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Strategies to prevent, curb
and eliminate biofilm formation
based on the characteristics
of various periods in one
biofilm life cycle

Ruixiang Ma †, Xianli Hu †, Xianzuo Zhang, Wenzhi Wang,
Jiaxuan Sun, Zheng Su* and Chen Zhu*

Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of
China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of
China, Hefei, China
Biofilms are colonies of bacteria embedded inside a complicated self-

generating intercellular. The formation and scatter of a biofilm is an

extremely complex and progressive process in constant cycles. Once

formed, it can protect the inside bacteria to exist and reproduce under

hostile conditions by establishing tolerance and resistance to antibiotics as

well as immunological responses. In this article, we reviewed a series of

innovative studies focused on inhibiting the development of biofilm and

summarized a range of corresponding therapeutic methods for biological

evolving stages of biofilm. Traditionally, there are four stages in the biofilm

formation, while we systematize the therapeutic strategies into three main

periods precisely:(i) period of preventing biofilm formation: interfering the

colony effect, mass transport, chemical bonds and signaling pathway of

plankton in the initial adhesion stage; (ii) period of curbing biofilm formation:

targeting several pivotal molecules, for instance, polysaccharides, proteins, and

extracellular DNA (eDNA) via polysaccharide hydrolases, proteases, and

DNases respectively in the second stage before developing into irreversible

biofilm; (iii) period of eliminating biofilm formation: applying novel

multifunctional composite drugs or nanoparticle materials cooperated with

ultrasonic (US), photodynamic, photothermal and even immune therapy, such

as adaptive immune activated by stimulated dendritic cells (DCs), neutrophils

and even immunological memory aroused by plasmocytes. The multitargeted

or combinational therapies aim to prevent it from developing to the stage of

maturation and dispersion and eliminate biofi lms and planktonic

bacteria simultaneously.

KEYWORDS

bacterial infection, biofilm formation, plankton adhesion, quorum sensing,
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2022.1003033/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.1003033/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.1003033/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.1003033/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.1003033/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2022.1003033&domain=pdf&date_stamp=2022-09-21
mailto:zhuchena@ustc.edu.cn
mailto:suz924@mail.ustc.edu.cn
https://doi.org/10.3389/fcimb.2022.1003033
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2022.1003033
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Ma et al. 10.3389/fcimb.2022.1003033
Introduction

Bacteria have much longer history than human beings,

paleontologists believe that bacteria arose from the collision

and reaction of various inorganic and organic materials in the

ancient extreme earth environment billions of years ago, and

therefore have some stronger environmental adaptability than

we human. These advantages in bacterial adaptability are

reflected not only in their constantly gene mutations, bacterial

spores, capsule and flagella, but also in getting together to

counteract disturbances, known as biofilms: a complex

multicellular and animated lifestyle, which is one of the most

wide-spread and predominant living pattern on earth. The

terminology biofilm was firstly documented in the fields of

microbiology on environmental technology, and was not

introduced into medicine for the first time until 1982 by Dr.

Costerton, as he observed that microbial community aggregated

on the surface of a cardiac pace-maker catheter and formed

biofilm matrix (Marrie et al., 1982). The self-produced

extracellular polymeric substances (EPS) are mainly comprised

of polysaccharides, proteins, eDNA and overexpressed reductive

glutathione (GSH) (Flemming et al., 2016). The all above are

responsible for protecting the bacterium from deleterious

environmental conditions, including antimicrobial agents and

the physiological immune system (Teirlinck et al., 2018).

Additionally, the constituents of EPS are greatly diversified,

relying on nutritional availability, host conditions and physical

stresses strength. A couple of studies have recently validated that

eDNA may be an important and essential component of the

biofilm matrix by adding DNase to the surface of mature

biofilms in vitro experiments and detecting structure damaged.

Besides, the biofilm-induced inflammation can lead to DNA

damage in host cells, thus increasing the risk of cancer

(Parsonnet, 1995; Jobin, 2014; van Elsland & Neefjes, 2018).

Microbial biofilm-related persistent infections and tissue

damage are becoming extremely difficult to treat and eradicate

permanently by conventional antibiotic therapy due to their

intrinsic resistance to antibiotic agents (sensitivity only up to 1/

1000 of previous) compared to plankton in the flowing milieu

(Sundin et al., 2020).

The mechanisms of bacterial antibiotic resistance, such as

efflux pumps, antibiotic-modifying enzymes and gene

mutations, are well investigated, but they are limited to

planktonic bacteria (Sun et al., 2020; Xiu et al., 2022). Novel

evidence indicates that bacteria situated inside biofilms have

lower oxygen and nutrient levels, which means a lower micro-

metabolic level (Zhang et al., 2019). Exactly this resulted in the

enhancement of tolerability to antibiotics that chiefly target

metabolically active bacteria. Furthermore, biofilm can spread

as a source of infection to nearby healthy sites. The switch

between single planktonic and complex biofilms is a key factor

for bacteria to trigger different infectious diseases, including
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prosthetic joint infections (PJIs), infective endocarditis and

osteomyelitis (Peng et al., 2019). Bacteria are always vulnerable

to antimicrobial agents once they scatter out of biofilms, which

indicates that the antibiotic resistance of bacteria in biofilms isn’t

acquired through mutations. The explicit mechanism has not

been utterly researched and has been the topic of comprehensive

investigation until now. Especially in a surgical implant, once the

biofilm formed, there is very few viable treatments or managing

options available (Xie et al., 2018). Although bacterial antigen

can spur generation of antibodies, they are unlikely to slay

bacterium inside biofilms efficiently. On contrast, they

accompany with unfavorable immune complexes to nearby

healthy cells expect for monoclonal antibodies (Raafat et al.,

2019). The persistence of biofilms can lead to medical implants

fault or biological material deterioration as well. Above all, these

are exactly why bacterial biofilm related diseases, such as

osteoarthritis , valvulitis , rhinitis , cystitis , vaginitis ,

periodontitis, specific pneumonia, otitis, etc., of which

implant-associated infections are the most common, are

currently the culprits of chronic infections bringing

tremendous survival hazards to mankind (Luis Del Pozo,

2018). While bacterial biofilms develop over the exterior of

surgical implants (for example, a prosthesis of the knee joint),

they tend to aggregate inflammatory compositions and secrete

metabolic substances, resulting in an acidic multi-radical

microenvironment, which contributes to the failure of wound

healing (Rumyantceva et al., 2021). Most secondary surgeries for

implant removal in clinical practices are linked closely to biofilm

development by Staphylococcus aureus (S. aureus). Especially,

methicillin-resistant Staphylococcus aureus (MRSA) and

Vancomycin-resistant Staphylococcus aureus (VRSA) have

caused grave damages to many people (Sun et al., 2020). We

argue that the treatment of biofilms should be focused on their

adhesion and formation phases, since biofilms in this phase have

not yet developed their distinctive resistance properties. As well,

since new biofilms usually originate from the dispersion of

previous existing biofilms, blocking dispersion of the previous

biofilm also falls under the key aspect of preventing the

formation of new biofilms. Thus, methods to interfere with

mature biofilm dispersion will also be discussed in our review as

a complementary part.

Methods conventionally used for biofilm treatment have

their limitations:

(i) Surgical sterile precautions and techniques aim to prevent

infection, but often fail to achieve sterilization in the treatment of

acute contaminated wounds and the curative rate of

debridement is not entirely satisfying (Gilbert-Girard et al.,

2020); (ii) Eluting devices and wound by using anti-microbial

or antibiotic solutions to inhibit early planktonic adhesion to

infixed devices, while effective, can sometimes compromise the

function of certain devices and accelerates the emergence of

antibiotic-resistant bacteria; (iii) Injecting agents to disrupt
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https://doi.org/10.3389/fcimb.2022.1003033
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Ma et al. 10.3389/fcimb.2022.1003033
established biofilms and eliminate microbes within them is not a

common clinical treatment, but often causes cause secondary

damage to the patient without guarantee efficacy.

As of today, removing the contaminated equipments

continues to be the most effective therapeutic option, which is

extremely painful and brings not only multiple surgeries, but

also considerable harm and financial burden to patients. We

therefore review numerous new therapeutic strategies that differ

from the above conventional approaches, since these strategies

are characterized by precise and even targeted therapies based on

the characteristics of each period of biofilm formation. Here, we

systematize the therapeutic strategies into three main periods

precisely: (i) period of preventing biofilm formation: interfering

the colony effect, mass transport, chemical bonds and signaling

pathway of plankton in the initial adhesion stage; (ii) period of

curbing biofilm formation: targeting several pivotal molecules,

for instance, polysaccharides, proteins, and eDNA via

polysaccharide hydrolases, proteases, and DNases respectively

in the second stage before developing into irreversible biofilm;

(iii) period of blocking biofilm dispersion to prevent the

sprouting of new biofilms: applying novel multifunctional

composite drugs or nanoparticle materials cooperated with

ultrasonic, photodynamic, photothermal and even immune

therapies. With all these curative strategies, the structure and

function of biofilms are compromised by different mechanisms

and efficiencies across different phases of biofilm formation.

Herein, we review the characteristics of each period of biofilm

formation and the corresponding innovative healing therapies

in detail.
How do bacteria develop a biofilm?

As a dynamic biological system, biofilm has evolved a large

number of networks to coordinate biofilm formation in different

outer circumstances. Formation steps of biofilms are closely

modulated through multiple modulatory chains (Tolker-

Nielsen, 2015). The physiological status of bacteria, subtle

variations in ambient settings and the ever-changing events

inside the bacterial colonies are all underlying signaling factors

that impact on biofilm formation. Many works have been done

towards identifying and characterizing bacterial physiological

activity at the cellular level, and these technological advances will

contribute to understanding the complex biofilm-forming

mechanisms and developing novel specific therapeutic

approaches (Qu et al., 2020). Activating biofilm generation by

regulatory pathways will guarantee that bacteria do not establish

biofilm under adverse circumstances. It is evident that the

establishment of a steady biofilm is regulated by multiple

factors, and part of these engage as two-component signaling

pathways (Landry et al., 2018). The overall processes of biofilm

formation are shown in Figure 1.
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The initial adhesion stage

Reversible adhesion is usually initiated by the non-specific

forces (van-der Waals, Brownian motion and electrostatic

forces) haphazardly and then followed by the irreversible

adhesion on the surface via a variety of different factors and

mechanisms to form a complicated three-dimensional colony

that is known as a biofilm (Dixit et al., 2019). Bacteria can sense

contacts with surfaces and accordingly adjust gene expression to

facilitate stable cell-surface interactions. Superficial adhesion of

planktonic cells primarily contact substrates of the host

organism during infection with various adhesins, such as

fibrinogen, fibronectin and collagens such as fibronectin

binding proteins (FnBPs) and fibrinogen-binding clumping

factors (Clfs) (Palmqvist et al., 2005).

Environmental signals inside the biofilm allow bacteria to

efficiently colonize their preferred environment. Previous studies

have demonstrated that under extreme conditions of nutrient

enrichment or deprivation, bacteria are more likely to be in the

planktonic mode, as this provides them with greater access to

nutrients and new habitats. Satisfactory meld of implants with

host tissues or plankton is the cornerstone of implant success. At

the moment the biomaterials implanted, the competition for

surface between host cells and bacteria starts. Once planktonic

bacteria preempt to adhere on the surface, the innate immune

system alone can hardly prevent the biofilm formation (Dapunt

et al., 2020). Thus, the architectural features of the implant itself

have a critical impact on the occurrence of bacterial infections.

The bacterial flagella and pilus are the two main power

sources in the planktonic state, which are motivated by ion

inflow via membrane-spanning motor complexes. The flagella

are generally several folds longer than the bacteria itself and is

the most powerful motor to drive the plankton towards the

surface of the implants. When the bacteria sense that the

surrounding environment is favorable for their proliferation,

the flagella will anchor to the surface, otherwise they will drive

the bacteria away to find better habitats (Guttenplan & Kearns,

2013). S. aureus have no flagella and therefore may rely on

bacterial pilus and other signaling agents to mediate attachment

to a surface.

The shear stress, which constantly varies with positions and

fluid flows, acts as another key factor affecting the initial

adherence of the plankton. Increased shear stress enhances the

polysaccharide intercellular adhesin (PIA) expression of the

bacteria to accommodate the shear stress (Schaeffer et al.,

2016). Lectins also facilitate and consolidate the surface

adhesion process of planktonic bacteria, especially the effect of

surfactants to reduce the surface tension of the contact surface is

critical to stabilize the later formed micro-colonial structure (Shi

et al., 2021). Besides, cell wall anchoring (CWA) proteins

promote planktonic bacteria to bind with surface matrixes

(Bannoehr et al., 2011; Milles et al., 2018). The bacterial
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FnBPs, Clfs, CWA proteins and serine-aspartate repeat (Sdr)

proteins are collectively referred as microbial surface

components recognizing adhesive matrix molecules

(MSCRAMMs), which can modulate interactions between host

extracellular matrix components and microbes (Flick et al.,

2013). Such recognizing adhesion molecules are strain-specific,

for example the adhesin involved in diffuse adherence (AIDA-I)

is involved in the initial diffuse adhesion of E. coli, while P.

aeruginosa is rely on the lectins (Charbonneau et al., 2007). The

adhesion regulatory factors are summarized in Table 1.
Developing into irreversible biofilm by
secreting EPSs

In the process of biofilm formation, bacteria regulate the

interconnection of adhesion factors within the matrix via a

distinctive info-communication webs. Ultimately, a

sophisticated three-dimensional tower-like biofilm structure is

formed. As soon as the bacterial settle on the surface

successfully, the bacteria begin to multiply and excrete all

kinds of extracellular substances to envelop themselves, which

marks the beginning of irreversible adhesion and opens the

portal to biofilm formation. While numerous studies have been

conducted on the composition of bacterial extracellular

secretions, the exact components remain uncertain. The major
Frontiers in Cellular and Infection Microbiology 04
known compounds consist of (i) extracellular polysaccharide,

the main component of which is polysaccharide intercellular

adhesin (PIA) produced by icaADBC locus with strong ability to

promote adhesion; (ii) eDNA, which is presumed to be

generated by bacteria either by active apoptosis or passive

autophagy to facilitate the survival of bacterial community

(Valle et al., 2019). And eDNA can stabilize the biofilm matrix

and enhance gene exchange between bacteria, and may even be a

key factor in promoting bacterial gene mutations (Lei et al.,

2019). It also triggers immune responses when eDNA interacts

with host immune cells, but the ultimate effect of such immunity

is anti-inflammatory, which is not conducive to biofilm

clearance, instead leading to refractory and chronic infections;

(iii) diverse proteins that mediate adhesion and signaling

communications, e.g., Bap, the surface protein of S. aureus,

can build amyloid scaffolds to stabilize bacterial accumulation

(Taglialegna et al., 2016). And some bacteria secrete amyloid

curli, a protein that can bind to eDNA to forge firm fiber-like

polymers inside biofilms and react with host cells to yield

immunogenic complexes that can activate a variety of immune

cells, including DCs characterized by the production of

cytokines such as type I interferon (IFN-I) (Yan et al., 2020);

(iv) phospholipids, which can be covalently coupled to

peptidoglycan to form wall teichoic acids (WTAs) to increase

bacterial attachment towards implant by binding with

fibronect in or to cytoplasmic membranes to form
FIGURE 1

From planktonic bacteria to mature biofilms. (A) Planktonic bacteria invade the wound and swim randomly. (B) Planktonic bacteria adhere to the
implant surface, which is a reversible process. From forming microcolonies (C) to developing into mature biofilms (D). (E) Biofilm breaks down
and bacteria spread outside.
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lipophospholipids. Besides, it has also been reported that

bacterial secreted virulence agents and ribosomal proteins also

contribute to the stabilization of biofilms. Bacteria possess a

specific surface sensing system, and the system can be activated

within minutes after the bacteria adhere to the surface.
Quorum-sensing system

Regulation of QS is almost throughout biofilm formation.

The high density of bacteria within biofilms enables a variety of
Frontiers in Cellular and Infection Microbiology 05
signaling communications among them, which relies on

bacterial density to coordinate signaling transductions (Wu

et al., 2022). And QS can link diverse elements that are

responsible for enabling the necessary virulence and

metabolism to maintain the survival of bacteria (Carnes

et al., 2010).

The accessory gene regulator (agr) is a bioregulator of Gram-

positive pathogens, especially for Staphylococcus (Kavanaugh &

Horswill, 2016; Jenul & Horswill, 2019; Qu et al., 2020). Agr QS

can directly regulate the virulence and adhesion of S. aureus

(Hardy et al., 2019). With low expression of agr, S. aureus tends
TABLE 1 The main planktonic adhesion regulatory factors.

Planktonic adhesion-related
factors

Effects Ref.

Physico-chemical factors
Flagella and pilus

Related to the initial adhesion and terminal dispersion of planktonic bacteria. (Gonzalez et al.,
2018)

Wall teichoic acids (WTAs) Wall teichoic acids acids (WTAs) located on the bacterial surface are crucial in maintaining bacterial
membrane integrity, escaping host defenses, and mediating toxicity.

(Yin et al.,
2019)

hydrophobic and electrostatic interaction
van-der Waals, Brownian motion
Shear stress

The main driving force for the movement of planktonic bacteria from irregular mobility patterns to initial
adhesion. Promote bacterial adhesion to the surface of clinical biomaterials.
Supports initial attachment of bacteria to the contact surface and increases adherence; Brownian motion
provides impetus for planktonic bacteria. The lower the density of bacteria the greater the effect of
Brownian motion.
The effect on planktonic bacteria depends on the infectious position of the and the implant surface
topography. Bacteria exposed to shear stress distributes mechanical stress along the pili.

(Carniello et al.,
2018)
(Chen et al.,
2014)
(Zhang et al.,
2015)
(Geisel et al.,
2022)
(Krsmanovic
et al., 2021)

microbial surface components
recognizing adhesive matrix molecules
(MSCRAMMs)
FnBPA and FnBPB
CWA proteins

(i) drive attachment to the surface of surgical an implant and boost intercellular communications, leading
to biofilm formation;

(ii) The activity of FnBPs depends on the integrity of SarA.
A vital virulence factor for survival in symbiotic states and invasive infections.

(Dziewanowska
et al., 2000)
(O'Neill et al.,
2008)
(Foster et al.,
2014)

ClfA and ClfB (i) ClfA binds to FnBPA to enhance bacterial virulence and facilitate biofilm formation. (Claes et al.,
2018)

SdrC, SdrD, SdrG, and SdrE (ii) The binding of FnBPB and ClfB with similar affinity promoted the firm binding of S. aureus to tissue
cells.
(i) Binds fibrinogen, collagen and kerati;
(ii) All are pathogenic antigens of S. aureus.
(iii) SdrC enhances bacterial attachment to plastic surfaces, but whether it is associated with the
hydrophobicity of the proteins is still ambiguous.
(iv) In blood, SdrD increases virulence and vitality of S. aureus.

(Towell et al.,
2021)
(Gogoi-Tiwari
et al., 2015)
(Feuillie et al.,
2017)

autolytic enzymes AtlA, homologous
protein AtlE

(i) Help intial attachment to abiotic surfaces like polystyrene or glass
(ii) Increased expression promotes bacterial autolysis, leading to higher emission of eDNA.

(Kaplan et al.,
2012)
(Rosman et al.,
2021)
(Mashruwala
et al., 2017)

Sortase (i) Sortase is prevalent in most Gram-positive bacteria and has a vital effect in the interaction of S. aureus
with fluid environment.
(ii) Mutations in the Sortase-dependent pathway can anchor surface CWA proteins to the outer membrane
of Gram-positive bacteria.
(iii) Mediate the motility of pili.

(Jiang et al.,
2013)
(Sugimoto
et al., 2017)
(Bhat et al.,
2021)

PIA
lectins

Participates in the formation of biofilms, bacterial virulence and drug resistance
Keep bacteria increasing in biofilm by binding to exopolysaccharide Psl in EPS.

(Wu et al.,
2017)
(Passos da Silva
et al., 2019)
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to form biofilms by secreting more intercellular adhesins and

reducing the secretion of toxins (Valliammai et al., 2019).

Conversely, increased intracellular expression of AgrD is

followed by the secretion of autoinducer peptide (AIP) (Kim

et al., 2017).The detailed composition of Agr varies between

strains. The extracellular AIP concentration increases

proportionally with increasing cell density. Once the local AIP

concentration meets a threshold level, AIP binds to AgrC to

activate the AgrC-AgrA two-component system. The activated

Agr system restrains the expression of AtlE (an essential

adhesive protein involved in biofilm construction), thereby

inhibiting biofilm formation and enhancing the expression of

virulence factors such as pore-forming toxins and tissue-

degrading enzymes, reinforcing the bacterial resistance to

external harmful substances such as ROS.

Further tests in vitro proved that the addition of AIP can

activate the agr-mediated breakage of S. aureus biofilm, and the

bacteria will restore to the planktonic state, thus completing the

biofilm life cycle. This may be due to the fact that Agr activation

can lead to elevated levels of staphylococcal proteases that cleave

bio-membrane proteins and disrupt intercellular interactions

within the biofilm, and that proteases can also be applied to the

biofilm. There are also matrix-degrading materials, such as

dispensin B, which can cause biofilm disintegration by

weakening the structural integrity of the biofilm matrix.

Activation of the agr system induces the expression of phenol-

soluble modulins (PSM), a low molecular weight pore-forming

toxin with surfactant-like properties. S-ribosylhomocysteine

lyase (LuxS) is involved in production of autoinducer 2 (AI-2).

There are certain alternative regulatory pathways that are

also relevant to the formation of biofilms, which allow bacteria to

micro-modulate their response to ever-changing environmental

conditions and moderate biofilm formation. Intracellular second

messengers, such as cyclic dinucleotides (cDN), c-di-GMP, have

multiple physiological and immunomodulatory abilities in

bacteria, often enhancing bacterial virulence and biofilm

formation. Besides, cyclic dimeric (3′!5′) GMP (c-di-GMP)

induces the production of interferon-gamma (IFNg) to prolong

the host type I interferon immune response.

A dual regulatory CpxA/CpxR signaling system relies on the

outer membrane protein NlpE, acting as a direct sensor of E.coli

for surface contact. The Cpx pathway becomes activated in

response to the interaction of E.coli with hydrophobic

surfaces, accelerating the oscillation of pilus to drive bacteria

moving. EnvZ/OmpR signaling system is another dual

component signaling pathway used in E. coli, can be activated

under elevated osmolarity to strengthen the adhesion of bacteria

to biological surfaces to counteract the adversity. If under

excessive osmotic pressure, EnvZ/OmpR signaling will be

overtaken by a negatively regulated system, which means the
Frontiers in Cellular and Infection Microbiology 06
bacterial cells will remain in the planktonic mode and freely

migrate to more favorable conditions.

Mature biofilms may seem to be thick and homogeneous cell

cushion structures, but they are complex architectures feature

with a hydraulic tunnel structure in order to keep nutrients

inflowing and wastes out just as Figure 2 presented. Such a

complex structure is not exclusively controlled by physical

factors, such as shear. In fact, several modulatory variations

have already influenced the integral deepness and structure of

the mature biofilm. And c-di-GMP is another ubiquitous second

messenger with potent immunomodulatory properties in

biofilm, stimulating innate immunity and regulating biofilm

formation, planktonic motility, and virulence. Besides, c-di-

GMP can bind to a wide range of receptors, including

enzymes, splice proteins, transcription factors and

nucleoprotein switches, enhancing the recruitment of

neutrophils, macrophages, natural killer cells and even DCs to

kill bacteria. Low doses nitric oxide (NO) signaling has been

shown to stimulate specific phosphodiesterases (PDEs),

triggering c-di-GMP degradation and concomitant diffusion of

bacterial biofilms. In vitro, low doses of NO are the primary

dispersion-driven mediator, and release of NO contact with

biofilms can be targeted to enhance antimicrobial efficacy

while limiting potentially toxic effects on target tissues. In E.

coli, high levels of c-di-GMP enhance the adhesion of planktonic

bacteria and promote biofilm formation, while it drives biofilm

rupture at low levels, allowing the internal bacteria to spread out.

In S. aureus, this second messenger role is assumed by c-di-

AMP. A number of small regulatory RNAs (sRNAs) regulate

targets associated with bacterial colony behavior, including QS

(Malgaonkar & Nair, 2019).
Advanced biofilm formation and its
secondary dispersion

The formation of microcolonies by planktonic bacteria is a

critical step in biofilm formation. A microcolony is usually a

three-to-five-layer-deep colony of bacterial cells that evolves as

bacterial cells adhere to the surface. The development of stable

interactions between single bacteria and the surface alone is

insufficient to form the microcolony; Some destructive factors

such as nucleases and PSMs break down the biofilms leading to

catastrophic secondary mass release of bacteria and the spread of

inflammation. Bacterial spreading during biofilm rupture is

mainly driven by proteases and PSMs to degrade and disrupt

the biofilm matrix synergistically (Hommes et al., 2021). Each

stage of biofilm formation is influenced by different factors just

as shown in Figure 3. Factors associated with biofilm maturation

and diffusion are summarized in Table 2.
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Preventing biofilm formation

Traditional treatments for bacterial infections fail to clear

biofilm related chronic infections in vivo, and the abuse of high

dosages of antibiotics for a prolonged period is obviously

inadvisable, since in many cases it induces drug resistance and

further biofilm development (Yan & Bassler, 2019). Most current

therapies target the acute exacerbation of infection caused by the

release of planktonic bacteria but do not focus on the

characteristics of biofilm growth to prevent its formation

before it fully matures. Until now, surgical excision of the

infected implant and wound debridement are still the principal

method of biofilm elimination, but this is not always feasible

because of the large physical trauma and the high risk of

complications (Beebout et al., 2021). Apart from the

mechanisms such as efflux pumps and genetic mutations
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which exist in usual drug-resistant bacteria, bacteria within

biofilms have some specific tolerant mechanisms. Antibiotics

may function in inhibiting the further progression of biofilms.

Yet, they are unable to kill them. It has long been assumed that

an essential mechanism of biofilm resistance is due to the

complex mat r i x components such as eDNA and

polysaccharides contained in biofilms to sequester drugs.

However, further studies have shown that the reality is not so

easy. Tetracyclines can infiltrate biofilm to cover all bacteria

within the E. coli biofilm in less than 10 minutes at the cost of

losing their killing capacity. Thus the biofilm does not simply

rely on blocking the antibiotic to exert resistance. It may be a

more important mechanism to slow the penetration of the

antibiotics and giving the bacteria enough time to develop

resistance (Grygorcewicz et al., 2020). In addition small colony

variants (SCVs) inside biofilms are strongly associated with
A B

FIGURE 2

Three-dimensional reconstructions of the fluorescence-labeled (scale bars, 30 µm.) and Scanning electron microscope images (scale bars,1 µm)
of (A) mature E. coli and MRSA biofilms; (B) damaged biofilm treated with photodynamic nanomaterials. Copyright © 2022, Advanced science.
FIGURE 3

Regulating networks in different periods of biofilm formation.
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persistent and recurrent osteomyelitis and implant-associated

infections, especially in S. aureus biofilms (Tuchscherr et al.,

2015). b-lactamases that degrade antimicrobials are also present

in the biofilm matrix, further preventing the drug from reaching

the cells inside. Therefore, we present innovative approaches

based on targeting on each period of clinical biofilm formation,

such as the application of QS inhibitors (QSI) targeting the QS

system, drugs that interfere with bacterial metabolic pathways,

reagents that can destroy the biofilm components and even

combine with activated immune cells such as DCs and

macrophages to kill bacteria.
Prevent initial adhesion

Planktonic bacteria reproduction and migration is essential

for subsequent bacterial colonization in dynamic fluidic milieu.

Despite planktonic bacteria possessing robust mobility, the

concentration of agents required to kill them tends to be only

one thousandth of the biofilm (Fan et al., 2017). Therefore,

targeting planktonic bacteria is critical for early containment of

biofilm formation.

Interfering the signaling transductions between bacteria.

Disrupting QS-related signaling pathways to restrain the

biofilm associated gene expression is considered as an

advisable approach to curb biofilm formation. Previous studies

have well recognized that genetic variations and bacterial

transcriptome can be modulated by suppressing QS (Cole

et al., 2018). QS governs the expression of bacterial virulence

factors, and therefore blocking QS can largely diminish the

virulence of bacteria (Piewngam et al., 2020). QSI act

primarily through five interactions with QS signaling

molecules: (i) inhibition of synthesis; (ii) acceleration of

degradation; (iii) competition for receptor sites; (iv) inhibition

of gene expression; (v) removal of AIs (Kalia et al., 2019). For

example, mutations in the LasR/pqsH/cdpR gene appear to

influence QS in biofilm, which have inspired the creation of

gene-targeted drugs (Kuang et al., 2020). While urea in urine has
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been reported to suppress bacteria by interfering with the QS

signaling communication (Kang et al., 2017). Due to this, some

experts argue that QS is almost negligible in urinary tract

infections (Feltner et al., 2016; Kang et al., 2017; Cole et al.,

2018). The occurrence ascribed to downregulation or silencing

of the QS system is called quorum quenching (Rajput & Kumar,

2017). Most QS rely on acyl-homoserine lactone (AHL), AIP

and AI-2 for communication (Kim et al., 2017; Kim et al., 2018).

Therefore, QS can be modulated by using analogs of the above

signaling molecules (Billerbeck et al., 2018).

As already mentioned previously, host reactions with FnBPs

and ClfA are decisive drivers of bacterial virulence, and therapies

based on intervening FnBPs and Clfs may be another effective

way to prevent initial adhesion (Flick et al., 2013).

Autophagy originally refers to the degradation behavior of

long-lived proteins and organelles in eukaryotic cells upon

binding to lysosomes. Recently, autophagy has been found to

be linked to infectious conditions and plays a vital role (Huang

et al., 2011). During bacterial infection, autophagy can be

activated by a variety of host factors and pathways, including

the formation of autophagosomes around the targeted bacteria

and then transferring these pathogens to lysosomes for further

degradation (Sparrer et al., 2017). However, bacteria have

evolved multiple strategies to interfere with autophagic signals

to avoid autophagy, and in some cases bacteria can even utilise

autophagy to benefit their survival (Holla et al., 2014).

Autophagosomes begin at the phagocytic assembly site (PAS),

an endoplasmic reticulum (ER) sub-structural domain rich in

phosphatidylinositol 3-phosphate (PtdIns3P) (Huang &

Brumell, 2014). A set of autophagy-associated (ATG) proteins

is a critical player in precisely regulating autophagy (Moreau

et al., 2014). Studying the interactions among bacterial factors

and ATG proteins will be emphasized in the future for the

treatment of bacterial infections. In physiological conditions,

complement protein C3 is deposited on invasive pathogens, and

Matthew T Sorbara et al. utilized C3 complement to trigger

antimicrobial cell autophagy intracellularly (Sorbara et al., 2018).

The role of selective macroautophagy in targeting intracellular
TABLE 2 Factors associated with biofilm maturation and diffusion.

Factors Effects Ref.

ribosomal
proteins
SspB、SspA
FnBPs
Bap
eDNA
PSMs
Surfactants
D-amino
Psl

Facilitating biofilm stabilization and maturation.
SspB is a crucial factor of bacterial virulence.
Allowing cells to interconnect during biofilm accumulation.
One of the essential proteins for biofilm formation. Promoting biofilm formation through a mechanism isolated from
the biofilm-associated polysaccharide PNAG.
(i) Mediating the interaction of biofilms with other matrix components for resilient stress;
(ii) Maintaining biofilm stability;
(iii) Inducing host immune defense.
Stimulating diffusion behavior of mature biofilms.
Inhibiting the continued growth of biofilms and shifting biofilm towards breakage.
Induce the release of amyloid fibrils and prevent biofilm formation; A common signal for biofilm breakdown.
Protects bacteria from the direct effects of antibiotics.

(Guilhen et al., 2016)
(Bonar et al., 2016)
(Foster, 2016)
(Matilla-Cuenca et al., 2020)
(Mottola et al., 2016)
(Peterson et al., 2013; Lei et al.,
2019; Sultan et al., 2019)
(Periasamy et al., 2012)
(Zhao et al., 2013; Dane et al.,
2014; Ueda et al., 2019)
(Kolodkin-Gal et al., 2010; Leiman
et al., 2013)
(Welp & Bomberger, 2020)
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pathogens for lysosomal degradation is a relatively well-

established direction as well as the immune effect of

xenophagy (Kimmey & Stallings, 2016). Although autophagy

mainly eliminates planktonic and intracellular bacteria, this is

prospective for the prevention of biofilm formation (Wu &

Li, 2019).

Modulation of the surface where bacteria adhere with the

increasing popularity of surgical implants, bacterial adhesion

infection is becoming more common. Therefore, it is an

innovative approach to make anti-bacterial implant by

modifying their surface characteristics. The application of

biocides coated on the surface of implants is an effective

inhibitor of biofilm formation, but has not been used on a

large scale in clinical practice due to toxicity and other

limitations. Natural and effective biofilm inhibitor coatings to

alter the surface of implants have become the focus of new

research. Multi-species biofilms formed by Escherichia coli and

S. aureus can be effectively eliminated by coating with various

silver coatings (Hou et al., 2020; Lee et al., 2021). Nanotopologies

kill bacteria within minutes by penetrating their membranes

with mechanical force. Duy H K Nguyen et al. developed a 35

nm diameter silica nanopillar to rupture P. aeruginosa and the

sterilizing rate was up to 85%, but less than 10% for S. aureus,

indicating the effectiveness and non-broad-spectrum limitations

of nanomaterial topography for antibacterial activity (Nguyen

et al., 2019). Nanostructured mechanical sterilization is assumed

to be realized by piercing the phospholipid bilayers of microbes.

Titanium surfaces with pocket-type nanostructures killed nearly

50% of the initially adherent bacteria and effectively prevented

potential recurrence (Cao et al., 2018).
Disrupt biofilm

Antimicrobial peptides (AMPs), which target bacterial

membranes, are generally amphiphilic cationic micromolecules

consisting of 10-50 amino acids with broad-spectrum

antimicrobial capacity and retaining high sensitivity to

metabolically dormant bacteria in biofilms (Jiang et al., 2022).

AMPs are commonly applied in combination with antibiotics

and other anti-biofilm compositions to combat biofilms. As an

integral member of innate immunity, the host defense peptide

(HDP) directly targets planktonic cells and exhibits both anti-

biofilm and host-directed immunomodulatory activity. Recently,

there have been increasing reports referring to the emerging

anti-biofilm properties of HDPs that are different from those

previously recognized. Meanwhile, the synergistic effects with

other therapeutic approaches such as antibiotics are making

HDPs shine in the fight versus biofilms. Daniel T. Cohen et al.

synthesized antimicrobial peptide-vancomycin complexes by

using coupling chemistry and proved the broad-spectrum

antimicrobial effect of the complexes exceeding vancomycin in

vitro (Cohen et al., 2019).
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The exploitation of antimicrobial nanomaterials as a

substitute for antibiotics is currently a hot spot in medicine

with promising prospects. The micro diameter of the

nanomaterials is pivotal to their functions. However, a

considerable number of nanoparticles tend to aggregate in

solution, which may limit their application with photothermal

therapy (PTT)/Photodynamic therapy (PDT). An effective

approach to overcome this barrier is to use polymers (e.g.,

PEG, and BSA) to carry them as well as to conduct the

necessary surface functionalization to enhance dispersibility

and biocompatibility (Jiang et al., 2022).

In the last century PTT has entered a phase of rapid

development and is widely used to fight against cancer and

microbial infections (Cheng et al., 2015; Qi et al., 2018; Deng

et al., 2020; Yang et al., 2020). PDT requires applying specific

wavelengths of light upon photosensitizers to produce reactive

oxygen species (ROS) in the specific inflammatory

microenvironment, which can lead to bacterial damage and

even death. However, excessive amounts of ROS may also

harm normal tissues and be detrimental to wound recovery,

which is one of the challenges to be overcome for novel

photothermal therapies (Mitsunaga et al., 2011). As regards

how PDT kills bacteria hidden within the biofilm, it may be

due to the destruction of the channels engaged in the transport

of nutrients to the core region and the loss of biofilm integrity

(Xie et al., 2018). In recent years, many nanomaterials possess

both exce l l en t ant ibac te r ia l proper t i e s and good

biocompatibility, some of which have strong killing effect on

drug-resistant bacteria. However, these photothermal effects

cause certain damage to normal tissues while exerting

antibacterial properties, which is not conducive to wound

recovery. Therefore, the preparation of low-cost, rapid and

effective antibacterial and tissue repair nano-composite

materials has become one of the research frontiers. From a

synergistic perspective, the combination of PDT and PTT

maximizes efficacy and meanwhile minimizes side effects (Zou

et al., 2019).

Triggered gas-releasing nanoparticles that serve as gas

donors or gas carriers to apply as a substitute to conventional

antibacterial drugs in medicine. Bactericidal gase s, such as

hydrogen sulfide (H2S), NO and hydrogen (H2), are emerging

to provide for efficient gas therapy for infectious illnesses

combined with an excellent biosafety in vivo (Su et al., 2022).

Gas therapy is frequently synergized with near infrared (NIR)

stimulated phototherapies (e.g., PTT or PDT). NO gas exhibit

powerful anti-biofilm efficacy primarily through mediating

bacterial DNA damage. Besides, NO has the potential to

eradicate bacterial biofilms in host by stimulating M1

polarization of macrophages. In contrast, the anti-

inflammatory properties of carbon monoxide (CO) and NO

can mitigate the inflammation-related response in the anti-

biofilm process. H2S is another DNA-damaging mutagen, but

it exerts an anti-inflammatory effect by facilitating the
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polarization of M2 macrophages, i.e., it has the advantage of

both NO and CO, which can diminish the negative effects of

PTT while improving the therapeutic effect and eliminating the

biofilm. Up-to-date researches focus more on the smart

responsive gas release function of nanoparticles to achieve

spatio-temporal regulation, thus improving the sustainability

and controllability of treatment. Nano-carrier MoS2-BNN6 can

not only effectively treat Escherichia coli and S. aureus, but also

provides precise control of NO release by irradiating with 808

nm laser. Then, Mos2-BNN6 destroys cell membranes through

PTT/NO, which synergistically induced ROS. At the same time,

MoS2 also accelerated the oxidation of GSH under 808nm

irradiation, destroyed the balance of antioxidant in bacteria,

shortened the treatment time, and achieved efficient bacterial

inactivation within 10 minutes (>97.2%). In addition, mos2-

BNN6 nanocarriers can release NO at low concentrations after

infection control, promoting tissue repair (Gao et al., 2018). AI-

MPDA, an integrated phototherapy nanoplatform composed of

L-Arginine (L-ARG), indocyanine green (ICG) and mesoporous

polydopamine (MPDA), provides PTT and PDT via generating

ROS to induce the l-ARG cascade catalytic release of NO (Yuan

et al., 2020). In April 2021, a Chinese scholar reported a dual-

acting nanoparticles, deoxyribonuctinase I (DNase I)-CO-

mesoporous polydopamine nanoparticles (MPDA NPs),

featured controlled release of CO gas by NIR. DNase-CO@

MPDA NPs that can effectively eliminate methicillin-resistant

MRSA biofilms were made by encapsulating the photosensitive

CO donor FeCO in MPDA NPs and then covalently anchoring

DNase I on the surface of MPDA NPs. under NIR irradiation,

the released DNase I can degrade eDNA in biofilm and disrupt

the outer sphere of biofilm. Simultaneously, CO gas is released,

which can fully infiltrate the damaged biofilm and thoroughly

eradicate the residual bacteria. Finally, NIR-activated DNase I-

CO@MPDA NPs promotes healing of infected skin wounds by

locally accelerating CO release, which may be related to CO

increasing mitochondrial biogenesis and driving mitochondrial

increased ATP production (Yuan et al., 2020). Jun Li et al.

published an exogenous antibacterial agent composed of Zinc-

doped Prussian blue (ZnPB), which can accelerate the emission

and infiltration of ions into microbes by local heat induced by

photothermal effect, resulting in changes in cellular metabolic

changes. Besides, ZnPB upregulates the expression of genes

involving in cell proliferation, promoting collagen deposition

and facilitates wound healing (Li et al., 2019).

Gallium (Ga)-based nanoparticles has been tested to eradicate

biofilms inmice and achieved an excellent result in vivo and in vitro.

The PDT effect induced by ICG-Ga NPs destroys bacterial

membranes and accelerates the endocytosis of Ga3+, which

substitutes ions in bacteria with Ga3+ blocks bacterial iron

metabolism, exerting a synergistic effect of bacterial killing and

biofilm destruction. The ultra-small size of ICG-Ga NPs can be

removed rapidly by the kidney, guaranteeing the biocompatibility

(Xie et al., 2021). Another recently proposed article of the exact
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opposite mechanism of anti-inflammatory action of classical Ga

ions (Ga3+) via delivering Ga nanodroplets (GNDs) to

lipopolysaccharide-induced macrophages. GNDs exerted a

selective inhibition of NO generation without interfering with the

accumulation of pro-inflammatory agents by disrupting the

synthesis of inducible NO synthase in activated macrophages

through up-regulation of eIF2a phosphorylation levels, without

disturbing Fe homeostasis (Zhang et al., 2022). A lipophilic Ga

complex, Ga2L3(bpy)2, has both Ga (disruption of iron

metabolism) and ligand effects (production of ROS) in the fight

against drug-resistant bacteria (Wang et al., 2021).

As a star material of the century, graphene and its derivatives

have got a splash in the medical field due to its favorable

biocompatibility and antibacterial potential (Cao et al., 2021).

Compared to other nanocomposites, graphene is cheap,

environmentally friendly and easy to manufacture. The graphene

oxide (GO) can produce mechanical damage and oxidative stress

to biofilms (Palmieri et al., 2017). An innovative protective coating

based on graphene and hydrogels has been proposed as new anti-

biofilm coating material to prevent microbial adhesion (Cacaci

et al., 2020). GO films can be used as biocompatible sites for

bacterial adhesion on their surfaces (Ming et al., 2020). Graphene-

based nanomaterials (GBNMs), with their unique structures and

extraordinary physicochemical properties, have been intensively

investigated and widely used in many biomedical fields to improve

bactericidal efficacy and reduce adverse effects in the treatment of

bacterial biofilm (Wang et al., 2022).
Combined immunotherapy

It is known that biofilms preserve their dominance by

suppressing host immunity, and thus modulating body

immunity to regain a proactive status is a pressing medical

issue (Heim et al., 2020). The studies of the interaction between

bacteria and the host immune system to adapt and develop

strategies for the treatment of bacterial infections is an extremely

promising new path. Intrinsic immunity has evolved with the

body over tens of thousands of years and has a well-established

and elaborated system, and the skillful activation of some

beneficial immune capacity can be pivotal and essential in

combating biofilms (Campos & Zampieri, 2019). The most

prospective is the activation of in situ immunity via advanced

biomimetic nanomaterials that act as vaccines to produce a

powerful and sustained antimicrobial effect with self-immune

cells, such as neutrophils, macrophages, and DCs (Kimkes and

Heinemann, 2020).

As antigen-presenting cells, DCs are core in stimulating and

mediating the host immune system, and numerous previous

works have revealed that DCs perform a key function in

initiating antigen-specific immunity and immune tolerance

when facing with bacterial infections (Sabado et al., 2010; Cao

et al., 2013). The cGas/sting-IFN1 pathway, which is known to
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sense accumulation of nucleic acids and induce inflammatory

responses, is crucial in the immune response of DC cells. The

cGas/sting-IFN1 pathway has made significant progress in the

treatment of cancer (Thomas et al., 2017; Alicea-Torres et al.,

2021). With the presence of biofilm, various inflammatory

mediators produced by the bacterial inflammatory response

can upregulate DC-Sting by enhancing DCs to engulf bacteria

via targeting C-type lectin (CTL), which is specific in the

recognition and capture of pathogens by DCs and the

subsequent generation of effector T cell (Ramakrishna et al.,

2019). However, it has been reported that in vitro co-culture

assays of biofilms, DCs maturation got stunted and CTL

expression decreases significantly, which means the powerful

STING pathway may be inactivated (Srikanth et al., 2019).

Eventually, DCs convert from antigen-capturing cells to

antigen-presenting cells, leading to adaptive immune

dysregulation and persistent growth and random invasion of

microorganisms in DCs (El-Awady et al., 2015). Kaya, E et al.

reported that significant activation of CD56(+) CD3(-) natural

killer cells was observed after co-culture of peripheral blood

mononuclear cells (PBMC) and bacterial biofilms. Natural killer

(NK) cells exert not only direct antibacterial effects, but also

interact with other immune cells through cytokines such as

perforin and interferons to generate indirect antibacterial

activity. Thus, transmigration of NK cells to local infectious

sites may be a promising option (Schmidt et al., 2016)

As effector cells of the innate immune system, neutrophils

are involved in a variety of immune inflammatory response

processes. Neutrophils exert extracellular neutrophil traps

(NETs) through the cell death program of suicidal NETosis.

The reticular DNA structure released by the extrusion of

genomic DNA is a siege for invading pathogens and

preventing dissemination (Dhanesha et al., 2020). Nuclear and

granule protein (histone G and proteinase 3, etc.) will soon

eliminate the trapped bacteria by binding to the reticular DNA

(Dhanesha et al., 2020). S. aureus biofilms skewed neutrophil to

neutrophil NETs formation via the combined activity of the

leukocyte inhibitor Panton-Valentine leukocyte inhibitor and g-
hemolysin AB causing the antibacterial activity of NETs to be

ineffective in eliminating biofilm and even exacerbating biofilm

infection (Bhattacharya et al., 2018). Current research aims to

treat refractory bacterial infections by targeting neutrophil

development and proliferation to regulate the accumulation of

neutrophils at the site of infection and to mitigate the deleterious

effects of NETs (Nemeth et al., 2020). Augmentation of

neutrophil numbers and function by adding G- CSF,

inhibiting CXCR4 and blocking CD47-SIRPa interactions may

be a therapeutic approach to enhance the function of neutrophils

in infections (Németh et al., 2020).

Macrophages function centrally in antimicrobial immunity,

with recognition, phagocytosis and bactericidal capabilities

(Serezani et al., 2009). There is growing evidence that S. aureus

biofilm infection in PJIs establishes an immunosuppressive
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environment associated with myeloid-derived suppressor cells

and M2-macrophages (Peng et al., 2017). Therefore, in the

battle against biofilms, it is crucial to convert macrophages from

the immunosuppressive M2 type to the antimicrobial M1 type

(Lei et al., 2019). Gold nanoclusters (Au NCs) coupled with

mercaptopyrimidines can be used as highly effective

nanoantibiotics that can target and kill bacteria. The

antibacterial mechanism is disruption of biofilm structure, such

as eDNA induction of ROS production and macrophage

polarization (Zheng et al., 2018). He et al. forged an

antimicrobial polymer polyhexamethylene biguanide (PHMB)

hybridized with gold nanoparticles (Au NPs) platform

(PHMB@Au NPs). PHMB@Au NPs exhibit superior synergistic

effect to enhance both photothermal bactericidal effect under NIR

irradiation and tissue repair by converting macrophages from M1

type to M2 type (He et al., 2022). The mechanisms and period of

action of the various treatments are summarized in Table 3.
Conclusion

There are numerous and disparate approaches to prevent,

treat, and eradicate biofilms in clinical practice, but ultimately

there is a lack of comprehensive and uniform understanding of

the overall physio-pathological process of biofilm-induced

inflammation, resulting in a dearth of effective treatments and

alternative strategies for serious bacterial infections and chronic

refractory biofilm inflammation that occur after surgical

operations. The necessity to reasonably tailor the treatment by

understanding the characteristics of the biofilm itself. The

therapeutic approaches we present above are based on three

major components. Firstly, we aim to preempt to thwart the

ability of planktonic bacteria to form further biofilms during the

migration and initial surface adhesion phase. Secondly, we

design to destroy the developing seeds through a combination

of therapeutic approaches between initial adhesion and biofilm

maturation stages. Thirdly, we plan to stop the spread of

planktonic bacteria at the time of biofilm dispersal to contain

the development of biofilms.

Conventional antibiotic therapy is often insufficient to

eradicate biofilm infections. Rather than the singular therapy

of the direct treatment of biofilm formation or proliferation, we

recommend combination therapies that are intelligently targeted

according to the characteristics of their material composition at

each stage of formation. The advantages of these special

therapies have been described in detail above, but there are

still some shortcomings that need to be overcome.

Numerous studies on interfering QS systems and other

signaling pathways have been reported, but there is still a lack

of sufficient animal models to confirm the applicability of such

methods in vivo. Investigations of QSI in vivo need to be further

enhanced and optimized to reach the level of clinical application
frontiersin.org

https://doi.org/10.3389/fcimb.2022.1003033
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Ma et al. 10.3389/fcimb.2022.1003033
TABLE 3 Summary of therapeutic approaches to inhibit biofilm formation.

Therapeutic method Mechanism of effects Stage of biofilm formation Ref.

QSI and other signal
blockers

Initial
adehesion

Colony
formation

Maturation Dispersiona
and second
adhesion

RsaL Reduces QS signals and securing homeostasis by
performing a counter role to LasR.

✕ □□ ✔□ ✕ (Kang et al., 2017)
(Cole et al., 2018)
(Balaban et al., 2007)
(Wang et al., 2017;
Sethupathy et al., 2020)

Urea Interfering with the quorum sensing pathway, inactivating
it.

✕ □□ ✔□ ✕

RIP Downregulates TRAP/AGR system and disorders biofilm
formation.

✕ ✔□□ ✔□ ✕

Indole Perturbs bacterial QS and inhibiting biofilm formation and
virulence factor emission.

✕ ✔□□ ✔□ ✕

AHL lactonase Degrades or inactivates AHL. ✕ ✔□ ✔□ □ (Liu et al., 2018)

Implant topography
Nanotopological structural
surface

Prevent bacterial adhesion, mechanical stress sterilization. ✔□ ✕ ✕ ✔□ (Yi et al., 2019; Khalid
et al., 2020; Velic et al.,
2021; Zheng et al., 2021)

Nanomaterials
Gallium (Ga)-based
(i) ICG-Ga NPs
(ii) Ga nanodroplets

Gallium(III) exhibits superior multi-targeted antibacterial
activity.
Maintaining pro-inflammatory antibacterial
microenvironment and reduce NO release.

✔□□ ✔□□ ✔□□ ✔□ (Vinuesa & McConnell,
2021; Li et al., 2022)

Graphene-based
(i) graphene oxide (GO)
(ii) Magnetic Graphene-
Based Sheets
Mn-based
(i) hybrid
membrane@MnOx@PpIXP
(ii) Manganese salts

improving bactericidal efficacy and reduce adverse effects in
the treatment.
Capture and destroy bacteria by high frequency magnetic
field.
Activating cellular and humoral adaptive immunity against
bacterial infections.
As an immune adjuvant to activate cytotoxic T cells.

✔□□ ✔□□ ✔□□ ✔□□ (Dasari Shareena et al.,
2018)
(Hardiansyah et al.,
2020)
(Lin et al., 2022)
(Zhang et al., 2021)

✔□ ✔□□ ✔□□ ✔□□

Antimicrobial agents
host defense peptide
(HDP)
Human Calprotectin (CP)
D-tyrosine
DNase
Artificial monoclonal
antibodies

Multifunctional effectors of the innate immune system with
antibacterial and pleiotropic immunomodulatory
properties.
Chelates iron, manganese, zinc and other trace elements
necessary for bacterial metabolic survival, leading to
disruption of bacterial metabolism.
Inhibits bacterial biofilm formation and triggers
decomposition with species specificity.
Degrades eDNA in biofilms.
Specifically targeting certain components of the biofilm
surface.

✔□□ ✔□□ ✔□ ✔□ (Yu et al., 2020)
(Nakashige et al., 2015)
(Yu et al., 2016)
(Novotny et al., 2016)

✔□ ✔□□ ✔□ ✔□□

✔□ ✔□□ ✔□ ✔□

✕ ✔□ ✕ ✔□

□□ ✔□ ✕ □□

Immunotherapy
Dendritic cells (DCs)
(i) nanovaccines
synergized with adoptive
DC transfer.
(ii)Activation of cGas-
STING-IFN I
Neutrophils
(i) neutrophil-derived drug
delivery systems.
Macrophages
(i) MW-responsive
engineered pseudo-
macrophages.
(ii) CuFe5O8 nanocubes
(NCs).

(i) Inducing IgA production.
(ii) Initiating specific immunity such as T-cells by directly
phagocytosing bacteria and presenting antigens.
killing bacteria directly after activation.
M1 polarization promotes the elimination of biofilms.
M2 polarization was not conducive to biofilm removal.

✔□ ✔□□ ✔□□ □□ (Akazawa et al., 2018;
Mi et al., 2021)
(Xiao et al., 2021)
(Zhou et al., 2022)
(Kim et al., 2021; Wang
et al., 2021)
(Rao et al., 2020; Fu
et al., 2021)
(Guo et al., 2020)

✔□ ✔□□ ✔□ □□

✔□ ✔□□ ✔□□ □□
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✔✔ □□ means good effect; ✔ □means a little effect; ✕ means little effect.
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to better overcome severe inflammations arising from antibiotic-

resistant pathogens (Seghal Kiran et al., 2016). Disruption of

biofilm structure is also a viable and effective strategy, but it

often requires combination of sensitive antibiotics to eradicate

the remaining bacteria within the biofilm. Antimicrobial

topological surface have been explored for years, but it

functions mainly in the early adhesion stage and the

underlying mechanisms are still unclear and the diverse effects

of topographies such as micropillars, rows and concaves,

especially at the nanoscale, need to be explored further

(Echeverria et al., 2020).

While local drug injections and ultrasound therapy are still

commonly used to combat implant infections, these alone are

not sufficient to deal with recalcitrant drug-resistant bacteria,

and surgical debridement is often ineluctable eventually. Hence,

combining treatments depending on the period of biofilm

formation described in this review will be necessary to

eradicate the biofilm utterly.

The application of nanomaterials has opened a new chapter

in the field of antibacteria, but the impacts of the materials

themselves on the host remains a thorny issue that cannot be

avoided. Admittedly, although nanotechnology and membrane-

coatings enable materials to be more biocompatible and

powerful, the practicality and durability of such composite

materials hinder their further application. The emerging

biomimetic nano vaccine technology further refines the nano

antimicrobial therapy. As artificial nanocomposites wrapped by

host cell membranes, biomimetic vaccines possess excellent

biocompatibility and different immunophysiological

characteristics based on the coating membranes. For example,

nanomaterials covered with macrophage membranes can target

bacterial infections autonomously through toll-like receptors

(TLRs) on the coating (Lin et al., 2022). Moreover, membranes

from erythrocytes, platelets, tumor cells and other cells are

available for generating bionic antibacterial materials and

deserve further investigation (Xiang et al., 2021).

Despite current comprehensive and significant advances in

biofilm therapy, the popularity of “biofilm” has kept the term at

the forefront of any literature on bacterial infections. Therefore,

in the future, we need to further develop the above-mentioned

biofilm treatment strategies and combine them with each other
Frontiers in Cellular and Infection Microbiology 13
to perform a comprehensive therapeutic system from prevention

to eradication and eventually to prevent recurrence, so as to

completely stop any possible development of biofilm and to

eliminate inflammatory infections in their cradle.
Author contributions

RM, XH wrote the manuscript. CZ revised the review. All

authors contributed to the article and approved the

submitted version.
Funding

This work was supported by the National Natural Science

Foundation of China (Grant No. 81871788), the Key Research

and Development Program of Anhui Province (No.

202004j07020013 and 2022e07020017), the Natural Science

Foundation of Anhui Province (Grant No. 2108085QH319),

the Fundamental Research Funds for the Central Universities

(Grant No. WK9110000173), the National Natural Science

Foundation of China (82102586); the Fundamental Research

Funds for the Central Universities (WK9110000155).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
Akazawa, T., Ohashi, T., Wijewardana, V., Sugiura, K., and Inoue, N.
(2018). Development of a vaccine based on bacteria-mimicking tumor cells
coated with novel engineered toll-like receptor 2 ligands. Cancer Sci. 109 (5),
1319–1329. doi: 10.1111/cas.13576

Alicea-Torres, K., Sanseviero, E., Gui, J., Chen, J., Veglia, F., Yu, Q., et al. (2021).
Immune suppressive activity of myeloid-derived suppressor cells in cancer requires
inactivation of the type I interferon pathway. Nat. Commun. 12 (1), 1717.
doi: 10.1038/s41467-021-22033-2

Balaban, N., Cirioni, O., Giacometti, A., Ghiselli, R., Braunstein, J. B., Silvestri,
C., et al. (2007). Treatment of staphylococcus aureus biofilm infection by the
quorum-sensing inhibitor RIP. Antimicrob. Agents Chemother. 51 (6), 2226–2229.
doi: 10.1128/aac.01097-06

Bannoehr, J., Ben Zakour, N. L., Reglinski, M., Inglis, N. F., Prabhakaran, S., Fossum,
E., et al. (2011). Genomic and surface proteomic analysis of the canine pathogen
staphylococcus pseudintermedius reveals proteins that mediate adherence to the
extracellular matrix. Infect. Immun. 79 (8), 3074–3086. doi: 10.1128/iai.00137-11

Beebout, C. J., Sominsky, L. A., Eberly, A. R., Van Horn, G. T., and Hadjifrangiskou,
M. (2021). Cytochrome bd promotes escherichia coli biofilm antibiotic tolerance by
regulating accumulation of noxious chemicals. NPJ Biofilms Microbiomes 7 (1), 35.
doi: 10.1038/s41522-021-00210-x
frontiersin.org

https://doi.org/10.1111/cas.13576
https://doi.org/10.1038/s41467-021-22033-2
https://doi.org/10.1128/aac.01097-06
https://doi.org/10.1128/iai.00137-11
https://doi.org/10.1038/s41522-021-00210-x
https://doi.org/10.3389/fcimb.2022.1003033
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Ma et al. 10.3389/fcimb.2022.1003033
Bhat, A. H., Nguyen, M. T., Das, A., and Ton-That, H. (2021). Anchoring surface
proteins to the bacterial cell wall by sortase enzymes: How it started and what we
know now. Curr. Opin. Microbiol. 60, 73–79. doi: 10.1016/j.mib.2021.01.013

Bhattacharya, M., Berends, E. T. M., Chan, R., Schwab, E., Roy, S., Sen, C. K.,
et al. (2018). Staphylococcus aureus biofilms release leukocidins to elicit
extracellular trap formation and evade neutrophil-mediated killing. Proc. Natl.
Acad. Sci. U.S.A. 115 (28), 7416–7421. doi: 10.1073/pnas.1721949115

Billerbeck, S., Brisbois, J., Agmon, N., Jimenez, M., Temple, J., Shen, M., et al.
(2018). A scalable peptide-GPCR language for engineering multicellular
communication. Nat. Commun. 9 (1), 5057. doi: 10.1038/s41467-018-07610-2

Bonar, E., Wojcik, I., Jankowska, U., Kedracka-Krok, S., Bukowski, M.,
Polakowska, K., et al. (2016). Identification of secreted exoproteome fingerprints
of highly-virulent and non-virulent staphylococcus aureus strains. Front. Cell
Infect. Microbiol. 6. doi: 10.3389/fcimb.2016.00051

Cacaci, M., Martini, C., Guarino, C., Torelli, R., Bugli, F., and Sanguinetti, M.
(2020). Graphene oxide coatings as tools to prevent microbial biofilm formation on
medical device. Adv. Exp. Med. Biol. 1282, 21–35. doi: 10.1007/5584_2019_434

Campos, A. I., and Zampieri, M. (2019). Metabolomics-driven exploration of the
chemical drug space to predict combination antimicrobial therapies. Mol. Cell 74
(6), 1291–1303.e1296. doi: 10.1016/j.molcel.2019.04.001

Cao, Y., Bender, I. K., Konstantinidis, A. K., Shin, S. C., Jewell, C. M., Cidlowski,
J. A., et al. (2013). Glucocorticoid receptor translational isoforms underlie
maturational stage-specific glucocorticoid sensitivities of dendritic cells in mice
and humans. Blood 121 (9), 1553–1562. doi: 10.1182/blood-2012-05-432336

Cao, Y., Su, B., Chinnaraj, S., Jana, S., Bowen, L., Charlton, S., et al. (2018).
Nanostructured titanium surfaces exhibit recalcitrance towards staphylococcus
epidermidis biofilm formation. Sci. Rep. 8 (1), 1071. doi: 10.1038/s41598-018-
19484-x

Cao, G., Yan, J., Ning, X., Zhang, Q., Wu, Q., Bi, L., et al. (2021). Antibacterial
and antibiofilm properties of graphene and its derivatives. Colloids Surf B
Biointerfaces 200, 111588. doi: 10.1016/j.colsurfb.2021.111588

Carnes, E. C., Lopez, D. M., Donegan, N. P., Cheung, A., Gresham, H., Timmins,
G. S., et al. (2010). Confinement-induced quorum sensing of individual
staphylococcus aureus bacteria. Nat. Chem. Biol. 6 (1), 41–45. doi: 10.1038/
nchembio.264

Carniello, V., Peterson, B. W., van der Mei, H. C., and Busscher, H. J. (2018).
Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm
growth. Adv. Colloid Interface Sci. 261, 1–14. doi: 10.1016/j.cis.2018.10.005

Charbonneau, M. E., Girard, V., Nikolakakis, A., Campos, M., Berthiaume, F.,
Dumas, F., et al. (2007). O-Linked glycosylation ensures the normal conformation
of the autotransporter adhesin involved in diffuse adherence. J. Bacteriol. 189 (24),
8880–8889. doi: 10.1128/jb.00969-07

Cheng, Y., Cheng, H., Jiang, C., Qiu, X., Wang, K., Huan, W., et al. (2015).
Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour
growth inhibition in photodynamic therapy. Nat. Commun. 6, 8785. doi: 10.1038/
ncomms9785

Chen, Y., Harapanahalli, A. K., Busscher, H. J., Norde, W., and van der Mei, H.
C. (2014). Nanoscale cell wall deformation impacts long-range bacterial adhesion
forces on surfaces. Appl. And Environ. Microbiol. 80 (2), 637–643. doi: 10.1128/
AEM.02745-13

Claes, J., Ditkowski, B., Liesenborghs, L., Veloso, T. R., Entenza, J. M., Moreillon,
P., et al. (2018). Assessment of the dual role of clumping factor a in s. aureus
adhesion to endothelium in absence and presence of plasma. Thromb. And
Haemostasis 118 (7), 1230–1241. doi: 10.1055/s-0038-1660435

Cohen, D. T., Zhang, C., Fadzen, C. M., Mijalis, A. J., Hie, L., Johnson, K. D.,
et al. (2019). A chemoselective strategy for late-stage functionalization of complex
small molecules with polypeptides and proteins. Nat. Chem. 11 (1), 78–85.
doi: 10.1038/s41557-018-0154-0

Cole, S. J., Hall, C. L., Schniederberend, M., Farrow Iii, J. M., Goodson, J. R.,
Pesci, E. C., et al. (2018). Host suppression of quorum sensing during catheter-
associated urinary tract infections. Nat. Commun. 9 (1), 4436. doi: 10.1038/s41467-
018-06882-y

Dane, E. L., Ballok, A. E., O'Toole, G. A., and Grinstaff, M. W. (2014). Synthesis of
bioinspired carbohydrate amphiphiles that promote and inhibit biofilms. Chem. Sci. 5
(2), 551–557. doi: 10.1039/c3sc52777h

Dapunt, U., Prior, B., Oelkrug, C., and Kretzer, J. P. (2020). IgY targeting
bacterial quorum-sensing molecules in implant-associated infections.Molecules 25
(17), 4027. doi: 10.3390/molecules25174027

Dasari Shareena, T. P., McShan, D., Dasmahapatra, A. K., and Tchounwou, P. B.
(2018). A review on graphene-based nanomaterials in biomedical applications and
risks in environment and health. Nanomicro Lett. 10 (3), 53. doi: 10.1007/s40820-
018-0206-4

Deng, W., McKelvey, K. J., Guller, A., Fayzullin, A., Campbell, J. M., Clement, S.,
et al. (2020). Application of mitochondrially targeted nanoconstructs to
Frontiers in Cellular and Infection Microbiology 14
neoadjuvant X-ray-Induced photodynamic therapy for rectal cancer. ACS Cent
Sci. 6 (5), 715–726. doi: 10.1021/acscentsci.9b01121

Dhanesha, N., Nayak, M. K., Doddapattar, P., Jain, M., Flora, G. D., Kon, S., et al.
(2020). Targeting myeloid-cell specific integrin a9b1 inhibits arterial thrombosis in
mice. Blood 135 (11), 857–861. doi: 10.1182/blood.2019002846

Dixit, D., Soppina, V., and Ghoroi, C. (2019). A non-electric and affordable
surface engineered particle (SEP) based point-of-Use (POU) water disinfection
system. Sci. Rep. 9 (1), 18245. doi: 10.1038/s41598-019-54602-3

Dziewanowska, K., Carson, A. R., Patti, J. M., Deobald, C. F., Bayles, K. W., and
Bohach, G. A. (2000). Staphylococcal fibronectin binding protein interacts with
heat shock protein 60 and integrins: Role in internalization by epithelial cells.
Infect. And Immun. 68 (11), 6321–6328. doi: 10.1128/IAI.68.11.6321-6328.2000

Echeverria, C., Torres, M. T., Fernández-Garcıá, M., de la Fuente-Nunez, C., and
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Agr Accessory gene regulator

AHL Acyl-homoserine lactone

AMPs Antimicrobial peptides

AIDA-I Adhesin involved in diffuse adherence

AI 2 Autoinducer 2

AIP Autoinducer peptide

ATG protein Autophagy-associated protein

BAP Biofilm Associated Protein

BSA Bovine serum albumin

CO Carbon monoxide

CWA Cell wall anchoring

Clfs Clustering factors

CTL C-type lectin

c-di-GMP Cyclic dimeric (3′!5′) GMP

cDNs Cyclic dinucleotides

DCs Dendritic cells

ER Endoplasmic reticulum

eDNA Extracellular DNA

EPS Extracellular polymeric substances

FnBPs Fibronectin binding proteins

Ga3+ Ga ions

GNDs Ga nanodroplets

Ga Gallium

GSH Glutathione

GO Graphene oxide

GBNMs Graphene-based nanomaterials

HDP Host defense peptide

H2 Hydrogen

H2S Hydrogen sulfide

ICG Indocyanine green

ica Intercellular adhesion

(Continued)
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IFN-g Interferon-gamma

L-ARG L-Arginine

MPDA Mesoporous polydopamine

MRSA Methicillin-resistant Staphylococcus aureus

MSCRAMMs Microbial surface components recognizing adhesive matrix
molecules

NK cells Natural killer cells

NIR Near infrared

NETs Neutrophil extracellular traps

NO Nitric oxide

PBMC Peripheral blood mononuclear cells

PAS Phagocytic assembly site

PSM Phenol-soluble modulins

PtdIns3P Phosphatidylinositol 3-phosphate

PDEs Phosphodiesterases

PDT Photodynamic therapy

PTT Photothermal therapy

PEG Polyethylene glycol

PHMB Polymer polyhexamethylene biguanide

PIA Polysaccharide intercellular adhesion

PJIs Prosthetic joint infections

QSI QS inhibitors

QS Quorum-Sensing System

ROS Reactive oxygen species

Sdr Serine-aspartate repeat

SCVs Small colony variants

sRNAs Small regulatory RNAs

TLRs Toll-like receptors

LuxS S-ribosylhomocysteine lyase S. aureus Staphylococcus aureus

IFN-I Type I interferon

US Ultrasonic

VRSA Vancomycin-resistant Staphylococcus aureus

WTAs Wall teichoic acids

ZnPB Zinc-doped Prussian blue
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