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Background. Continuous wavelet transform (CWT) based scalogram can be used for photoplethysmography (PPG) signal
transformation to classify blood pressure (BP) with deep learning. We aimed to investigate the determinants that can improve the
accuracy of BP classification based on PPG and deep learning and establish a better algorithm for the prediction. Methods. *e
dataset from PhysioNet was accessed to extract raw PPG signals for testing and its corresponding BPs as category labels. *e BP
category of normal or abnormal followed the criteria of the 2017 American College of Cardiology/American Heart Association
(ACC/AHA) Hypertension Guidelines. *e PPG signals were transformed into 224 ∗ 224 ∗ 3-pixel scalogram via different
CWTs and segment units. All of them are fed into different convolutional neural networks (CNN) for training and validation.*e
receiver-operating characteristic and loss and accuracy curves were used to evaluate and compare the performance of different
methods. Results. Both wavelet type and segment length could affect the accuracy, and Cgau1 wavelet and segment-300 revealed
the best performance (accuracy 90%) without obvious overfitting. *is method performed better than previously reported
MATLAB Morse wavelet transformed scalogram on both of our proposed CNN and CNN-GoogLeNet. Conclusions. We have
established a new algorithm with high accuracy to predict BP classification from PPG via matching of CWT type and segment
length, which is a promising solution for rapid prediction of BP classification from real-time processing of PPG signal on a
wearable device.

1. Introduction

Elevated blood pressure (BP) has been a potent issue in-
ducing stroke, heart attack, and kidney failure.*ough some
proven and well-tolerated lifestyle and drug treatment
strategies can control BP, it remains the major preventable
cause of cardiovascular diseases (CVD) and all-cause death
in the world [1]. Accurate BP measurement and recording
are essential to grade BP level, ascertain BP-related CVD
stratification, and guide the management of hypertension.
Cuff-based BP measurement devices have been still widely

used in hospital settings to detect abnormal BP. However, in
patients treated for hypertension, both “white coat effect”
(higher office BPs than out-of-office BPs) and “masked
uncontrolled hypertension” (controlled office BPs but un-
controlled BPs in out-of-office settings) are difficult to detect
[2]. ABPM and HBPM help doctors follow the risk profiles
of the patients’ white coat hypertension and masked hy-
pertension counterparts, respectively [3, 4]. Both ABPM and
HBPM typically based on multiple measurements of BP
provide better methods to predict long-term CVD outcomes
than office BP [4].
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Office BP measurement in hospital, ABPM, and HBPM
often require the technique by pressurizing and releasing an
upper arm cuff to detect systolic and diastolic pressure. *is
old method is inconvenient and difficult to monitor BP
persistently due to physiological limitations, for example,
periodic cuff inflation and deflation will disturb sleeping to
prevent the real BP detection during sleep. Some new
methods of cuff-less BP detection and evaluation have been
proposed, such as estimation of BP and using photo-
plethysmography (PPG) and electrocardiogram (ECG)
signals. Although the pulse transit time (PTT) or pulse
arrival time (PAT) method extracted from PPG and ECG
achieved overall acceptable accuracy for BP estimation [5, 6],
the algorithm required at least two signals, increasing the
operational complexity and cost for wearable devices. PTT
must deal with different physiological parameters, so a
calibration procedure is required [7]. Synchronization is
another issue in using these signals in real-time because
when recording two or more signal channels via indepen-
dent systems, an uncontrollable artificial delay exists as the
data acquisition is started manually [8]. *e former study
even reported that PTT has a negative correlation with
systolic BP, which is not reliable enough to become a sur-
rogate marker of systolic BP [9]. It is clinically and prac-
tically desirable to apply the PPG signal only for estimating
BP. Riaz et al. reported that the simplest linear classifiers
produce satisfying results for indicating classes of normal or
abnormal BP according to the proposed PPG wave feature
[10]. Khalid et al. compared three machine learning algo-
rithms (regression tree, multiple linear regression, and
support vector machine) via pulse features to estimate BPs
using raw PPG signals and concluded that the regression tree
algorithm was the best approach. PPG wave can be trans-
formed into scalograms by fast Fourier transform (FFT) or
continuous wavelet transform (CWT). *e transformations
promote recognition and learning by computer. FFT nat-
urally applying to stationary signals whose frequency con-
tents do not change is unable to tell when these frequency
components exist in time [11], but almost all biological
signals are nonstationary. CWT maps the time and fre-
quency information simultaneously by the time-frequency
plane and helps to investigate what spectral components
exist at any given interval of time from biological signals,
such as ECG and PPG. Mansouri SR et al. employed a deep
convolutional neural network (CNN) to estimate BP
through the scalogram representing a CWT transformed
from PPG and ECG waves and demonstrated a low root
mean square error (RMSE) rate of 3.36mmHg and high
accuracy of 86.3% [12].

Previous studies usually focused on one factor indi-
vidually, such as signal transform feature extraction, or new
deep learning method, but CWTwaveform, segment length,
and methods are common key factors for accuracy of
prediction. CWTs generate distinct scalograms according to
different classes of wavelet bases (Shannon, Mexican hat,
Morlet, etc.) and segment length, but the recent studies used
the same scalogram (MATLAB default/Morse wavelet
transform) with a fixed length of PPG segment (5 s) for BP
classification by deep learning [12, 13]. Whether CWT type

and segment length could influence the accuracy of the
classification is still unknown, and the optimal combination
based on these factors also need to be established. *is
research aimed to find out the determinants to improve the
accuracy of BP classification using PPG and deep learning
and establish a better algorithm for BP prediction.

2. Materials and Methods

2.1. Dataset. *e data were from Multiparameter Intelligent
Monitoring in Intensive Care-III (MIMIC-III) Waveform
Database provided by PhysioNet [14]. In brief, the database
contains 67,830 record sets for approximately 30,000 in-
tensive care unit (ICU) patients, and almost all record sets
include a waveform record containing signals of continuous
arterial blood pressure (ABP) waveforms, fingertip PPG
signals, ECG, and respiration. *e data with patient ID and
corresponding available PPG and ABP signals were
extracted for analysis in our study. A manual check was
conducted to exclude the records with the movement ar-
tefact, missing peaks, no signal, and so on. Finally, 311,000
signals with a frequency of 125Hz were put into the analysis,
and the first 90% of the randomized data from the dataset are
used for training and the rest are for testing.

2.2. Hypertension Criteria. *e ABP signals were used to
label the blood pressure levels and confirm the classification
of BP. *e records were divided into normal or abnormal
following the 2017 American College of Cardiology/
American Heart Association (ACC/AHA) Hypertension
Guidelines [3].

2.3. Signal Preprocessing. *e ABP and PPG signals were
used as the target source and predicted source, respectively.
Each PPG segment was firstly processed with a moving
average filter by Python function (numpy. convolve). *is
filter is a moving average filter to smooth the PPG signal.
Baseline wandering caused by the respiratory activity was
also removed from the segments. In a segment, the mean
value of synchronous ABP wave peaks was calculated as
systolic pressure and the mean value of wave troughs as
diastolic pressure. *en, the BP category was labelled as
described in the ACC/AHA Hypertension Guidelines.

2.4. PPG Signal Transformation. *e output of CWT was
using Python functions of pywt (ver. 1.1) and Matplotlib
(ver. 3.3): x-axis representing time, y-axis representing scale
(analogous to frequency), and z-axis showing coefficient
value. *en, a scalogram is plotted as a smooth 2D image of
time and frequency, and the amplitude of the frequency
components is shown by varying the color or intensity of
that point. Typically, dark blue colors represent the low
amplitudes and bright yellow colors mean large amplitude
coefficients. *e PPG signal is transformed into different
scalograms using Frequency B-Spline wavelet (fbsp1-15-1),
Shannon wavelet (shan15-1), Complex Gaussian wavelet
(cgau1), Morlet wavelet (morl), Mexican hat wavelet (mexh),
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and Gaussian wavelet (gaus1) for testing. *e transformed
colorful scalograms by different wavelets are seen in Fig-
ure 1.*e list included the equations and parameters of these
analytic wavelets:
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��
Fb

􏽰
+ sin c

Fbt

m
􏼒 􏼓􏼒 􏼓

m

e
2iπFct

,

m � 1, Fb � 15, Fc � 1( 􏼁.

(1)

Parameter explanation: m is an integer order parameter
(≥1); Fb is bandwidth; and Fc is a wavelet center frequency:
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Parameter explanation: Fb is bandwidth; Fc is a wavelet
center frequency; and the condition Fc> Fb/2 is sufficient to
ensure that zero is not in the frequency support interval:
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Parameter explanation: the number “n” means vanishing
moments, where diff denotes the symbolic derivative and Cn
is a constant:
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(4)

Parameter explanation: the number “n” means vanishing
moments, where diff denotes the symbolic derivative and Cn
is such that the 2-norm of gaus (x, n)� 1.

2.5. Segment Length. *e recordings divided into different
segments by different units containing reference BPs for
analysis are listed here, and all the images were converted to
224 ∗ 224 ∗ 3-pixel size:

0.8 s (segment 100): train 2799, validation 311.
1.2 s (segment 150): train 1866, validation 207.
1.6 s (segment 200): train 1399, validation 155.
2.0 s (segment-250): train 1118, validation 124.
2.4 s (segment-300): train 931, validation 103.
2.8 s (segment 350): train 798, validation 88.
3.2 s (segment 400): train 698, validation 77.
3.6 s (segment-450): train 620, validation 69.
4.0 s (segment 500): train 558, validation 62.

*e accuracy of each CWT using different segments for
BP classification was illustrated as a line chart to compare
which length of the segment was better.

2.6.ConvolutionalNeuralNetworks. Our proposed CNN is a
deep learning tool applied to analyzing visual imagery
(Figure 2). A classical CNN model consists of input and

output layers, as well as several hidden layers [15]. *e input
is the CWTgenerated from the PPG signal that was sorted as
224 ∗ 224 ∗ 3-pixel image. Scalogram images transformed
from MATLAB (Morse wavelet) were also tested on our
CNN. *e hidden layers including two convolution layers
(C1 and C3), two pool layers (S2 and S4), and two fully
connected layers (F5 and F6) define the core architecture of
the network, where most of the computation and learning
take place. *e F7 (output layer) containing 1 neuron
(sigmoid activation) carries on the work into a logistic
function using sigmoid.

C1: 64 kernels of size (3 ∗ 3) with a stride setting of one
and the same padding (ReLU activation).
S2: max pooling (pool size is 2) with a stride of two and
the same padding.
C3: 128 kernels of size (5 ∗ 5) with a stride of one and
the same padding (ReLU activation).
S4: max pooling (pool size is 2) with a stride of two and
the same padding.
F5: 256 neurons (ReLU activation).
F6: 128 neurons (ReLU activation).

We also performed the transfer learning through pre-
trained CNN-GoogLeNet which can be directly applied to
other computer vision identification. *e transformed signals
by CWT were also converted to 224 ∗ 224 ∗ 3 sized images
and then ran on the CNN-GoogLeNet. It is aimed at com-
paring our work to the previous study using MATLABMorse
wavelet transformed scalogram [13] and CNN-GoogLeNet.

2.7.AccuracyEvaluation. All the accuracy of different CWTs
and segments were calculated and shown on the line chart.
*e accuracy of the best three combinations testing on our
proposed CNN was displayed using receiver-operating
characteristic (ROC) curve analysis. *en, we applied our
best match of CWT and segment using our proposed CNN
and transfer learning on CNN-GoogLeNet [16] to compare
with MATLAB scalogram. *e accuracy comparison and
overfitting evaluation were present through loss and accu-
racy curves.

3. Results

3.1. Data Overview. Normal BP: 1641 samples; elevated BP:
1739 samples; Stage I hypertension (I-HT): 2692 samples;
Stage II hypertension (II-HT): 334 samples;

normal BP: 104.81± 10.49/71.55± 3.94; abnormal BP:
132.22± 4.76/85.09± 6.92.

3.2. Comparison of Overall Accuracy. Table 1 shows all the
testing accuracy of different CWTs and segments. Most of
the accuracy was more than 70%; the lowest accuracy was
65%. *e cgau1 with 2.4 s segment revealed the best per-
formance with accuracy of 91%. Figure 3 shows the accuracy
of different CWTs fluctuated up and down with different
segments. *e peaks of CWTs mostly appeared at the seg-
ments in the range of 250 (2.0 s)∼ 300 (2.8 s).
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3.3. Accuracy Evaluation from ROC. *e first three best
combinations of CWT and segment were cgau1 and seg-
ment-300; gaus1 and segment-250; and mexh and segment-
250. *e accuracies were 90%, 86%, and 86%, respectively.
*e accuracy based on the testing set was close to the ac-
curacy of the training set in cgau1, so there was no over-
fitting problem from the ROC (Figure 4).

3.4. 8e Cgau1 and Segment-300 Examples of Different BP
Categories. *e image examples of different BP categories
transformed from cgau1 are shown in Figure 5. *e images
transformed from cgau1 and segment-300 can be distin-
guished visually by the naked eyes.*e feature of the normal

BP (110/72mmHg) image is smaller peaks and bright yellow
at the dexter base.*e feature of elevated BP (128/78mmHg)
image is bright yellow at the center bottom of the left higher
peaks.*e features of I-HTand II-HTare similar with minor
variations.

3.5. Comparison with Previous Work. We compared cgau1
and segment-300 to scalogram and segment-300 transfor-
mation previously used by other studies.*e ROC (Figure 6)
showed that the accuracy of cgau1 and segment-300 (90%)
was better than that of MATLAB Morse and segment-300
(82%) in our proposed CNN.

When the cgau1 and segment-300 and MATLAB Morse
and segment-300 methods were tested on CNN-GoogLeNet

C1:convolution layer
64@3 × 3

S2:pool layer
64@2 × 2

C3:convolution layer
128@5 × 5

S4:pool layer
128@2 × 2

1 × 256

1 × 128

Input
244 × 244

Output
1 × 1

Figure 2: *e layers of the proposed convolutional neural networks.

Table 1: All the testing accuracy of different CWTs and segments to predict classification of blood pressure.

Accuracy (%) 100 (0.8 s) 150 (1.2 s) 200 (1.6 s) 250 (2.0 s) 300 (2.4 s) 350 (2.8 s) 400 (3.2 s) 450 (3.6 s) 500 (4.0 s)
No CWT 77 70 79 81 70 74 68 68 75
fbsp1-15-1 70 73 72 78 71 68 72 70 81
shan15-1 77 84 78 81 77 77 75 65 76
cgau1 73 84 81 87 90 85 77 70 78
morl 75 74 79 84 68 72 75 68 82
mexh 82 80 81 86 81 73 78 69 77
gaus1 78 79 82 86 85 82 74 69 77
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Figure 1: *e transformed colorful 2D scalograms by different wavelets.

4 International Journal of Hypertension



No cwt
fbsp1-15-1
Shan15-1

cgau1
morl

mexh
gaus1

65

70

75

80

85

90

95

A
cc

 (%
)

150 200 250 300 350 400 450 500100
Segment
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Figure 5: *e image examples transformed from cgau1 for different blood pressure categories.
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by transfer learning, cgau1 and segment-300 also performed
better than MATLAB Morse and segment-300. *e loss and
accuracy training process (Figure 7) showed that the accuracy
and loss were 90.36% versus 84.5% and 0.23 versus 0.42,
respectively. *ere was also no overfitting in both. It means
that our best model was efficient in other CNN models and
stable for predictions when new data were applied.

4. Discussion

PPG is a low-cost, miniature, and wearable optical biosensor
that can be applied to cardiovascular monitoring, including
the detection of blood oxygen saturation, heart rate, BP, and
cardiac output [17, 18]. Waveform propagation and wave-
form morphology are the two main methods to detect BP
from PPG [19]. *e waveform propagation method requires
multiple sensors, and the issue of synchronization of signals
increases the difficulty and instability of BP analysis.
Documented PPG and ECG signal data fromMIMIC are not
perfectly synchronized. Since the PPG signal produces pulse
waveforms that are very similar to pressure waveforms
generated by tonometry, there is clear evidence that the BP
fluctuations are reflected in the PPG waveform morphology
[20]. *e PPG signal is a complex mixture with a coverage
area of arteries, veins, and numerous capillaries [21]. A raw
PPG signal provides much information about the circulatory
system generated from pulsatile and nonpulsatile blood
volume [22]. *en, it is not easy to extract the features of BP
information from raw messy signals by waveform

morphology. Slope transit time (STT) [23] and BD area [24]
were correlated with BP but are far from the accurate
prediction of BP. *e CWT is an effective tool to expose the
characteristics of different BP levels transformed from raw
PPG signals. Figure 7 in our study clearly illustrated the
features of different BP categories, and the transformed
images are easy to recognize. Deep learning technology plays
a pivotal role in image recognition [25] and is qualified for
the work of classifying the CWT scalograms. *e results in
our study showed that except for fbsp1-15-1, the accuracy of
CWTs was higher than that of no CWTwhen testing on our
proposed CNN. CNN use relatively little preprocessing
compared to other image classification algorithms, which
has gained a lot of popularity in this field [26]. Liang et al.
uses the MATLAB scalogram and pretrained CNN (Goo-
gLeNet) to classify BP, and the three classification trials of
normotension versus prehypertension, normotension versus
hypertension, and normotension + prehypertension versus
hypertension F1-scores were 80.52%, 92.55%, and 82.95%,
respectively [13]. *e accuracy of the MATLAB scalogram
on our proposed CNN was 81.55%, which was similar on
CNN-GoogLeNet. Cgau1 transform performed better
compared with MATLAB default scalogram on both of our
proposed CNN and CNN-GoogLeNet. *ese results indi-
cated that different CWTs would affect the accuracy of BP
classification via deep learning.

Few studies reported whether the segment length could
influence the accuracy of BP estimation via PPG. Most
studies extracted a 5-second segment as a testing unit
[13, 27]. *e longer the segment is, the smaller the sample
size it will make. *e MIMIC dataset is finite, and the 5-
second segment will reduce the sample size for testing and
validation, so we used the segment units under 4 seconds to
keep enough sample size for testing. Interestingly, the
performance was quite dissimilar using different segment
units. Most of the CWTs performed best on segment-250
(2.0 s) and segment-300 (2.4 s).*e low accuracy appeared at
segment-450 in all the CWTs. It tells us that a shorter length
of the segment would lower the accuracy for prediction, but
it does not mean the longer the better.

*e combination of appropriate CWT, segment length,
and deep learning model will construct the optimal algo-
rithm for accurate prediction. *e combination of cgau1
CWT and segment-300 (2.4 s) in our work is the best so-
lution using CNN for BP classification. *e method per-
formed better than MATLAB scalogram and segment-300
[13]. *e accuracies are quite similar when tested on self-
established CNN and CNN-GoogLeNet of transfer learning.
*us, our model is a feasible and promising solution for
continuous cuffless BP monitoring on different platforms. If
this low-cost, cuffless BP monitors can be developed, it is
likely that conventional paradigms of BP measurement
would be disrupted. Even some special medical conditions
can also benefit from this device; for example, it is proven
that cuffless BP measurement still shows high accuracy and
reliability in arrhythmia patients [28] and children [29].
Although the PPG signal is altered in individuals suffering
from obesity [30], it can be optimized based on multiple
types of information fusion [31].

cgau1 & segment-300 train
cgau1 & segment-300 test
MATLAB & segment-300 train
MATLAB & segment-300 test

Acc: 90.32%
Loss: 0.2544

Acc: 81.55%
Loss: 0.4414
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Figure 6: *e accuracy of cgau1 and segment-300 and MATLAB
scalogram and segment-300 in our proposed CNN from the re-
ceiver-operating characteristic curves.
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*ere are some limitations to our study. Firstly, we did
not test all the wavelets on the MIMIC dataset, and cgau1
may be not the best CWT for BP classification. Other
wavelets, such as Gabor [32] and Paul [33] are the potential
to exceed the ability of cgau1 and segment-300 to predict

BP estimation. Secondly, our model is not validated on new
data and whether the accuracy will keep as high as 90% in
real-life scenarios is still unknown. *irdly, there is a
“length effect” on the accuracy of BP assessment by CWT
signals, as 2.0 s and 2.4 s were the optimal segments, but a
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Figure 7:*e loss and accuracy training process of cgau1 and segment-300 andMATLAB scalogram and segment-300 in CNN-GoogLeNet
by transfer learning.
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longer segment unit did not improve the accuracy. *e
possible reason is that longer segments could reduce the
amount of training data, which may influence the training
result for deep learning. We need more data to confirm the
length effect.

5. Conclusion

Type of CWT and segment length are the determinants for
improving the accuracy to forecast blood pressure classifi-
cation from PPG using deep learning. *e cgau1 and seg-
ment-300 method performed better than the previously
established MATLAB Morse scalogram and segment-300
approach on both of our proposed CNN and CNN-Goo-
gLeNet. *us, we established a new algorithm with high
accuracy to predict blood pressure classification from PPG
via matching of CWT type and segment length. Our study
provides a promising solution that can be applied to the real-
time processing of the PPG signal from the wearable device
for rapid classification of BP.
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