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Abstract
The scent gland secretion of an undetermined species of Prionostemma from Costa Rica was analyzed by gas chromatog-
raphy–mass spectrometry and shown to consist of medium-chain carboxylic acids (mainly octanoic acid) and a ß-hydroxy-
carboxylic acid, eventually identified as myrmicacin (= (R)-3-hydroxydecanoic acid). While scent gland secretions in har-
vestmen have traditionally been considered to be products of de novo synthesis, we here provide evidence for the unusual 
case of sequestration-derived scent gland constituents: at least myrmicacin appears to be sequestered from leaf-cutter ants 
that constitute a part of the prey of the Prionostemma-species herein investigated. This is the first report on the scent gland 
chemistry of the sclerosomatid subfamily Gagrellinae as well as on a possible sequestration mechanism in harvestmen.
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Introduction

The arachnid order Opiliones (harvestmen) is character-
ized by unique prosomal exocrine glands. These so-called 
scent glands or repugnatorial glands have been recognized 
as organs for defense against predators (Martens 1978; 
Gnaspini and Hara 2007) but may serve additional functions 
in microbial protection and intraspecific communication 
(Holmberg 1986; Machado et al. 2002; Schaider and Raspot-
nig 2009). Scent gland exudates are chemically megadiverse 
and taxon-specific, comprising naphthoquinones and methyl 
ketones in the Cyphophthalmi; benzoquinones, phenolics 
and alkaloids in the Laniatores; and benzo- and naphtho-
quinones along with an array of open-chain compounds in 
the Palpatores (= Eupnoi and Dyspnoi) (Wiemer et al. 1978; 
Ekpa et al. 1985; Raspotnig 2012; Raspotnig et al. 2014, 
2015a, 2017).

Recent attempts to link all these compound groups within 
a consistent biosynthetic framework more and more paint a 

logical chemosystematic picture of harvestmen chemistry 
that reflects the evolutionary history of secretion chemistry 
from ancient harvestmen over million years of diversification 
to the richness of chemical classes and compounds in extant 
taxa. While recent studies focused on the evolution and taxo-
nomic distribution of phenolics and quinones (e.g., Raspot-
nig et al. 2015b, 2017), the evolutionary history of other 
chemical classes of harvestmen scent glands has remained 
unclear. For instance, open-chain compounds, such as vari-
ous methyl- and ethyl-ketones, vinyl-ketones, alcohols and 
aldehydes, represent predominant classes in the glands of 
Cyphophthalmi (e.g., Raspotnig et al. 2005), some Lania-
tores (e.g., Wouters et al. 2013), and many Palpatores (e.g., 
Ekpa et al. 1985). Yet, it is not clear (i) which and how many 
subclasses of open-chain compounds exist, (ii) how these are 
distributed across harvestmen taxa, (iii) whether different 
open-chain compounds share a common evolutionary origin, 
and (iv) how different open-chain compounds of various taxa 
may be biosynthetically linked.

One family of the Eupnoi, the Sclerosomatidae, is of par-
ticular interest as it possibly represents a lineage producing 
exclusively acyclic secretions (“sclerosomatid compounds” 
sensu Raspotnig 2012). So far, sclerosomatid gland chem-
istry has been shown to constitute a distinct class of related 
open-chain compounds, with 4,6-dimethyl-branched ethyl-
ketones representing the leading structures (e.g., Meinwald 
et al. 1971; Jones et al. 1976, 1977).
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Available data, however, are highly biased and rely on a 
limited number of closely related species of North American 
leiobunines of genera Leiobunum and Hadrobunus (Ekpa 
et al. 1985). The Sclerosomatidae, however, is a large family 
of about 1300 extant species in four subfamilies, Leiobuni-
nae, Sclerosomatinae, Gagrellinae, and Gyinae (Kury 2013). 
The latter subfamily, Gyinae, is considered misplaced in 
sclerosomatids and was classed with Phalangiidae on the 
basis of genetic data (Hedin et al. 2012). Correspondingly, 
gyines do not produce open-chain compounds, but benzoqui-
nones (Raspotnig et al. 2017). The scent gland chemistry of 
the two remaining subfamilies, Sclerosomatinae and Gagrel-
linae, has remained unstudied so far.

Following our long-term attempt to fully characterize the 
gland chemistry of Sclerosomatidae, we here report on the 
secretions of Gagrellinae, by focusing on an undetermined 
Prionostemma-species from Costa Rica.

Materials and methods

Forty individuals of Prionostemma sp. were collected dur-
ing two collection trips in Carara National Park, Costa Rica 
(Fig. 1), and sent alive to the Institute of Biology of the Uni-
versity of Graz, Austria. Carara National Park was declared 

a biological reserve in 1978, later became a national park 
in 1998 (SINAC 2021). Located in the Puntarenas and San 
José provinces, Carara is a transition between tropical dry 
forests of the North with wet tropical forests from the South 
and has an area of 5242 hectares. In both expeditions, the 
specimens were observed during the night, between 7:00 
p.m. and 12:00 p.m., always actively walking on the litter 
along the Araceas trail (9.77943 N; − 84.60568 W). The col-
lections were supported under permissions R-016-2019-OT-
CONAGEBIO and R-021-2019-OT-CONAGEBIO.

Scent gland secretions were extracted individually from 
live specimens (i.e., those that survived the transport: this 
was one female from the first collection; three females from 
the second collection). From one specimen, scent gland 
secretions were collected with pieces of filter paper directly 
after discharge from ozopores. The filter paper pieces were 
immediately extracted in methylene chloride, and the crude 
extract was used for gas chromatography-mass spectrometry 
(GC–MS). From the remaining three specimens individual 
whole-body extracts were prepared, containing quantita-
tively extruded scent gland secretion. In addition, 10 freshly 
dead individuals (5 females, 5 males) were used for a pooled 
extraction in methylene chloride.

Analyses were performed on two GC–MS systems (GC 
2000/Voyager and Trace GC/DSQI, both from Thermo, 

Fig. 1  Collection site of Prionostemma sp. in Costa Rica
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Vienna, Austria), equipped with a 30 m ZB-5 capillary 
column (5%-phenyl-95%-dimethylpolysiloxane; from Phe-
nomenex, Aschaffenburg, Germany) and a 30 m HP-chiral-
20B column (ß-cyclodextrin in (35%-phenyl)-methylpo-
lysiloxane; from Agilent, Vienna, Austria), respectively. 
MS parameters were EI at 70 eV, ion source at 200° (DSQ) 
and 170° (Voyager), interface at 310° (DSQ) and 245 °C 
(Voyager). We used the following GC-parameters and tem-
perature programs: injector at 240 °C (both instruments); 
temperature program 1 (Trace GC-DSQ with ZB-5): 50 °C 
(1 min), with 10 °C/min to 300 °C; 5 min isotherm; tempera-
ture program 2 (GC 2000-Voyager with HP chiral-20B-col-
umn): 70 °C (1 min), with 1 °C/min to 230 °C, then 5 min 
isotherm.

Reference compounds and compounds for synthesis 
such as octanal, ethyl-2-bromoacetate, octanoic-, nona-
noic-, decanoic acid, racemic 2-hydroxydecanoic acid 
as well as enantiopure (R)-3-hydroxydecanoic acid were 
purchased from Sigma-Aldrich, Vienna, Austria. Racemic 
3-hydroxydecanoic acid was synthesized following a modi-
fied protocol of Sailer et al. (2015), via Reformatsky reac-
tion from octanal and ethyl-2-bromoacetate to prepare ethyl 
3-hydroxydecanoate and subsequent saponification with 
aqueous NaOH to yield a 1:1-mixture of R- and S-isomers 
of 3-hydroxydecanoic acid. To correctly assign the stereoi-
somers, the mixture was chromatographed on a chiral phase 
(see above), and compared to authentic (R)-3-hydroxydeca-
noic acid. For the preparation of trimethylsilylesters/-ethers 
from free carboxylic acids and hydroxy acids, we used 
MSTFA (N-methyl-N-(trimethylsilyl)-trifluoro-acetamide 
in pyridine 2:1 containing 1% trimethylchlorosilane) (from 
Sigma-Aldrich, Vienna). Retention indices of compounds 
(RIs) were calculated according to Van den Dool and Kratz 
(1963) using an alkane standard  (C7–C36).

Results

Secretion directly collected from ozopores as well as from 
whole body extracts showed medium-chain carboxylic 
acids (Compounds A–D in Fig. 2), as indicated by the 
characteristic EI-mass spectra of the compounds. There 
were two major compounds A and D (ratio 3:1) in the gas 
chromatograms, three minor or trace compounds (B, C, 
F), and a compound E of variable abundance. The major 
compound A was octanoic acid  (M+ at m/z 144; > 75% of 
the secretion). Minor compounds B, C and F  (M+ at m/z 
158, 172, and 256, respectively; each compound about 1% 
of the secretion) were identified as nonanoic-, decanoic-, 
and palmitic acids. All identifications rely on GC–MS data 
of both derivatized and non-derivatized extracts, and com-
parisons to authentic standards.

By contrast, compound D (about 25% of the secretion) 
exhibited the mass spectrum of a ß-hydroxycarboxylic acid, 
with a weak molecular ion at m/z 188 and a base peak at m/z 
89 (Fig. 3A). Best hits from a library search (NIST 05) were 
2-hydroxydecanoic acid and 3-hydroxydecanoic acid. A 
comparison to authentic reference standards showed a com-
pletely different mass spectrum for 2-hydroxydecanoic acid 
(base ion at m/z 69; Fig. 3B) and different chromatographic 
retention  (RI2OH-C10acid = 1555 vs. RI =  1546compound D). 
On the other hand, both mass spectrum and gas chroma-
tographic retention of compound D fully corresponded to 
3-hydroxydecanoic acid (RI =  15463OH-C10acid). This finding 
was eventually confirmed by a comparison of the corre-
sponding trimethylsilyl-derivatives  (RI3OH-C10acid-TMS = 1663; 
RI compound D-TMS = 1663; EI mass spectrum in Fig. 4).

3-Hydroxydecanoic acid is a chiral compound (asym-
metric  C3), and two enantiomers exist, (R)-3- and 

Fig. 2  Gas chromatographic 
profile of the scent gland secre-
tion directly sampled from the 
ozopores of a female specimen 
of Prionostemma sp.; untreated 
(non-derivatized) extract. 
Compounds: Peak A (octanoic 
acid), B (nonanoic acid), C 
(decanoic acid), D ((R)-3-hy-
droxydecanoic acid = myrmi-
cacin), E (artifact arising from 
3-hydroxydecanoic acid in the 
hot injector of the gas chroma-
tograph), F (palmitic acid)
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(S)-3-hydroxydecanoic acid. To determine the absolute 
configuration of our compound D, we used a chiral gas 
chromatographic phase, demonstrating that compound D 
was enantiopure (R)-3-hydroxydecanoic acid (Fig. 5), also 
called myrmicacin in the literature.

Compound E appeared to be an artifact arising from 
3-hydroxydecanoic acid. It was found in all samples, also 
in samples of reference compounds, i.e., in those containing 
authentic and pure hydroxydecanoic acids only. A similar 
artifact also occurred in samples of 2-hydroxydecanoic acid. 
Compound E varied in abundance with the temperature of the 
injector, and is considered a pyrolysis product of 3-hydroxyde-
canoic acid.

Discussion

This study is intended a step towards a complete char-
acterization of “sclerosomatid compounds”, and we here 
present initial chemical data for Sclerosomatidae apart 
from leiobunines. We currently do not want to imply that 
the chemical composition of the secretion of the Prion-
ostemma-species investigated here is characteristic for 
Gagrellinae as a whole. It may, however, be seen as an 
example for gagrelline secretion chemistry.

First, we report on an incidence of a very unusually 
composed scent gland secretion, i.e. exclusively consisting 

Fig. 3  A Electron impact mass 
spectrum of 3-hydroxydeca-
noic acid. The major fragment 
(base ion at m/z 89) arises 
from α-cleavage at  C3 of the 
molecule. The molecule ion 
is weak (at m/z 188). The ion 
from McLafferty-rearrangement 
(at m/z 60) is of only moderate 
intensity. B Electron impact 
mass spectrum of 2-hydroxyde-
canoic acid. The major frag-
ment (base ion at m/z 69) is an 
alkene-fragment; fragments at 
m/z 143 and m/z 113 arise from 
cleavage at  C2; m/z 76 is the 
McLafferty-fragment
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of organic acids which is so far unique for harvestmen. 
Though acids are not completely absent from the secre-
tions of some other harvestmen species, they are not 

common at all, at best representing secretion by-products 
in a few species (Raspotnig, personal observation). Octa-
noic acid, for instance, while being a frequently detected 
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exocrine compound in both arthropod (e.g., Schmidt et al. 
2000; Attygalle et al. 2004; Raspotnig and Leis 2009) and 
vertebrate exudates (e.g., Waterhouse et al. 2001), has 
been found in a single harvestmen species only (Raspotnig 
et al. 2015a). Moreover, this latter species, the phalangiid 
Rilaena triangularis, shows mainly non-acid compounds 
in its secretion. However, some harvestmen, as recently 
reported for Egaenus convexus (again a phalangiid), may 
produce acid-derivatives such as lactones (Raspotnig et al. 
2020).

Second, one of the acids of the Prionostemma-secretion 
has been identified as myrmicacin (= (R)-3-hydroxydecanoic 
acid). Myrmicacin is best known for the secretions of meta-
pleural glands in leaf-cutter ants (Maschwitz et al. 1970; Do 
Nascimento et al. 1996; Ortius-Lechner et al. 2000; Vieira 
et al. 2012) where it has originally been detected (Schildkne-
cht and Koob 1971). There are not many reports on the natu-
ral occurrence of this compound. Apart from leaf-cutters of 
genera Atta and Acromyrmex, myrmicacin has sporadically 
been found in the metapleural secretions of non-leaf-cutter 
myrmicines such as Messor and Myrmica (Schildknecht and 
Koob 1971; Viera et al. 2012), the pygidial glands of water 
beetles of genus Laccophilus (Dettner 1985) as well as from 
some microorganisms (e.g., Sjögren et al. 2003) and in royal 
jelly (Kodai et al. 2011). It thus came as a surprise to us to 
detect myrmicacin in an arachnid. Schildknecht and Knoob 
(1971) called myrmicacin “the first insect-derived herbicide” 
since it was able to inhibit the growth of germinating plant 
pollen in ant colonies by blocking cellular mitosis. While 
other antimitotic substances are not effective at later phases 
of mitosis, myrmicacin was found to inhibit mitotic progres-
sion at all stages, including metaphase and anaphase (e.g., 
Iwanami 1978).

Third, there is evidence that myrmicacin is not pro-
duced by individuals of Prionostemma themselves but 

sequestered from nutritional sources: We indeed observed 
Prionostemma-individuals feeding on leaf-cutter ants 
that might represent the original source of myrmicacin 
in Prionostemma (Fig. 6). Consequently, we cannot rule 
out the possibility that the other compounds of the secre-
tion—all of which are medium-chain carboxylic acids, 
chemically close to myrmicacin—are sequestered either. 
Sequestration as a mechanism to build-up scent gland 
compounds appears to be a hitherto unique case in har-
vestmen that, with the tacit understanding, have generally 
been considered to produce scent gland components by 
de novo synthesis. There are mainly indirect arguments 
for a de novo synthesis of scent gland secretion constit-
uents in harvestmen: one is certainly the production of 
taxon-specific secretions, i.e., related species produce 
the same or biochemically related components, irrespec-
tive of geographical location and ecological conditions, 
making the hypothesis of shared biosynthetic pathways 
to similar components/component classes very plausible. 
Such a de-novo synthesis also represents the backbone of 
the theoretical basis for harvestmen phylogenetic chem-
osystematics (e.g., Raspotnig et al. 2015b, 2017). On the 
other hand, a definite proof for the de novo synthesis of 
scent gland secretions is missing for most taxa. Only for 
phenolics and benzoquinones from laniatoreans, de novo 
synthesis is likely, as evidentiary shown by Rocha et al. 
(2013) who used labelled acetate and propionate in feeding 
experiments. A possible contribution of symbiotic bacteria 
has though not been explicitly excluded.

Scent gland secretions in harvestmen are considered to be 
mainly for defense (e.g., Martens 1978; Gnaspini and Hara 
2007), and with respect to the acids found in the present 
study—irrespective of their origin—this is most likely true 
for Prionostemma as well. There is a number of arthropods 
that use acids for effective predator repellence, including 
the formic acid-producing glands of formicine ants and cer-
tain beetles as well as the opisthosomal, mainly acetic acid-
producing glands of whip scorpions (Eisner 1962; Schmidt 
et al. 2000; Haupt and Müller 2004). Other arachnids, such 
as certain oribatid mites may also produce acids but use 
these compounds to build up water-repellent layers on their 
cuticle (Raspotnig and Leis 2009; Brückner et al. 2015). The 
mixture of myrmicacin and some medium-chain n-alkanoic 
acids in Prionostemma is also functionally of interest, prob-
ably combining predator defense with antimicrobial protec-
tion: regarding the mitosis-inhibiting effect of myrmicacin 
and its inherent antibacterial and antifungal properties (e.g., 
Iizuka et al. 1979; Iwanami et al. 1979), the compound may 
serve as a protection against the proliferation of microor-
ganisms at the outer surface of the harvestmen’s cuticle. 
The large amount of octanoic acid, however, indicates a 
primarily defensive function of the secretion, but octanoic 
acid and other short- to medium-chain carboxylic acids are 

Fig. 6  An individual of Prionostemma sp. is feeding on a leaf-cutter 
ant (photograph by Carlos Viquez)
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also known to reduce microbial growth (“myrmic acids”: 
Iwanami and Iwadare (1979)).

Acids from the Prionostemma-secretion add a novel 
class of open-chain compounds to the scent gland chemis-
try of Opiliones, but also complicate harvestmen chemos-
ystematics. The possibility of sequestration of compounds 
may blur the chemosystematic picture of harvestmen scent 
glands that aims to reflect a biosynthetically linked and 
evolutionary-based tree of chemical classes/compounds 
that diversified during evolution. On the other hand, the 
possibility of sequestration of compounds adds a highly 
interesting aspect to chemosystematic research that has yet 
poorly been addressed: as in poison frogs, that sequester 
toxic alkaloids from their arthropod prey and though show 
specific patterns of alkaloids in their skin (e.g., Daly et al. 
1994; Saporito et al. 2009), the mechanisms behind seques-
tration still underlie evolution, producing chemosystematic 
specificity on a next level. We know that the sequestration 
of compounds, mainly from plant sources, as well as the use 
of sequestered compounds in defensive/toxic secretions is 
quite common in several groups of arthropods, such as Lepi-
doptera and Coleoptera (e.g., Duffey 1980; Nishida 1994; 
Boland 2015; Petschenka and Agrawal 2016), but we still 
consider it an exception in harvestmen.
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