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Abstract

Mitochondrial DNA (mtDNA) content might undergo significant changes caused by meta-

bolic derangements, oxidative stress and inflammation that lead to development and pro-

gression of cardiovascular diseases. We, therefore, investigated in a general population the

association of peripheral blood mtDNA content with circulating metabolites and inflamma-

tory markers. We examined 310 subjects (50.6% women; mean age, 53.3 years) randomly

selected from a Flemish population. Relative mtDNA content was measured by quantitative

real-time PCR in peripheral blood cells. Peak circulating metabolites were quantified using

nuclear magnetic resonance spectroscopy. The level of inflammation was assessed via

established inflammatory markers. Using Partial Least Squares analysis, we constructed 3

latent factors from the 44 measured metabolites that explained 62.5% and 8.5% of the vari-

ance in the contributing metabolites and the mtDNA content, respectively. With adjustments

applied, mtDNA content was positively associated with the first latent factor (P = 0.002). We

identified 6 metabolites with a major impact on the construction of this latent factor including

HDL3 apolipoproteins, tyrosine, fatty acid with αCH2, creatinine, β-glucose and valine. We

summarized them into a single composite metabolite score. We observed a negative associ-

ation between the composite metabolic score and mtDNA content (P = 0.001). We also

found that mtDNA content was inversely associated with inflammatory markers including

hs-CRP, hs-IL6, white blood cell and neutrophil counts as well as neutrophil-to-lymphocyte

ratio (P�0.0024). We demonstrated that in a general population relative peripheral blood

mtDNA content was associated with circulating metabolites indicative of perturbed lipid

metabolism and with inflammatory biomarkers.
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Introduction

Atherosclerotic vascular disease is the leading cause of morbidity and mortality [1]. Develop-

ment and progression of atherosclerosis in vascular wall is associated with complex processes

of metabolic derangements, oxidative stress and inflammation [2]. Several lines of evidence

imply that mitochondrial DNA (mtDNA) damage and subsequent organelle dysfunction

might be the link between these processes [3–5].

Each mitochondrion contains several mtDNA molecules, susceptible to oxidative damage

[3]. Maintenance of sufficient mtDNA copy numbers (also referred as mtDNA content) is

important for cellular homeostasis [6]. Accumulation of mtDNA damage can perturb its repli-

cation and results in decreased mtDNA content [3, 7]. Previous experimental studies showed

that overproduction of reactive oxygen species (ROS) by mitochondrial enzymes causes

mtDNA damage and activation of proatherogenic inflammasomes [3, 8]. In murine aortic

wall, decreased mtDNA content preceded the development of detectable atherosclerotic

lesions [3]. In humans, lower mtDNA content measured in peripheral blood cells was observed

in patients with coronary heart disease and hyperlipidaemia as compared to healthy controls

[9, 10]. Of notice, a positive correlation was reported between mtDNA content measured in

atherosclerotic plaque tissue and in peripheral blood cells [9].

On the other hand, a metabolic signature indicative of mitochondrial dysfunction in the

elderly subjects was associated with adverse cardiovascular outcome independently of conven-

tional risk factors [11]. Accordingly, quantification of circulating metabolites improved pre-

diction of subclinical atherosclerosis in young adults [12]. Thus, it is plausible that metabolic

profiles and inflammation reflecting increased oxidative stress might be related to mitochon-

drial dysfunction. However, population data exploring associations of mtDNA content and

circulating metabolites and inflammatory markers are scarce. In the present study we, there-

fore, investigated in a general population sample whether mtDNA content measured in

peripheral blood cells is associated with circulating metabolites and markers of inflammation.

In our study, we explored the relation between mtDNA content and complete metabolite pro-

file measured by proton nuclear magnetic resonance (1H-NMR) spectroscopy rather than to

perform association analyses of mtDNA with some pre-selected metabolites.

Materials and methods

Study participants

As described in detail previously [13, 14], the Flemish Study on Environment, Genes and

Health Outcomes (FLEMENGHO) is a large ongoing family-based population study. The Eth-

ics Committee of the University of Leuven approved the FLEMENGHO study. All participants

gave written informed consent. From August 1985 until December 2002, we identified a ran-

dom population sample stratified by sex and age from a geographically defined area in north-

ern Belgium. Households, defined as people who lived at the same address, were the sampling

unit. We numbered households consecutively and generated a random number list by use of

SAS random function. Households with a number matching the list were invited; household

members older than 18 years were eligible. The initial response rate was 78%. From 2005–

2010, 316 former participants were re-examined at the field centre, in whom we also measured

peripheral blood mtDNA content, circulating serum metabolites and inflammatory markers.

Of those, we excluded 6 subjects from analysis because the quality of mtDNA measurement

(n = 2) or metabolites measurement (n = 4) was insufficient. Thus, we included into the analy-

sis 310 subjects in whom mtDNA content, circulating metabolites and inflammatory markers

were successfully measured.

mtDNA content, metabolites and inflammatory markers
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Clinical measurements

The complete protocol of the clinical measurements was described in details elsewhere [13,

14]. Briefly, on the day of the examination, participants completed a validated questionnaire

inquiring into life-style, medical history and intake of medications. Trained nurses measured

anthropometric characteristics and blood pressure five times consecutively to the nearest 2

mmHg after the participants had rested for 5 minutes in the sitting position. Hypertension was

a blood pressure of at least 140 mmHg systolic or 90 mmHg diastolic or use of antihypertensive

drugs. Body mass index was weight in kilograms divided by the square of height in meters.

Diabetes mellitus was determined by self-reported diagnosis, fasting glucose level of at least

126 mg/dL, or use of antidiabetic agents. Venous blood samples were drawn for measurement

of blood glucose, serum creatinine, cholesterol as well as “classical” markers of inflammation

such as high sensitivity C-reactive protein (hs-CRP) and interleukin-6 (hs-IL-6). A differential

blood cell count was performed using an automated analyser.

Metabolite analysis

To measure the level of peak circulating metabolites in the participant’s serum samples we

used proton nuclear magnetic resonance (1H-NMR) spectroscopy as described previously

[15]. A detailed description of the metabolite detection, identification and quantification is

provided in the S1 Appendix Methods. Briefly, after initial preparation samples were trans-

ferred into high resolution NMR tubes. For all samples 1H-NMR signals were recorded in a

Bruker Avance DRX 600 spectrometer (Rheinstetten, Germany). The obtained 1H-NMR sig-

nals were Fourier transformed into frequency spectra. Chemical shift referencing on a stan-

dard signal was performed in all spectra and used together with available spectral databases to

identify the metabolites. Metabolite signals were integrated and quantified using in-house

MATLAB peak-fitting routines.

Measurement of mtDNA content

To determine the peripheral blood mtDNA content we used a real time quantitative polymer-

ase chain reaction (qPCR) assay, as described previously [14]. A detailed description of the

qPCR assay and calculation of the relative mtDNA quantity (the mtDNA content) is provided

in the S1 Appendix Methods and S1 Table. Briefly, we extracted total genomic DNA from

peripheral blood samples, using the QIAmp DNA Mini Kit (QIAgen, Hilden, Germany).

Using qPCR, we amplified two stable mtDNA sequences (mitochondrially encoded NADH

dehydrogenase 1 (MT-ND1) and mitochondrial forward primer from nucleotide 3212 and

reverse primer from nucleotide 3319 (MTF3212/R3319) and one reference nuclear gene

(acidic ribosomal phosphoprotein P0 (RPLP0). For consistency, all samples were run in tripli-

cates. Cycle threshold (Ct) values of the 2 mitochondrial DNA sequences were normalized rel-

ative to the nuclear gene using qBase quantification software (Biogazelle, Zwijnaarde, BE) [16].

The qBase software uses the relative normalized values based on the delta-delta-Ct method tak-

ing multiple sequences, and the inter-run calibrators into account. The coefficient of variation

between triplicate measurements within the same run was <0.5% for each of the amplified

sequences, and 4.66% for the interrun samples.

Statistical analysis

For database management and statistical analysis, we used SAS software, version 9.4 (SAS

Institute, Cary, NC) and JMP Genomics, version 6.1 (SAS Institute, Cary, NC). We compared

mtDNA content, metabolites and inflammatory markers
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means and proportions by the t-test and the χ2 test, respectively. Significance was P<0.05 on

two-sided test.

We normalized the distributions of all the metabolites by a logarithmic transformation and

by a rank based inverse normal transformation [17]. We used Partial Least Squares analysis

(PLS) to identify circulating metabolites associated with peripheral blood mtDNA content

[18]. We chose this method due to its ability to deal with highly correlated predictors (metabo-

lites). With PLS regression we created linear combinations (latent factors) of highly inter-cor-

related normalized predictors (metabolites) in a way that maximize the covariance between

the metabolites and the outcome variable (mtDNA content). This approach differs from the

classical multiple linear regression approach in that only the relevant part of the information

present in all the metabolites is used to construct the different latent factors for the prediction

of outcome (mtDNA content). We then identified the minimum number of latent factors that

explained a substantial proportion of variation for both predictor and outcome variables and

was not significantly different from the model with the minimum prediction error sum of

squares (PRESS) value. The selected latent factors are used in association instead of the original

individual predictors (metabolites). The importance of each metabolite in the construction of

the latent factors was assessed from the variable influence on projection (VIP) scores of Wold.

In the present analysis, metabolites with a VIP� 1.5 were considered influential.

We summarized the influential metabolites with a VIP� 1.5 into a single normally distrib-

uted composite score using principal component analysis. We used a mixed model to test the

association of mtDNA content with latent factors, the composite metabolite score, logarithmi-

cally transformed selected metabolites and inflammatory markers accounting for previously

identified covariates [14] and for non-independence of observations within families. We fur-

ther explored correlations between pairs of selected metabolites linked to mtDNA content by

Pearson correlation analysis.

Results

Characteristics of participants

The 310 white European participants included 157 (50.6%) women, 136 (43.9%) hypertensive

and 8 (2.6%) diabetic subjects. Mean age (±SD) was 51.3±16.5 years and ranged from 17 to 84

years. Table 1 summarizes the clinical and biochemical characteristics of the participants by

sex. Compared to women, men had higher diastolic blood pressure, serum creatinine and tri-

glycerides (Table 1). Alcohol use was also more frequently reported in men (Table 1). On the

other hand, women had higher heart rate, total and high density lipoprotein (HDL) serum

cholesterol, hs-CRP, lymphocyte and platelet counts (Table 1).

PLS analyses

Because of the high intra-correlation of the 44 circulating metabolites (S1 Fig), we used PLS

regression to compose uncorrelated latent factors derived from the measured metabolites as

described in the statistical analysis section. The best-fit model includes the minimal number of

latent factors that predict a significant proportion of the mtDNA content and does not differ

from the model with minimal PRESS. In our analysis, we identified that such a model included

three latent factors that accounted for 62.5% of the overall variance in the circulating metabo-

lites and 8.6% of the variance in mtDNA content (P< 0.001 for both). The role of each of the

metabolites in constructing of the latent factors is reflected by the latent factor loading and the

variable influence on projection (VIP) scores. S2 Table lists factor loadings for each of the

metabolites included in each of the latent factors. Next, we identified the most important

metabolites in the construction of the latent factors using V-plot (Fig 1). This plot shows the

mtDNA content, metabolites and inflammatory markers
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VIP scores versus the centred and scaled correlation coefficients between blood mtDNA con-

tent and circulating metabolites. We considered metabolites with values for VIP> 1.5 to be

important for the latent factor construction. Metabolites with the highest VIP values and corre-

lating positively with mtDNA were β-glucose and valine. In Fig 1 these metabolites correspond

to spots in the upper right quadrant. Metabolites with the highest VIP values and correlating

negatively with mtDNA were HDL3 apolipoproteins, tyrosine, fatty acid with αCH2 and creati-

nine. In Fig 1 these metabolites correspond to spots in the upper left quadrant.

Table 2 shows results of univariate association of mtDNA content with each of the six

metabolites that were important for construction of the latent factors. Pairwise correlations

between the selected metabolites are shown in Table 3. HDL3 apolipoproteins showed strong

positive correlations with tyrosine (r = 0.95; P< 0.0001) and creatinine (r = 0.49; P< 0.0001)

whereas valine showed strong negative correlation with creatinine (r = –0.64; P< 0.0001) and

Table 1. Clinical characteristics of participants by sex.

Characteristic

Clinical Measurements

Women

(n = 157)

Men

(n = 153)

P Value

Anthropometrics

Age (years) 51.5±16.4 51.1±16.6 0.80

Body mass index (kg/m2) 26.7±5.15 27.1±4.46 0.49

Systolic pressure (mmHg) 128.4±18.4 131.1±15.8 0.17

Diastolic pressure (mmHg) 78.2±8.88 81.5±10.1 0.003

Heart rate (beats/min) 62.3±9.51 59.9±10.4 0.033

Questionnaire data

Current smoking 25 (15.9) 37 (24.2) 0.070

Drinking alcohol 28 (17.8) 87 (56.9) < .0001

Hypertensive 66 (42.0) 70 (45.8) 0.51

Treated for hypertension 51 (32.5) 47 (30.7) 0.74

Diabetes 3 (1.91) 5 (3.27) 0.45

Biochemical data

Plasma glucose (mmol/l) 4.85±0.78 5.03±0.94 0.80

Serum creatinine (μmol/l) 73.7±12.8 89.5±13.1 < .0001

Serum triglycerides (mmol/l) 1.68±0.85 2.06±1.20 0.001

Serum total cholesterol (mmol/l) 5.34±0.93 5.05±0.89 0.005

LDL cholesterol (mmol/l) 3.21±0.80 3.08±0.79 0.14

HDL cholesterol (mmol/l) 1.56±0.36 1.28±0.27 < .0001

hs-CRP (mg/L) 1.95 (0.80 to 10.2) 1.24 (0.62 to 2.88) < .0001

hs-IL6 (pg/mL) 1.55 (0.65 to 3.71) 1.44 (0.62 to 3.47) 0.41

Blood cell count

Platelets (x109/L) 253.6±56.7 212.7±49.1 < .0001

White blood cells (x109/L) 6.53±1.74 6.34±1.70 0.33

Neutrophils (x109/L) 3.80±1.32 3.72±1.19 0.58

Lymphocytes (x109/L) 2.06±0.64 1.88±0.68 0.019

Neutrophil-to-lymphocyte ratio 1.97±0.79 2.16±0.89 0.055

mtDNA contenta 1.08±0.40 1.01±0.39 0.14

Values are mean (±SD), geometric mean (10% to 90% interval), or number of subjects (%). HDL, high density lipoprotein; hs-CRP, high sensitivity C-

reactive protein; hs-IL6, high sensitivity interleukin-6; LDL, low density lipoprotein; mtDNA, mitochondrial deoxyribonucleic acid.
a Relative ratio of 2 mtDNA sequences (mitochondrially encoded NADH dehydrogenase 1 (MT-ND1) and mitochondrial forward primer from nucleotide 3212

and reverse primer from nucleotide 3319 (MTF3212/R3319)) to a single reference nuclear gene (acidic ribosomal phosphoprotein P0 (RPLP0)).

https://doi.org/10.1371/journal.pone.0181036.t001
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fatty acid with αCH2 (r = –0.68; P< 0.0001; Table 3). Moreover, we noticed that there are

overlapping resonances arising from HDL3 apolipoproteins and tyrosine metabolites

(Table 2). Therefore, we further explored univariate associations of mtDNA content with

other tyrosine spectral regions (S3 Table). We did not observe significant associations of

mtDNA with the tyrosine metabolites from the spectral regions that did not overlap with

HDL3 apolipoproteins (P� 0.18).

Fig 1. V-plot for partial least squares models generated with extracted variable influences on projection and correlation

coefficient values in all participants. Spots with high variable influences on projection (�1.5) are named at the ends of the two arms of

‘V’.

https://doi.org/10.1371/journal.pone.0181036.g001
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Multivariable adjusted associations between peripheral blood mtDNA

content, metabolite derived latent factors, the composite metabolite

score and inflammatory markers

We adjusted the models for previously identified important covariables of mtDNA content in

our population such as sex, age, white blood cell and platelet counts as well as for non-inde-

pendence of observations within families. After full adjustment, peripheral blood mtDNA was

positively associated with the latent factor 1 (effect size: 0.070±0.022, P = 0.002; Table 4). We

did not observe associations between the mtDNA content and two other latent factors.

We further summarized the selected metabolites into a single composite metabolite score.

In all subjects, the composite metabolite score (the first principal component) accounted for

42% of the variance in the contributing metabolites. S2 Fig shows loading of the composite

metabolite score for each of the 6 metabolites. The composite score increased with higher

HDL3 apolipoproteins, tyrosine, fatty acid with αCH2 and creatinine, and decreased with

higher glucose and valine. In multivariable adjusted analysis, a 1-SD increase in the composite

score was associated with a decrease in mtDNA content by 0.073±0.022 (P = 0.001).

In addition we found that mtDNA content was inversely associated with inflammatory

markers including hs-CRP, hs-IL6, total white blood cell and neutrophil counts as well as neu-

trophil-to-lymphocyte ratio (Table 4).

Table 2. Associations between the mtDNA content and the selected metabolites (VIP>1.5).

Explanatory Variable Residual Water Peak Region (ppm) mtDNA Content

Parameter Estimate ± SE 95% CI P P*

HDL3 apolipoproteins 6.50–7.50 -0.41±0.14 -0.67 to -0.14 0.003 0.005

Tyrosine 6.88–6.90 -0.33±0.14 -0.61 to -0.063 0.016 0.021

β-Glucose 3.22–3.26 0.34±0.14 0.088 to 0.60 0.008 0.014

Fatty acid with αCH2 2.19–2.23 -0.52±0.22 -0.95 to -0.091 0.018 0.006

Creatinine 4.04–4.06 -0.71±0.24 -1.19 to -0.24 0.004 0.004

Valine 0.97–0.99 0.98±0.38 0.23 to 1.73 0.010 0.012

Explanatory variables were normalized by a logarithmic transformation. Parameter estimates, corresponding SE and 95% CI are associated with a doubling

of the metabolites. P values are for models with explanatory variables normalized by a logarithmic transformation.

P* values are for models with explanatory variables normalized by a rank transformation.

HDL, high density lipoprotein; mtDNA, mitochondrial deoxyribonucleic acid; SE, standard error; CI, confidence interval; VIP, variable influence on

projection.

https://doi.org/10.1371/journal.pone.0181036.t002

Table 3. Correlation matrix for the selected metabolites (VIP>1.5).

Metabolites HDL3 apolipoproteins Tyrosine β-Glucose Fatty acid with αCH2 Creatinine

Tyrosine 0.95** /

β-Glucose -0.054 -0.15* /

Fatty acid with alpha CH2 -0.14* -0.19* -0.35** /

Creatinine 0.49** 0.37** -0.21* 0.31** /

Valine -0.10 -0.009 0.31** -0.68** -0.64**

Significance

*P<0.05

**P<0.0001.

HDL, high density lipoprotein; VIP, variable influence on projection.

https://doi.org/10.1371/journal.pone.0181036.t003
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Discussion

The main finding of the present study was that in a general population lower peripheral blood

mtDNA content was associated with higher levels of circulating metabolites indicative of dis-

turbed lipid metabolism. Moreover, participants with higher levels of “classical” inflammatory

markers such as hs-CRP, hs-IL-6 and neutrophil-to-lymphocyte ratio, had lower blood

mtDNA content.

To our knowledge, no previous population study reported the association of circulating

metabolites with the mtDNA content. Metabolites are a direct product of complex cellular bio-

chemical processes. Novel high-throughput metabolomics approaches enable a simultaneous

identification and quantification of circulating metabolites that can be related to different

pathological conditions [19]. Several studies in humans demonstrated the usefulness of metab-

olite profiling for identifying the presence of cardiovascular diseases and predicting cardiovas-

cular outcome [11, 12, 20, 21]. In 2,023 patients undergoing cardiac catheterization a higher

baseline metabolomics score composed of fatty acid metabolites independently predicted total

mortality and myocardial infarction [21]. Using 1H-NMR, Brindle et al measured serum

metabolite spectra in 36 patients with severe coronary heart disease (triple vessel disease

patients) and in 30 patients with angiographically normal coronary arteries [20]. In this study,

metabolite derived composite scores distinguished coronary heart disease patients from con-

trols with>90% sensitivity and specificity. Of notice, patients compared to controls had higher

serum CH2 fatty acid side chains originating from triglyceride rich lipoproteins. In line with

this finding, we found in our study a positive correlation between serum triglyceride levels and

circulating fatty acid αCH2 chains (r = 0.64, P< 0.0001). This might imply a triglyceride ori-

gin of fatty acid metabolites that associated with a decline in peripheral blood mtDNA content

in the present study.

In our study, decreased mtDNA content was also associated with higher serum lipid-

free HDL3 apolipoproteins. Serum HDL is a versatile group of lipoproteins. Smaller, dense

HDL3 particles have cholesterol clearing, anti-oxidative and anti-inflammatory properties

Table 4. Multivariable-adjusted associations of mtDNA content with metabolic latent factors and inflammatory markers.

mtDNA Content

Parameter Parameter Estimate±SE 95%CI P Value

Metabolic latent factors

Factor 1 (+2.70) 0.070±0.022 0.027 to 0.11 0.002

Factor 2 (+3.32) 0.040±0.020 -0.002 to 0.083 0.059

Factor 3 (+2.52) 0.038±0.023 -0.009 to 0.083 0.11

Inflammatory markers

hs-CRP (doubling) -0.063±0.019 -0.10 to -0.024 0.002

hs-IL6 (doubling) -0.072±0.024 -0.12 to -0.023 0.004

White blood cells (+1.72x109/L) -0.086±0.022 -0.12 to -0.034 0.0002

Neutrophils (+1.26x109/L) -0.088±0.025 -0.13 to -0.038 0.0001

Lymphocytes (+0.67x109/L) -0.040±0.020 -0.067 to 0.004 0.073

NLR (+0.84) -0.050±0.021 -0.092 to -0.007 0.024

Parameter estimates and corresponding SE and 95%CI are expressed for a 1 SD increase in the explanatory variables. For hs-CRP and hs-IL-6 parameter

estimates and corresponding SE and 95%CI are associated with a doubling of the inflammatory marker. Models for latent factors were adjusted for age,

sex, white blood cell count, platelet count and family clusters. Models for inflammatory markers were adjusted for age, sex, platelet count, and family

clusters. mtDNA, mitochondrial deoxyribonucleic acid; NLR, neutrophil-to-lymphocyte ratio; SE, standard error; CI, confidence interval; hs-CRP, high

sensitivity C-reactive protein; hs-IL6, high sensitivity interleukin-6.

https://doi.org/10.1371/journal.pone.0181036.t004
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that depend on the integrity on their surface apolipoproteins [22]. On the other hand, oxida-

tive damage and chronic inflammation might deprive HDL of its cardiovascular protective

effects [22, 23]. Indeed, apolipoproteins can be dissociated from the HDL particles and conse-

quently accumulate in serum [24]. Recently, Shao et al demonstrated that myeloperoxidase, an

enzyme produced by phagocytic inflammatory cells, oxidizes human apolipoprotein A-I [23].

Taken together, increase in lipid-poor HDL3 apolipoproteins that might indicate disturbed

lipid metabolism in our population sample associated with lower peripheral blood mtDNA

content. In our study, we also showed a strong correlation of tyrosine metabolite with HDL3

apolipoproteins (r = 0.95). Therefore, the observed association between mtDNA and tyrosine

might be due to overlapping resonances arising from HDL3 apolipoproteins and tyrosine

metabolites.

Compared to its nuclear counterpart mtDNA accumulates damage more extensively when

exposed to oxidative stress [3, 25]. Both excessive ROS production as well as perturbed mito-

chondrial antioxidant capacity can disturb mtDNA replication and contribute to mtDNA con-

tent decline under pathologic conditions. Ide et al reported that myocardial ischemia in mice

leads to excessive mitochondrial ROS production and decreased myocardial mtDNA content

as compared to non-ischemic controls [4]. In this study, parallel decreases in mtDNA encoded

transcripts and respiratory chain enzyme activities were observed in myocardial ischemia with

no significant changes in levels and activity of nuclear encoded mitochondrial proteins. In

addition, compared to healthy controls a 60% decrease in mtDNA amplification was detected

in aortic tissue of apolipoprotein E deficient mice prior to developing detectable atheroscle-

rotic lesions [3]. The disease process in atherosclerosis prone mice accentuated when mito-

chondrial antioxidant capacity was weakened by lower superoxide dismutase 2 activity [3].

Mitochondrial dysfunction accompanied by increased ROS production in rodents was also

observed with renal failure and resulting creatinine accumulation [26]. In line with these

experimental findings, higher peripheral blood mtDNA content was associated with lower risk

of incident chronic kidney disease in 9058 participants from the Atherosclerosis Risk in Com-

munities Study (hazard ratio 0.65; P<0.001) [27]. On the other hand, branched chain amino

acid (BCAA) dietary supplementation including valine in mice upregulated expression mito-

chondrial ROS defence enzymes and promoted longevity [28]. In BCAA-supplement fed mice

higher activity of inducers of mitochondrial biogenesis including the peroxisome proliferator-

activated receptor γ coactivator-1α was observed with a concurrent increase in mtDNA con-

tent [28]. We found in our population sample a positive correlation between circulating valine

and β-glucose levels (P<0.0001). Glucose can both fuel the ATP synthesis for valine stimulated

assembly of new mtDNA as well as provide building blocks for nucleotide synthesis [29]. In

line with these observations, in our participants circulating valine and glucose associated with

higher peripheral blood mtDNA content.

Chronic low grade inflammation is reflected by increased levels of inflammatory markers

including hs-IL6, hs-CRP and neutrophil-to-lymphocyte ratio. Recent experimental studies

imply that mitochondrial dysregulation is intertwined with inflammatory processes [8, 30, 31].

Increased ROS production in mice during inflammation resulted in mtDNA damage, dysfunc-

tion and decreased mtDNA content [30]. Inflammation causes mitochondrial dysfunction that

in turn can further stimulate the inflammatory process. Namely, increased mitochondrial ROS

triggers the assembly of inflammasomes, multi-protein complexes that activate the inflamma-

tory mediator cascade [8, 31]. In humans mitochondrial ROS activate inflammatory cells and

induce production of IL-6 that is the main stimulator of protein synthesis, including CRP dur-

ing the acute phase of inflammation [32, 33]. Of notice, IL-6 also mediates the transition from

acute to chronic inflammation and therefore promotes chronic inflammation [33]. We previ-

ously identified the association between higher white blood cell counts and lower peripheral

mtDNA content, metabolites and inflammatory markers
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blood mtDNA content [14]. In line with our finding, a cross-sectional study in 94 healthy

young adults reported a negative correlation between mtDNA content and hs-CRP levels [34].

In the present study, we also found that lower blood mtDNA content was also associated with

higher IL-6 and neutrophil-to-lymphocyte ratio. Taken together, we confirm on a population

level the interplay between mtDNA content and inflammation biomarkers but the precise

mechanisms underlying these associations remain to be further unveiled.

Our study needs to be interpreted within the context of its limitations and strengths.

First, all participants were white Europeans. Thus, the associations cannot be generalized to

other ethnic or racial groups. Second, we measured the mtDNA content in peripheral blood

buffy coat and its composition might vary with regard to counts of platelets and white blood

cell. Nonetheless, blood samples were processed following the same protocol, and mtDNA

content was standardized to the amount of nuclear DNA to minimize sample-to-sample varia-

tion. Third, that fragments in the nuclear genome known as nuclear mitochondrial insertion

sequences (NUMTs) might affect accurate quantification of mtDNA content [35]. Therefore,

ideally primer sets used for mtDNA quantification should be selected careful in order do

not amplify such regions in the nuclear genome whether they are NUMTs or other repeat

regions. In our study, we put special emphasis on specificity of the primers we used which

would not bind to such repeat nuclear regions. Forth, as we used relative quantification to

calculate the relative mtDNA content, the values do not represent the mtDNA copy number

in the study population. Finally, the cross-sectional design of our study cannot determine a

causal relationship between mtDNA content and levels of circulating metabolites and systemic

inflammation.

Conclusions

The present cross-sectional study demonstrated that peripheral blood mtDNA content in a

general population is associated with a profile of circulating metabolites indicative of per-

turbed lipid metabolism, oxidative stress and inflammation. Further studies are necessary to

clarify the molecular mechanisms governing this association and confirm its potential clinical

usefulness.
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