 0.01. Culture supernatants from
rWSN-GH-NS1-wt (�) or rWSN-GH-NS1-Y84F (�) infected cells were collected at 6, 12, 24, 36, and 48 h
post-infection and viral titers were determined by plaque assay in Madin-Darby canine kidney (MDCK)
cells. (B) IFN-β levels were measured in the culture supernatants collected at 12 and 24 h post-infection
by enzyme-linked immunosorbent assay (ELISA). Data are presented as the mean +/− SE and are
representative of three (titration) and two (ELISA) independent experiments. * p < 0.05, ** p < 0.01,
and *** p < 0.001.

Next, we conducted a series of experiments to investigate whether, as we had observed for
HeLa cells expressing NS1-wt or NS1-Y84F, an intact putative SH2-binding domain influences
the response to IFN-β treatment. Specifically, A549 cells were infected with rWSN-GH-NS1-wt
or rWSN-GH-NS1-Y84F at a MOI of 0.01 for 12 h, and then treated with varying doses of IFN-β.
This 12 h time point post-infection was selected to allow for NS1-wt or NS1-Y84F to be expressed in
infected cells, yet early enough in the infection to preclude profound differences in viral titers. IFN-β
treatment of uninfected A549 cells resulted in the expected increases in gene expression for the ISGs
EIF2AK2 (Figure 6A) and MxA (Figure 6B), both implicated in mediating antiviral activity. At 12 h
post-IFN-β-treatment, EIF2AK2 (Figure 6A) and MxA (Figure 6B) were induced in cells infected with
rWSN-GH-NS1-Y84F, whereas cells infected with rWSN-GH-NS1-wt exhibited no ISG induction.

In subsequent experiments, we examined viral replication in IFN-β treated and rIAV infected
A549 cells 36 h after IFN-β treatment, i.e., 48 h post-infection. This time point was chosen to best
represent the outcome of ISG induction on IAV replication. Following IFN-β treatment, we observed
a greater reduction in M gene expression in A549 cells infected with rWSN-GH-NS1-Y84F, compared to
cells infected with rWSN-GH-NS1-wt (Figure 6C). Our measurements of virus in culture supernatants
revealed that IFN-β treatment for 36 h reduced viral titers in a dose-dependent manner, albeit to
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a greater extent in the cells infected with rWSN-GH-NS1-Y84F: 1000 U/mL of IFN-β reduced the viral
titer of rWSN-GH-NS1-wt by 1-log (17-fold), in comparison to 50 U/mL of IFN-β that reduced the titer
of rWSN-GH-NS1-Y84F by 1-log (40-fold; Figure 6D). Notably, IFN-β doses of 100 and 1000 U/mL
reduced viral titers in rWSN-GH-NS1-Y84F infected A549s to <10 PFU/mL.

Figure 6. The Y84F mutation confers greater sensitivity to the antiviral effects of IFN-β. A549 cells
were left uninfected (
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To determine whether pre-treatment of cells with IFN-β would override the inhibitory effects of
NS1-wt, we treated A549s cells with increasing doses of IFN-β 16 h prior to infection with the rIAVs
(i.e., to eliminate the inhibitory effects of NS1 by generating IFN-inducible antiviral responses that would
precede infection). The results in Figure 7 show a greater than 1-log fold reduction in viral titers at
24 (Figure 7A) and 48 (Figure 7B) h post-infection, when cells are pre-treated with different doses of
IFN-β, for both rIAVs, in comparison to untreated cells that are more susceptible to viral replication
following infection with the rIAV expressing NS1-wt. Notably, pre-treatment of A549 cells with 10 U/mL
of IFN-β prior to infection with rWSN-GH-NS1-wt was sufficient to reduce the viral titers at 24 and 48 h
by 1-log fold.
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Figure 7. IFN-β pre-treatment inhibits rIAV replication. A549 cells were either left untreated or
treated with 50, 100, or 1000 U/mL of IFN-β for 16 h and then infected with rWSN-GH-NS1-wt (�) or
rWSN-GH-NS1-Y84F (�) at a MOI of 0.01. Culture supernatants were collected at (A) 24 and (B) 48 h
post-infection (40 and 64 h post-IFN-β treatment, respectively) and viral titers were determined by
plaque assay in MDCK cells. Data are presented as the mean +/− SE and are representative of two
independent experiments. ND ~not detected.

In subsequent experiments, we infected STAT1+/+ and STAT1−/− MEFs with the rIAVs to further
determine whether the differences in viral replication that we observed between rWSN-GH-NS1-wt
and rWSN-GH-NS1-Y84F were due primarily to effects of NS1 on the IFN-α/β response. STAT1−/−

mice and STAT1−/− MEFs are unable to respond to IFN-α/β [35,36]. In STAT1+/+ MEFs, viral titers
increased by approximately 2.6-fold for rWSN-GH-NS1-wt between 6 and 36 h post-infection, whereas
a marginal 1.5-fold increase in viral titers was observed for rWSN-GH-NS1-Y84F. In contrast, both
rIAVs replicated in STAT1−/− MEFs with rWSN-GH-NS1-wt and rWSN-GH-NS1-Y84F viral titers
increasing by approximately 7.6- and 10.9-fold, respectively (Figure 8).

Figure 8. rWSN-GH-NS1-wt and rWSN-GH-NS1-Y84F replicate to higher titers in STAT1−/− mouse
embryonic fibroblasts (MEFs) in comparison to STAT1+/+ MEFs. STAT1+/+ and STAT1−/− MEFs
were infected with rWSN-GH-NS1-wt (#) or rWSN-GH-NS1-Y84F ( ) at a MOI of 0.01. Culture
supernatants were collected at 6, 12, 24, 36 and 48 h post-infection and viral titers were determined by
plaque assay in MDCK cells. Data are presented as the mean +/− SE and are representative of two
independent experiments.
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3.4. The Conserved Putative SH2-Binding Domain in NS1 Contributes to IAV Virulence In Vivo, Affecting the
IFN Response

In a final series of experiments, we examined the effects of the conserved putative SH2-binding
domain in NS1 on IAV virulence in vivo, in the context of the IFN response. Studies were conducted in
C57BL/6 mice to compare the infectivity of rWSN-GH-NS1-wt with rWSN-GH-NS1-Y84F, following
intranasal inoculation. Initial readouts for infectivity were weight loss and lung viral loads on days
1 and 3 post-infection.

C57BL/6 mice received an intranasal inoculation of 1 × 105 PFU of either the rIAV expressing the
NS1-wt or the rIAV expressing the NS1-Y84F. Weight loss and lung ISG expression were recorded on
days 1 and 3 post-infection (Figure 9). Mice infected with virus expressing the mutant NS1-Y84F lost
less than 5% of their starting body weight by day 3 post-infection, whereas mice infected with virus
expressing the NS1-wt lost greater than 10% of their starting body weight over the same time period
(Figure 9A). Furthermore, mice infected with virus expressing NS1-wt had higher lung viral titers than
mice infected with virus expressing NS1-Y84F on days 1 and 3 post-infection (Figure 9B).

Figure 9. Mice infected with rIAV expressing the Y84F mutant NS1 experience delayed weight-loss and lower
lung viral titers on day 1 and day 3 post-infection. C57BL/6 mice were infected with 1× 105 plaque-forming
units (PFU) of rWSN-GH-NS1-wt (#) or rWSN-GH-NS1-Y84F ( ) by intranasal inoculation. (A) Weight-loss
was monitored up to day 3 post-infection. Mice were euthanized on days 1 and 3 post-infection and (B) lung
viral titers were determined by plaque assay in MDCK cells and (C) IFN-β production in the lungs was
determined by ELISA. (D) RNA was purified from the lung tissues of rIAV-infected mice on days 1 and
3 post-infection and cDNA was synthesized. qPCR was performed to determine the relative expression
of murine ISG15, EIF2AK2, OAS1, IFNA4, and IFNB1, normalized to HPRT1 and lung viral titer. Data are
representative of three independent experiments. * p < 0.05, ** p < 0.01, and *** p < 0.001.
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Viral titers increased for both rIAVs expressing NS1-wt and NS1-Y84F between days 1 and 3
post-infection. To investigate whether the IFN response contributed to these differences in lung viral titers,
IFN-β production and ISG expression were examined in the lungs of mice on days 1 and 3 post-infection.
In comparison to rWSN-GH-NS1-wt infected mice, we show that IFN-β production is elevated in the
lungs of rWSN-GH-NS1-Y84F infected mice on both days 1 and 3 post-infection (Figure 9C). Lung ISG
expression, which included expression levels for IFN-α4 and IFN-β, was considered a measure of the
IFN response to infection. We observed approximately 0.5 to 1-log fold greater expression of ISG15,
EIF2AK2, OAS1, IFNA4, and IFNB1 in the lungs of rWSN-GH-NS1-Y84F infected mice on days 1 and 3
post-infection compared with the lungs of rWSN-GH-NS1-wt infected mice (Figure 9D).

Lung histology and H&E staining revealed more cell infiltrates in the lungs of rWSN-GH-NS1-wt
infected mice compared with mice infected with rWSN-GH-NS1-Y84F (Figure 10A). Flow cytometry
analysis of lung infiltrates on day 1 post-infection showed that there were of the order of 1-log fold
more neutrophils (CD45+, CD11b+, Ly6G+) in the lungs of rWSN-GH-NS1-wt infected mice compared
with the lungs from mice infected with rWSN-GH-NS1-Y84F (Figure 10B). Consistent with greater
neutrophil numbers, mice infected with virus expressing NS1-wt exhibited 7.5-fold and 15-fold greater
CXCL1 and CXCL2 gene expression, respectively, in their lungs compared with mice infected with
virus expressing NS1-Y84F on day 1 post-infection (Figure 10C). CXCL1 and CXCL2 are the major
chemoattractants responsible for recruiting neutrophils.

Figure 10. Mice infected with rIAV expressing the Y84F mutant NS1 experience reduced lung pathology
and neutrophil infiltration early in infection. C57BL/6 mice were infected with 1 × 105 PFU of
rWSN-GH-NS1-wt (#) or rWSN-GH-NS1-Y84F ( ) by intranasal inoculation. (A) Lungs were harvested
on days 1 and 3 post-infection and processed to prepare thin tissue sections (5 µm) for H&E staining.
Black bar = 200 µm. (B) Lungs were harvested on day 1 post-infection and perfused with PBS. Lung
tissues were mashed mechanically and ammonium-chloride-potassium (ACK) lysis was performed
to remove red blood cells. Neutrophils were quantified by flow cytometry with antibodies targeting
CD45, CD11b, and Ly6G. (C) Lungs were harvested on day 1 post-infection, RNA was extracted, and
cDNA synthesized. qPCR was performed to determine the relative expression of murine CXCL1 and
CXCL2, normalized to HPRT1. Data are representative of two independent experiments. ** p < 0.01.
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To examine the potential differential effects of IFN treatment on viral replication following
infection with the different recombinant viruses, mice were infected with virus expressing the NS1-wt
or virus expressing the NS1-Y84F mutant and at 8 h post-infection mice were treated with a single dose
of 1× 105 U of murine IFN-β1. While IFN-β treatment did not alter the lung viral titers of mice infected
with rWSN-GH-NS1-wt, we observed a marginal reduction in the lung viral titers of mice infected with
rWSN-GH-NS1-Y84F on days 1 and 3 post-infection (Figure 11A). Additionally, we observed increases
in the expression of EIF2AK2 (24-fold), OAS1 (10-fold), IFNA4 (10-fold) and IFNB1 (10-fold) in the
lungs of rWSN-GH-NS1-Y84F infected mice treated with IFN-β on day 1 post-infection compared
with the lungs of infected, but untreated mice (Figure 11B). In contrast, there was no difference in the
relative expression of these ISGs in the lungs of mice infected with rWSN-GH-NS1-wt, with or without
IFN-β treatment.

Figure 11. Mice infected with rIAV expressing the Y84F mutant NS1 are more sensitive to the
antiviral effects of IFN-β. C57BL/6 mice were infected with 1 × 105 PFU of rWSN-GH-NS1-wt
(#) or rWSN-GH-NS1-Y84F ( ) by intranasal inoculation and injected by the intraperitoneal route with
PBS or 1× 105 U of murine IFN-β1 at 8 h post-infection. (A) Lung viral titers were determined on day 1
and 3 post-infection by plaque assay in MDCK cells. On day 1 post-infection, one of the five mice in the
Y84F-infected and IFN-treated cohort, did not have a detectable lung viral titer (titer < 101 PFU/mL).
(B) RNA was purified from the lung tissues of rIAV infected and PBS or murine IFN-β1 treated mice
on days 1 and 3 post-infection. cDNA was synthesized and qPCR was performed to determine the
relative expression of murine EIF2AK2, OAS1, IFNA4, and IFNB1, normalized to HPRT1 and lung viral
titer. Data are representative of two independent experiments. ** p < 0.01, and *** p < 0.001.

4. Discussion

Viruses have evolved to encode non-structural proteins in their genomes that interact with
host factors to enable viral replication. Moreover, there is accumulating evidence for virus–host
protein–protein interactions mediated by SH2 binding: binding of IAV NS1 to the i-SH2 domain
of p85β to activate PI3K signaling to enhance viral replication [25,26]; the Nef protein of human
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immunodeficiency virus (HIV)-1 is critical for high titer viral replication and its function is dependent
on interactions with the Src family kinase, Hck, stabilized by SH2 binding interactions [37];
the Epstein–Barr virus latency-associated membrane protein, LMP2A, interacts with the signaling
scaffold, Shb, mediated by SH2 domain interactions to activate AKT [38]; in silico studies have
suggested a molecular model for STAT3 and STAT6 SH2 interactions with the g2-Herpesvirus saimiri
Tip protein [39].

Notably, many of the virulence factors encoded by viruses target an IFN response, specifically
by binding to and inhibiting the activities of STATs, thereby preventing the induction of an antiviral
state. Binding of the measles virus P protein to the SH2 domain of STAT1 limits an IFN response
to infection [40]. Other examples include the Nipah virus V, P, and W proteins [41], Sendai virus
C protein [42], and hepatitis C virus (HCV) core protein [43,44]. Furthermore, binding of these viral
proteins to the host protein SH2-binding domain is often tyrosine phosphorylation-independent,
e.g., HIV-1 Nef protein and hepatitis C virus core protein SH2-binding interactions. Our earlier studies
revealed that expression of avian H5N1 NS1 in HeLa cells led to a block in IFN signaling [9]. H5N1 NS1
reduced IFN-inducible tyrosine phosphorylation of STAT1, STAT2 and STAT3 and inhibited the nuclear
translocation of phospho-STAT2 and the formation of IFN-inducible STAT1:STAT1-, STAT1:STAT3- and
STAT3:STAT3-DNA complexes. We attributed the inhibition of IFN-inducible STAT signaling by
NS1 in HeLa cells to be a consequence, in part, of NS1-mediated inhibition of expression of the IFN
receptor subunit, IFNAR1. In support of this NS1-mediated inhibition, we observed a reduction
in expression of IFNAR1 in ex vivo human non-tumor lung tissues infected with H5N1 and H1N1
viruses. Indeed, studies by Zurney et al. [45] comparing cardiotropic reovirus infection of cardiac
myocytes and cardiac fibroblasts identified a correlation between greater surface expression of IFNAR1
in cardiac fibroblasts and greater IFN-inducible STAT phosphorylation and induction of ISGs resulting
in reduced infectivity [45].

Herein, we have extended our earlier studies to interrogate the mechanism of NS1-mediated
inhibition of the IFN response we observed. Given the evidence for viral protein binding to SH2
domains in host proteins, and cognizant of the strictly conserved putative SH2-binding domain in NS1
contributing to IAV virulence, we focused our studies on this domain. Both A/Duck/Hubei/L-1/2004
and A/Grey Heron/Hong Kong/837/2004 H5N1 NS1 SH2-binding domains contain a conserved
tyrosine residue at position 84. Highly pathogenic H5N1 IAVs that emerged after the year 2000 have
a five amino acid deletion in the linker region between the NS1 dsRNA-binding domain and the
protein-binding effector domain, where the conserved tyrosine residue has shifted from position 89 to
84 [15,46]. This five amino acid deletion has been shown to increase the virulence of H5N1 IAVs [46],
and based on our current studies, residue Y84 in the H5N1 NS1 putative SH2-binding domain is
still important for the activation of AKT, similar to H1N1 NS1 proteins, which contain the conserved
tyrosine residue at position 89 [25,26,28]. Our results suggest that host AKT-activation mediated by the
NS1 putative SH2-binding domain is well conserved, highlighting its critical role in IAV replication.
Indeed, close scrutiny of the adaptive mutations in H5N1 NS1 associated with increased virulence
or host switching to mouse reveals that the putative SH2-binding domain and, more specifically the
conserved tyrosine residue within this domain, is intact [47,48].

Beyond AKT activation, we show that the conserved putative SH2-binding domain in H5N1 NS1
influences the virulence of IAVs, specifically by limiting an IFN-induced antiviral response. Our data
suggest that the inhibitory effects of this putative SH2-binding domain are associated with inhibition of
IFN-induced STAT phosphorylation and subsequent ISG expression. Specifically, we provide evidence
that, in contrast to cells expressing the intact NS1, cells expressing NS1 with a single Y84F mutation in
this conserved putative SH2-binding domain are able to respond fully to IFN treatment in terms of
STAT phosphorylation. It is noteworthy that our measure of IFN responsiveness, phosphorylation of
STATs, occurs rapidly, within 15 min of IFN treatment. Additionally, cells expressing the Y84F mutant
NS1 revert to normal IFNAR1 cell surface expression. We infer from these expression studies that
the Y84 residue within NS1 is important for modulating host STAT phosphorylation and IFNAR1
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expression, but further studies are required to determine the mechanism and whether NS1 induced
PI3K activation may be involved in the observed phenotype. Moreover, studies to determine if
NS1-mediated inhibition of IFN signaling is conserved in seasonal IAV strains, which do not encode
a deletion in the linker region, may also be warranted.

These in vitro data provided the basis for generating recombinant H1N1 viruses
(A/WSN/33 [H1N1]) encoding either the intact (rWSN-GH-NS1-wt) or Y84F mutant H5N1 NS1
(rWSN-GH-NS1-Y84F). In vitro, we showed that the virus expressing the intact H5N1 NS1 replicates
to a greater extent in human lung epithelial cells than the virus expressing the SH2-binding domain
mutant of NS1, which induced higher levels of IFN-β production. Indeed, IFNs-α/β are induced
by IFN signaling in a positive feedback loop. In addition, cells infected with the recombinant virus
expressing the mutant NS1 responded to IFN-β treatment with greater levels of ISG expression than
cells infected with the virus expressing intact NS1, yet to a lesser extent than uninfected and IFN-β
treated cells, in support of virus inhibiting the IFN response and that this is partially mediated by
residue Y84 within the putative SH2-binding domain of NS1. The ISGs selected were based on their
known antiviral properties: EIF2AK2 encodes protein kinase RNA-activated (PKR), a host antiviral
effector that inhibits cellular translation [49,50]. OAS1 encodes 2′-5′-oligoadenylate synthetase 1,
which activates RNase L in the presence of IAV viral RNA, resulting in viral and cellular RNA
degradation [51]. In line with previous IAV replication studies performed in STAT1+/+ and STAT1−/−

MEFs [36], both rWSN-GH-NS1-wt and rWSN-GH-NS1-Y84F replicated poorly in STAT1+/+ MEFs
in comparison to STAT1−/− MEFs, thereby further highlighting a potential role for residue Y84 of
NS1 in regulating the type I IFN response, and the importance of the host IFN response for limiting
viral replication.

Extending these infection studies in vivo, we confirmed that the recombinant H1N1 virus
expressing the H5N1 NS1 i-SH2-binding mutant replicated to lower levels than the virus expressing
the intact NS1, the mice exhibiting a less severe course of disease, in terms of lung pathology and
extent of lung infiltrating neutrophils. Gene expression levels for CXCL1 and CXCL2 were higher in
the lungs of mice infected with the virus expressing intact NS1, consistent with their role in recruiting
neutrophils. In the context of an IAV infection, neutrophils have been shown to play a role in lung
tissue damage and increasing the severity of infection [52,53]. In addition, the IFN response to infection,
in terms of IFN-β production and transcriptional induction of ISGs—including genes for IFN-α and
IFN-β—were more extensive in the lungs of the mice infected with the virus expressing the mutant
NS1 than in the lungs of the mice expressing the intact NS1. There is evidence also that CXCL1 and
CXCL2, are down-regulated by IFN [54,55]. We speculate that the stronger IFN response in the mice
infected with the virus expressing the mutant NS1 contributed to the reduced lung viral replication
and less severe lung pathology. This is supported by our findings when mice were treated with IFN-β.
Mice infected with virus expressing the mutant NS1 responded to IFN treatment with a more robust
transcriptional induction of ISGs than mice infected with the virus expressing an intact NS1 on day 1
post-infection. This was reflected in the modest reduction in lung viral titers in IFN-β-treated mice
infected with virus encoding the Y84F mutant NS1, which was not observed in mice infected with
virus expressing an intact NS1.

These studies highlight the importance of an IFN response to the control of IAV infections and
the potential for IFN treatment to be considered when there are outbreaks of highly virulent IAV
strains. Additionally, these studies suggest that targeting the conserved tyrosine residue in the putative
SH2-binding domain in IAV NS1 may be a therapeutic strategy in the absence of available vaccines.
In ongoing studies, we are identifying additional host protein-binding partners that interact with
and/or that are affected by Y84 within the NS1 putative SH2-binding domain in the context of
an IFN response.
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5. Conclusions

Our studies support a role for the strictly conserved residue, Y84, in a putative SH2-binding
domain in H5N1 NS1 in inhibiting the host IFN antiviral response. Specifically, using rIAVs expressing
a wildtype NS1 or NS1 encoding a Y84F mutation, we show in vitro and in vivo that targeting the
conserved tyrosine residue inhibits virus replication and confers greater sensitivity to the antiviral
effects of IFN.
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