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Abstract

wo common diseases worldwidely which are both derived from
Diabetes mellitus and pancreatic ductal adenocarcinoma are t
different components of pancreas. The pancreatic and duodenal homeobox-1 (PDX1) is an essential transcription factor for the early
development of pancreas that is required for the differentiation of all pancreatic cell lineages. Current evidence suggests an important
role of PDX1 in both the origin and progression of pancreatic diseases. In this review, we discussed recent studies of PDX1 in
diabetes mellitus and pancreatic cancer, and the therapeutic strategies derived from this transcription factor.
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Introduction and the intervening endoderm of the presumptive

duodenum.[3] Null mutation of this gene prevents the

exocrine and endocrine glands. Diabetes mellitus (“diabe-
The pancreas is a glandular organ that has both exocrine
and endocrine functions and is located in the abdominal
cavity behind the stomach. Around 90% of the pancreas is
an exocrine gland consisting of acinar and ductal cells,
whose primary role is nutrient digestion. The rest of the
pancreas is its endocrine part, scattered throughout the
organ, and possessing the islets of Langerhans as its
functional units. Instead of secreting digestive enzymes into
the digestive tract, the islets are responsible for regulating
glucose homeostasis by releasing hormones into the blood
stream.

The pancreatic and duodenal homeobox-1 (PDX1) gene
is located at the chromosomal locus 13q12.1.[1] The
protein encoded by this gene can transcriptionally
activate several genes, such as insulin, glucokinase
(GK), somatostatin, and islet amyloid polypeptide
(IAPP), which are all essential for regulating glucose
metabolism. It is also an essential transcription factor
(TF) for pancreas development, which is required for the
differentiation of all pancreatic cell lineages [Fig-
ure 1].[2-5] In mouse embryos, PDX1 is first detected
at embryonic day 8.5 (E8.5) in the dorsal endoderm of
the gut while it is still an open tube, and later at E9.5, its
expression marks the dorsal and ventral pancreatic buds
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pancreatic bud from expanding, resulting in extreme
hyperglycemia and perinatal death.[2,3,6] In adults, PDX1
is maintained at high levels in beta cells, where it is
required for efficient insulin gene transcription, [7-9] but
its low expression in exocrine cells has not been
thoroughly investigated.[3,10]

Disorders that afflict the pancreas can occur in both the
tes”) is the most common disease associated with the
endocrine pancreas, closely related to both genetic and
environmental factors. Pancreatitis is an inflammation in
the exocrine gland but can secondarily affect endocrine
pancreas survival and function. Another notorious disease
of the exocrine pancreas is pancreatic ductal adenocarci-
noma (PDA), the most common form of pancreatic cancer,
which is the fourth leading cause of cancer-related
mortality in the United States.[11,12] Further, diabetes is
a predisposing factor of PDA; hence, they act as cause and
effect, respectively. This review summarizes the current
findings of the involvement of PDX1 in pancreatic diseases,
with emphasis on diabetes and PDA, and discusses how
PDX1 could assist the pursuit of therapeutics for the
treatment of these diseases.
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PDX1 and diabetes mellitus insulin –– the only hormone capable of lowering high blood
glucose level. The function of b cells is controlled at the

Figure 1: Lineage decisions during pancreas development. Transcription factors such as PDX1, Ptf1a, and Ngn3 regulate the series of events during the development of the pancreas,
leading to the transition of progenitor cells (foregut endoderm) into fully differentiated cells (a cells, b cells, duct cells, acinar cells). And the gallbladder cells and bile duct cells arise from
PDX1-expressing foregut endoderm cells in early embryo. PDX1 in blue print marks its low expression in duct cells and acinar cells. E8.5: Embryonic day 8.5; E9.5: Embryonic day 9.5; PDX1:
Pancreatic and duodenal homeobox-1; Ptf1a: Pancreas associated transcription factor 1a; Ngn3: Neurogenin-3; SOX9: SRY-box 9.
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Diabetes mellitus is a complex metabolic disorder whose
main clinical and diagnostic feature is hyperglycemia,
along with the progressive loss or dysfunction of the b cells
in the pancreas.[13,14] It has reached epidemic proportions,
affecting around 425 million people worldwide (as
estimated in 2017). China has the highest number of
adults with diabetes, approximately 109.6million, ranking
second in diabetes-related health expenditure among the
world, followed by the United States.[15] Thus, efficient
control of this disease is needed to both alleviate the
patient’s pain and ease the burden placed on healthcare.

There are four main types of diabetes: type 1 diabetes
(T1D), type 2 diabetes (T2D), gestational diabetes, and
maturity-onset diabetes of the young. Out of these, the
most common forms of diabetes are T1D and T2D. T1D is
a metabolic disorder caused by autoimmune-mediated
destruction of pancreatic b cells, leading to a complete or
near-total loss of the hormone insulin.[16] Whereas, the
pathogenesis of T2D begins with lifestyle-induced insulin
resistance, which gradually increases the demand on b cells
to secrete insulin, resulting in the failure of b cells to deliver
sufficient amount of insulin.[17,18] When considered
together, the main reasons behind diabetes is loss of b
cell mass, function, and identity.[19]
PDX1 maintains b cell mass, function, and identity

45
The major treatment methods for diabetes are focused
on the pancreatic b cells, since they are the central players in
glycemic homeostasis, due to their ability to produce
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transcriptional level, in which PDX1 plays an important
role. PDX1 regulates a number of genes involved in
maintaining the identity and function of b cells, such as
insulin, IAPP (amylin), GK, and glucose transporter 2.[20]

Avrahami et al[21] summarized the DNA methylation
patterns observed in b cells during diabetes progression,
and found that major methylation regulations occurred in
functional genes including PDX1, which further empha-
sized its importance in this disease. Moreover, the
inactivation of insulin promoter Cre (cyclization recombi-
nation enzyme) recombinase, which utilizes PDX1, leads to
pancreatic agenesis. In addition, the heterozygous PDX1
mutant showed elevated blood glucose level at birth and
decreased b cell mass later, indicating that PDX1 levels
influence not only b cell function, but also their mass.[22]

Furthermore, Gao et al[23] generated rat insulin promoter-
CreER; PDX1fl/fl; ROSAYFP mice to specifically knock-
down PDX1 in adult b cells. They found that PDX1
deletion mice displayed overt diabetes, while heterozygous
ones who still carried one allele of PDX1 exhibited a
normal basal glucose level and normal glucose tolerance
rates. It suggests that mature b cells could live without
PDX1 existence, and changes in glucose tolerance were not
due to the incomplete insufficiency of PDX1. The complete
removal of PDX1 led to a transcriptional shift in the
insulin-positive cell population to an a-like cell phenotype,
attributed to the binding of PDX1 to glucagon and MAF
BZIP transcription factor B, two a cell-specific gene
targets, resulting in their repression. However, this a-like
phenotype was not stable; after 30 days, the proportion of
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cells expressing glucagon decreased from 35% to less than
15%, indicating that losing PDX1 alone is not enough for

the differentiation and function of mature b cells.
Additionally, they proved that the molecular programs
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the shift, but more mechanisms are involved in the cell
maintenance.

In humans, PDX1 expression is detected around E28 of
embryonic development.[24] Similar to rodents, humans
with homozygous mutations in the PDX1 gene were born
with pancreatic agenesis. These individuals had permanent
neonatal diabetes, with exocrine pancreas insufficiency. A
case in 2019 reported an (Persian) 65-day-old Iranian
patient with PDX1 homozygous mutation was diagnosed
with neonatal diabetes.[25] Additionally, their parents,
possessing heterozygous PDX1 mutations, had high
susceptibility to diabetes with diagnosis reported as early
as 2.5 years old.[26] Later, Guo et al[28] found the levels
of PDX1 and a few other key islet-enriched TFs were
dramatically reduced in human T2D islet b cells.[27] The
Kyoto Encyclopedia of Genes and Genomes database also
shows that PDX1 is highly disordered and inactivated in
human T2D islets b cells and mouse models of T2D.

In summary, PDX1 is not only an essential TF for adult b
cell survival, but also a “master factor” in regulating genes
that maintain b cell function and identity, closely related to
the progress of diabetes. Knowing more about the
epigenetic mechanisms of PDX1 in b cells could provide
a valuable approach for the treatment of diabetes.

PDX1 is essential in b cell reprogramming
46
At present, exogenous insulin and ancillary drugs are the
major treatments for diabetes. But the burden on patients,
with constant treatment and disease monitoring, leads us
to pursue alternate therapies. Themost definitive treatment
for the disease is allogeneic pancreas/islet transplantation,
which provides a self-regulating insulin source.[29] How-
ever, like any organ transplantations, all the recipients
need to receive immunosuppressive drug therapy to
prevent rejection after operations, which increases the
risk of infection and certain types of cancer. In addition, 5-
year follow-up data revealed that only a minority of the
recipients still maintained insulin independence[30]; though
more than half of them were free from exogenous insulin
after 1 year from the operation. Therefore, the limitations
of pancreatic islet transplantation lead researchers to
investigate autologous insulin-producing cells for b cell
replacement therapy.

Potentially, the two general approaches to generate b cell
replacement are the differentiation of pluripotent stem cells
(PSCs)[31-35] and the reprogramming of adult cells from
endoderm-derived tissues.[36-39] To produce functional
andmature b cells for cell-replacement therapy of diabetes,
Wang et al[40] used PDX1 and H3K27AC chromatin
immunoprecipitation (ChIP-seq) to further study PDX1
target genes. They produced a novel induced pluripotent
stem cell (iPSC) line with human pancreatic progenitors
(PPs), and compared the PDX1 binding profiles obtained
from them. They found that PDX1 regions include
important pancreatic TFs, such as PDX1 itself, regulatory
factor X6, hepatocyte nuclear factor 1 homeobox B, and
Meis homeobox 1, which were activated and required for
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that the PDX1 target sites activated were changed during
the developmental stage. Recent studies in developing b
cells differentiation protocols have shown that human
PSCs (hPSCs)-derived b-like cells are functionally imma-
ture, and the efficiencies of differentiation can be variable
depending on the hPSC lines used. Wang et al[41] derived a
Pdx1-monomeric red fluorescent protein/insulin-humanized
renilla reniformis green fluorescent protein (Pdx1-mRFP/
insulin-hrGFP) dual-reporter cell line fromMRC5-iPSCs and
monitored the expression of PDX1 and insulin, to provide
a better method for the development and refinement of b
cell differentiation protocols from hPSCs. Though signifi-
cant progress has beenmade in the differentiation of hPSCs
to mature b cells, in clinical applications the practicality
of this is hampered by the risk of teratoma formation,
immunogenicity, and epigenetic abnormalities.[42,43]

Thus, due to the important role of PDX1 in pancreatic
fate, studies have attempted to use ectopic PDX1 to
reprogram “permissive” tissues and assorted cell lines into
functional b cells.[44]

Pancreatic a and b cells are closely lineage-related cells.
When ablating b cells, large fractions of regenerated b cells
are derived from a cells, which implies that the two types
of cells might be easily transformed into one another.
However, exogenous PDX1 in glucagon (Gcg)-positive
embryonic or adult a cells could suppress Gcg expression
but did not induce a/b switching. On the contrary, the
neurogenin-3 (Ngn3)-positive endocrine progenitor cells
enforced by PDX1 readily transformed to cells indistin-
guishable from normal b cells, suggesting that the
plausibility of exogenous PDX1 alone inducing b cells
depends on differentiation evaluation stage of endocrine
maturation. Finally, transgenic mice were generated to
express both PDX1 and MAF BZIP transcription factor A
(MafA) in embryonic endocrine Ngn3-positive and
committed glucagon-positive progenitors, and data
showed that MafA could potentiate the ability of PDX1
in both Ngn3-positive and glucagon-positive progenitor
reprogramming activities.[19]

In fact, multiple other adult cell types have been
reprogrammed to undergo same the same fate as b cells.
Among them, one promising attempt is to convert
the antral stomach cells into functional insulin-secreting
cells by expressing the hallmark pancreatic endocrine
TFsPDX1, Ngn3, and MafA (NPM). Previously, the
transformation of intestine cells to insulin-positive cells by
providing NPM factors has been reported.[45,46] However,
this results in incomplete b cells conversion, due to
blocking of the intestine-specific caudal type homeobox 2
gene. In comparison, antral stomach endocrine cells and b
cells have closer transcriptional similarity, and antral
stomach endocrine cells have been proven to reprogram
more effectively under NPM condition, with steady
expression of key b cell genes and substantially improved
glucose responsiveness. Besides, based on the published
protocols of bioengineering stomach, researchers embed-
ded insulin-positive cells into “stomach mini-organ” and
transplanted it into diabetes mice. This bioengineering
technique proved to be effective, regulating blood glucose
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by resealing insulin directly into the circulation.[47] With
this approach, patients might get long-term treatment with

name from its histological similarity with ductal structures.
However, studies reveal that ductal cells are actually
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fewer side effects. Furthermore, besides NPM, paired box
4 was introduced by Zhang et al[48] as another TF that
synergistically acts to promote functional b cells transfor-
mation process, which may better serve for further
investigation.

Murine gallbladder can be another choice for b cell
replacement. It is a dispensable organ easily acquired by
invasive laparoscopic procedure without serious sequelae.
Also, it shows close developmental proximity to b cells –
they are both derived from pancreatobiliary progenitors.
Grompe et al[49] found that overexpressing NPM factors in
mouse gallbladder cells in vitro led to limited amount of
insulin production and immature cell types. Moreover, the
reprogrammed cells did not display glucose-responsiveness.
But when they improved the protocol by adding paired box
6 (Pax6), another key TF for pancreatic endocrine
progenitors, the reprogramming was seen to become more
efficient in increasing not only b-like cells numbers, but also
insulin expression. This second-generation reprogrammed
b-like cells (rGBC2) could synthesize, process, and secret
insulin in response to glucose stimulation, and survived for
at least 5 months in vivo.[39] Later, the team combined
adenoviral-mediated transduction of NPM factors and
Pax6 with small molecule-dependent transdifferentiation
into the human GBCs and achieved insulin-producing
pancreatic b-like cells which could be transiently engrafted
in immunodeficient mice.[50]

If future studies can uncover how to apply patient-derived
GBCs to the patients themselves, it will essentially solve the
problems raised by reprogramming PSCs mentioned
above. However, other complications related to the
reliability and robustness of the reprogrammed GBCs,
the risk of transducing TFs like PDX1 into individuals,
and the efficiency of reprogramming will need to be further
evaluated.

Utilizing human cells for the treatment of diseases is not an
unfamiliar concept. Hematopoietic stem cell transplanta-
tion for treating hematologic malignancies is a successful
and well-developed medical procedure. Prevalent focus is
still on multifunctional cells, such as PSCs and mesenchy-
mal stromal cells. If different types of mature cells derived
from the same progenitors can be successfully reprog-
rammed into each other, under stable and well-functioning
conditions, it may provide us more resources for the
development of improved therapeutic approaches.

PDX1 and PDA
47
PDA accounts for >85% of all pancreatic cancers and is
one of the most lethal malignancies worldwide. Despite
immense progress in the diagnosis and treatment of
pancreatic cancer, its 5-year overall survival is only 8.2%
in the United States.[51] Kirsten rat sarcoma gene (KRAS)
mutations are found in >90% of PDA patients, and are
required for tumor initiation and maintenance.[52] Studies
have shown that mouse models with oncogenic KRAS
throughout the pancreatic parenchyma mimic the human
PDA progression to maximum extent.[53-55] PDA got its
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refractory to oncogenic transformation. On the contrary,
acinar cells can easily form acinar-to-ductal metaplasia
(ADM), the PDA precursor lesions with ductal features,
indicating the cellular origin of PDA.[56]

PDX1 in pancreatic injury and ADM formation
During the development of the pancreas, PDX1 and other
TFs regulate the cascade of events which leads the transition
of progenitor cells into fully differentiated cells. For instance,
the increased expression of SRY-box 9 and PDX1 in PPs
induces the differentiation into pancreatic lineages, at the
same time inhibiting the formation of intestinal and hepatic
lineages. Later, the TFs required for the active maintenance
of adult acinar cell differentiation, such as pancreas
associated transcription factor 1a (Ptf1a) and nuclear
receptor subfamily 5 group a member 2 (Nr5a2), are
maintained at high levels but the expression of PDX1
conversely becomes low.However, PDX1 is found to be up-
regulated in ADM induced by the constitutive overexpres-
sion of transforming growth factor alpha (TGFa).[57]

Likewise, the abnormally increased expression of PDX1 is
also detected in mouse PDA models with mutant KRAS.

In effect, elevated PDX1 expression in adult exocrine
pancreas has been observed in many pathological
conditions, including pancreatic injury and pancreatitis.
Cerulean is a cholecystokinin analog that stimulates
transient ADM in wild-type pancreatitis. Studies have
reported abnormally high PDX1 expression in non-islet
pancreas, after pancreatectomy or cerulean treatment.[58]

Well-differentiated cells tend to dedifferentiate to an earlier
stage when they get injured, so that they have more
potential to recover from the impairment. Since all
pancreatic lineages come from PDX1-positive progenitors,
the elevation of it is reasonable in these damages. In
addition, when the wild-type and PDX1 ablation pancreas
(Ptf1aCreERTM/+; PDX1f/f) are treated with cerulean, the
wild-type cells recovered from the stimulation around 7
days later, but acinar cells with null PDX1 displayed severe
reduction in the pancreas-to-body-mass ratio and did not
recover, indicating that ADM derived from acinar cells
requires PDX1 for regenerating the damaged organ.[59]

However, PDX1 overexpression in exocrine precursors
marked dysmorphogenesis in the exocrine pancreas.[60]

Additionally, its overexpression in benign HEK293 cells
and human pancreatic duct epithelial cells results in
increased cell proliferation, invasion, and colony forma-
tion in vitro.[61] Collectively, PDX1 takes the responsibility
to maintain and re-establish acinar differentiation when
damage happens to the pancreas. Its expression needs to be
tightly controlled to properly maintain adult acinar tissue
functionality.

In accordance with injury, PDX1 deficiency in KRAS-
induced PDAmouse model (KrasLSL�G12D/+; Ptf1aCreERTM/+;
PDX1f/f) displays a widespread loss of acinar cells,
accompanied by extensive formation of ductal lesions. This
is due to erosion of acinar differentiation, rather than
its expansion through increased cell proliferation, based
on 5-bromo-2-deoxyuridine incorporation. Genome-wide
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transcriptome profiling on those animals showed that genes
related to the mature acinar cell state, such as amylase alpha

dynamic shift of PDX1 explains its multi-functionality
in tumorigenesis, but detailed analysis about this process is

Chinese Medical Journal 2020;133(3) www.cmj.org
2B (Amy2b), carboxypeptidase A1, carboxypeptidase B1,
carboxyl ester lipase, and chymotrypsin like elastase 2a
(Cela2a), were down-regulated in PDX1-negative acinar
cells, explaining the extensive erosion of acinar cells.[59]

Overall, these data explain how PDX1maintains acinar cells
identity, and its important function in tissue regeneration and
ADM formation.

Multiple roles of PDX1 in tumorigenesis
1. Brooke NM, Garcia-Fernandez J, Holland PW. The ParaHox gene
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Unlike the role of PDX1 in diabetes, this master gene
behaves differently at different tumor stages. PDX1
function as a tumor suppressor in maintaining acinar cell
identity and preventing ADM formation. Whereas, further
data shows that knocking down PDX1 in mouse PDA-
derived cell lines can block cell growth and increase
apoptosis, which is consistent with human PDA cell
lines,[61] and this is not affected by the different malignant
cell origins.[62] Hence, PDX1 changes its role from tumor
suppressor to oncogene during the process of tumorige-
nicity.

Interestingly, recent next-generation sequencing analysis
has revealed that PDA is a mixture of four different sub-
types with distinct histopathological features and progno-
sis.[63,64] Among them, the PDX1 promoter is highly
methylated in the worst sub-type, the squamous one,
indicating epigenetic silencing of PDX1. The squamous
sub-type displays higher metastatic potential compared to
others, which is the reason PDA patients usually die from
distant metastasis. Considering this, later studies suggest
that epithelial cells need to reduce PDX1 expression to
undergo the epithelial-to-mesenchymal transition (EMT)
process, where epithelial cells lose their epithelial marks to
undergo easier dissemination into a vascular or lymphatic
system, thereby enhancing metastasis. Furthermore,
Kondratyeva et al[65] proposed the possibility of PDX1
delivering into this aggressive PDAC cells to stop cancer
metastasis. Thus, in this stage, PDX1 reduction appears to
enhance tumor aggressiveness, hence increasing PDX1
levels may be a novel method for gene therapy.[66]

According to PDX1 ChIP-seq (chromatin immunoprecipi-
tation combined with high-throughput sequencing) done
on primary mouse acinar cells and mouse PDA-derived cell
lines, there is minimal overlap of PDX1 binding regions
between acinar and PDA cells, indicating the shift of gene
sets that PDX1 regulates in primary and transformed cells.
Further investigation shows that in acinar cells, PDX1
interacts with genes maintaining acinar differentiation
state (Cela1, Cela2, and Amy1), embryonic development,
and epithelial cell differentiation (Nr5a2, FoxA2, and
Onecut1). On the contrary, in tumor cells, PDX1 binds to
genes important for tumorigenesis, including EMT and
cellular response to TGFb signal. Its enrichment of
different regions affects active transcription of associated
genes, which is also thoroughly proved in the RNA-seq
data. PDX1 tends to bind acinar-specifying genome
regions in acinar cells (Hnf4a, Nkx6.1, Hnf1a, and
Hnf1b), but binds to the motifs of oncogenic TFs in PDA
cells (Gsc2, Prrx2, Stat5, c-Jun, and c-Fos).[59] The
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needed to further elucidate how PDX1 regulates tumor
formation by changing targets.

As for the role of PDX1 in metastasis, it is hard to give an
accurate explanation. A hypothesis is that tumor cells use
mechanisms to compensate for PDX1 loss. Due to the fact
that MYC is up-regulated in PDX1-absent PDA cells,[63]

and well-differentiated tumors are PDX1-high and MYC-
low, while undifferentiated invasive tumors areMYC-high
and PDX1-low, the MYC regulatory network becomes a
potential candidate.[59] However, more evidence and a
deeper understanding about this replacement mechanism
are needed.

Tons of discovered cancer genes are classified into
oncogenes or tumor suppressor genes, according to their
function in a cancer cell. However, PDX1 sheds light on
another group of genes whose characteristics rely on the
genetic network, in context of the whole genome. The
multi-functionality of those “chameleons” may elucidate
the mechanisms of tumor initiation and progression,
highlighting the reasons of chemotherapy failure.

PDX1 is also closely associated with other pancreatic
diseases, such as insulinoma, a rare tumor derived from
islet b cells within the pancreas. The incidence of this
disease is approximately 3 to 4 per 1,000,000 in general
population.[61] These patients suffer from uncontrolled
hypoglycemia due to the expanded b cell mass continues to
secret insulin. Studies have found that PDX1 is significant-
ly overexpressed in human insulinoma specimens, as well
as in mouse insulinoma cell lines. Further, using RNA
interference therapy to knock down PDX1 exhibits
decrease in insulin expression and secretion; this may be
harnessed as a novel therapeutic strategy in alleviating the
patient’s pain in the future.

Summary
In summary, knowing how PDX1, as an essential TF in
pancreas, functions in pancreatic diseases could give us
important insights into the epigenetic mechanisms of
disease occurrence and development, and also provide a
chance to develop new therapeutic strategies.
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