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Abstract
The endoplasmic reticulum-derived type-I protein body (PB-I) from rice endosperm cells is

an ideal candidate formulation for the oral delivery of bioencapsulated peptides as tolero-

gens for allergen-specific immunotherapy. In the present study, PBs containing the decon-

structed Japanese cedar pollen allergens Cryptomeria japonica 1 (Cry j 1) and Cry j 2 were

concentrated by treatment with thermostable α-amylase at 90°C to remove the starch from

milled rice powder, which resulted in a 12.5-fold reduction of dry weight compared to the

starting material. The modified Cry j 1 and Cry j 2 antigens in this concentrated PB product

were more resistant to enzymatic digestion than those in the milled seed powder despite

the absence of intact cell wall and starch, and remained stable for at least 10 months at

room temperature without detectable loss or degradation. The high resistance of these aller-

gens could be attributed to changes in protein physicochemical properties induced by the

high temperature concentration process, as suggested by the decreased solubility of the

antigens and seed proteins in PBs in step-wise-extraction experiments. Confocal microsco-

py showed that the morphology of antigen-containing PB-Is was preserved in the concen-

trated PB product. The concentrated PB product induced specific immune tolerance against

Cry j 1 and Cry j 2 in mice when orally administered, supporting its potential use as a novel

oral tolerogen formulation.
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Introduction
Allergen-specific immunotherapy induces immunological tolerance to an allergen, reducing
the clinical symptoms caused by IgE-mediated type-I allergy. Conventional allergy vaccines
consist of crude allergens and are usually composed of a heterologous mixture of allergenic and
nonallergenic compounds that can cause anaphylactic shock. Vaccination is achieved by ad-
ministration of increasing doses of allergen extract during a period of 3 to 5 years through sub-
cutaneous or sublingual routes. In a previous study, we used hypoallergenic derivatives to
develop a rice seed-based vaccine for the safe and convenient treatment of aeroallergen disease
such as that caused by Japanese cedar pollen, birch pollen, and house dust [1]. The tertiary
structure of the native allergens required for IgE binding was altered by fragmentation, shuf-
fling, or mutation, and these structurally deconstructed allergens were specifically expressed in
transgenic rice endosperm [2–6]. Rice seed-based oral vaccination has several advantages in
terms of safety, stability, and convenience compared with the conventional system based on
subcutaneous injection of crude allergen extracts [7]. Recombinant proteins produced in rice
show high stability at room temperature for several years, easy control of production scale, no
contamination with mammalian pathogens, and are cost-effective. Furthermore, oral (needle-
free) administration can reduce injection-associated pain.

Rice is an efficient bioreactor for the production of recombinant protein in terms of high
biomass yield, low risk of gene flow due to self-pollination and ease of transformation. Further-
more, systems for the cultivation, harvesting, processing, and storage of rice are well established
worldwide. Strategies for the accumulation of recombinant proteins in the seed have recently
been developed in many laboratories [8–12]. Rice endosperm cells have two types of organelles
for the accumulation of seed storage proteins, namely endoplasmic reticulum (ER)-derived
protein bodies (PB-I) and protein storage vacuoles (PB-II), which are distinct in size and mor-
phology [13, 14]. PB-I accumulates prolamins, whereas glutelins and α-globulin are deposited
in PB-II. PBs are an attractive formulation for the delivery of recombinant proteins to gut-
associated lymphoid tissue (GALT) as an oral vaccine, because encapsulation in PBs increases
their resistance to harsh conditions such as low pH and proteolytic enzymes in the gastrointes-
tinal tract. This was shown previously for proteins encapsulated in PB-I [15]. The use of PBs
for the delivery of rice-based vaccines is therefore a reliable system for oral administration.

We recently generated transgenic rice in which the modified Japanese cedar major pollen al-
lergens, Cryptomeria japonica 1 (Cry j 1) and Cry j 2, were specifically produced in seeds. Cry j
1 was divided into three overlapping fragments that were expressed as fusion proteins with
seed storage glutelins (GluA2, GluB1, and GluC). Cry j 2 was deconstructed by shuffling and
was expressed as a secretory protein by attaching an N-terminal signal peptide and C-terminal
ER retention signal (Lys-Asp-Glu-Leu). Modification of allergen proteins, such as that achieved
by fragmentation and shuffling, decreases the binding activity to specific IgE antibodies [6].
These recombinant proteins are deposited in protein body-I (PB-I) together with cysteine-rich
prolamins through the formation of intermolecular disulfide bonds in rice endosperm cells
[16]. When transgenic rice seeds accumulating modified Cry j 1 and Cry j 2 were orally fed to
model mice, suppression of allergen-specific IgE and effector cells and alleviation of clinical
symptoms were induced by allergen-specific immune tolerance [6]. This transgenic rice seed is
being developed without purification for use as an allergy vaccine under the guidance of the
Ministry of Health, Labor, and Welfare of Japan.

Cooked rice is an ideal formulation as oral tolerogen for allergen-specific immunotherapy
because of its low production cost and because it does not require expensive product purifica-
tion (processing downstream of extraction and purification). However, as a final pharmaceuti-
cal formulation, the stock control and distribution of packed cooked rice presents challenges
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because of its large volume compared to pharmaceutical products based on tablets or capsules.
To overcome this problem, we explored a new concentrated PB product formulation in which
starch occupying more than 80% of grain weight was removed. This concentrated PB system
can deliver sufficient amounts of antigen in the form of capsules or tablets and the processing
is cost-effective. We showed that the quality and quantity of the recombinant proteins in the
concentrated PB product were preserved, with minimal loss during processing, and their ability
to induce immune tolerance by the oral route was demonstrated.

Materials and Methods

Plant Materials
Modified forms of the major Japanese cedar pollen allergens, Cryptomeria japonica 1 (Cry j 1)
and Cryptomeria japonica 2 (Cry j 2), which were altered by fragmentation and shuffling, re-
spectively, were expressed in the edible part (endosperm) of rice seeds under the control of rice
endosperm-specific promoters [17]. The rice (Oryza sativa L.) cultivar ‘Koshihikari’ variety
a123 and T5–T7 seeds were used in this study.

Concentration of the Protein Body Fraction from Rice Seeds
Milled transgenic rice seeds were prepared by adding 150 mL of hot water (at approximately
90°C) and 1 mL of heat-resistant α-amylase Termamyl120L (Novozymes, Bagsvaerd, Den-
mark) to 75 g of milled rice powder in a 500 mL tube. After mixing, tubes were incubated at
90°C for 1 h to digest the seed starch. The mixture was centrifuged at 5000 rpm for 10 min at
room temperature and the supernatant was discarded. The pellet was washed with hot water.
Centrifugation and washing steps were repeated three times. Subsequently, the pellet (concen-
trated PB product) was spread onto a dish and dried at 60°C overnight in an incubator. The
dried protein body fraction was ground into a fine powder and used as concentrated
PB product.

Immunoblotting
Mature seeds were individually ground into a fine powder with a multi-bead shocker (YASUI
KIKAI, Tokyo, Japan). For total protein extraction, 500 μL of total protein extraction buffer
[50 mM Tris-HCl pH 6.8, 8 M urea, 4% SDS, 20% glycerol, 5% 2-mercaptoethanol, 0.01% bro-
mophenol blue] were added to seed powder (12.5 mg) or concentrated PB product (1 mg) and
vortexed for 1 h at room temperature. The mixture was centrifuged at 14,000 rpm for 20 min
at room temperature. Two-micro liters of protein extracts were separated by SDS-PAGE and
proteins were blotted onto Immobilon-P PVDF transfer membranes (Millipore, Billerica, MA).
Membranes were blocked in 5% skim milk for 1 h and reacted with primary antibody (1:10000
dilution) at 4°C for 16 h, followed by secondary anti-rabbit IgG conjugated HRP antibody at a
1:10000 dilution for 3 h at room temperature. Signals were detected with the Clarity Western
ECL substrate (BIO-RAD, Hercules, CA).

ELISA
Proteins were extracted from 50 mg rice of seed powder or 25 mg of concentrated PB product
with 1% SDS, 50 mM 2-mercaptoethanpl, 50 mM Tris pH8.0, and 0.5 M NaCl using a sonica-
tor. Proteins were precipitated with ethanol and dissolved with 6 M guanidine-HCl, 50 mM
Tris pH8.0, and 50 mM 2-mercaptoethanol. Sample and standard proteins were diluted with
the same buffer and put in ELISA plates. Antibody reaction and colorization were performed
according to a conventional indirect ELISA method [18]. Monoclonal anti-Cry j 1 and anti-
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Cry j 2 antibodies, and polyclonal anti- Cry j 1 F3 peptide antibody were used as primary anti-
bodies, and anti-mouse or anti- rabbit goat IgG conjugated with alkaline phosphatase (ALP)
was used as secondary antibody. An ALP development kit (KPL pNPP phosphatase substrate
system 50–80–00; KPL, Gaithersburg, MD) was used for color development.

Protein, Lipid, Carbohydrate, Moisture, and Ash Contents of Seed
Powder and Concentrated PB Product
Measurements of these components were performed by a commercial service provider (Japan
Food Research Laboratories, Tokyo, Japan).

Confocal microscopy
Milled rice powder or concentrated PB product (10 mg) were used for confocal microscopy.
After immuno-staining of samples, rhodamine B was used to stain PB-I. Samples were spread
on glass slides and sealed with a cover glass. The samples were observed with a confocal laser
scanning microscope (FLUOVEIW; OLYMPUS, Tokyo, Japan).

In Vitro Digestion Experiment
For pepsin digestions, 10 mg of seed powder or 1 mg of concentrated PB product powder was
dissolved in 300 μL of reaction buffer (30 mM sodium chloride, 0.1% pepsin at pH 1.2) and in-
cubated at 37°C for 0, 0.5, 1, 3, 5, 15, 30, 60, and 120 min. After incubation, 100 μL of reaction
stop solution (160 mMNa2CO3) and 800 μL of protein extraction buffer were immediately
added to the reaction mixtures. Mixtures were vortexed for 1 h and centrifuged at 13,000 × g
for 10 min after boiling for 5 min to inactivate enzymes. Six microliters of sample was subjected
to SDS-PAGE and immunoblot analyses. As control proteins, total seed proteins from trans-
genic rice seed were used. Total seed proteins were purified by chloroform methanol precipita-
tion [19].

Step-Wise Protein Extraction
In the first step, globulin was extracted from 40 mg of seed powder or 4 mg of concentrated PB
product with 600 μL saline buffer (0.5 M NaCl in 10 mM Tris-HCl, pH 6.8). In the second step,
endogenous glutelins were extracted with 600 μL 1% (v/v) lactic acid, followed by extraction of
cysteine-poor and cysteine-rich prolamins with 600 μL 60% (v/v) n-propanol containing 5%
(v/v) 2-mercaptoethanol. Finally, recombinant proteins were extracted with 600 μL 1% lactic
acid. Each extraction step was accomplished by re-suspending seed powder or concentrated PB
product in the solution and sonicating on ice for 2 min. After centrifugation (14,000 rpm for
10 min at room temperature), the pellets were washed twice with the same solution.

Antibodies
Anti-GluA fused Cry j 1 F1, anti-GluB fused Cry j 1 F2, anti-GluC fused Cry j 1 F3, and anti-
shuffled Cry j 2 monoclonal mouse antibodies were produced by the hybridoma technique.
Anti-GluB, anti-RM1, anti-RM2, anti-10 kDa prolamin, and anti-16 kDa prolamin rabbit poly-
clonal antibodies were produced against synthetic peptides as peptide antibodies [20, 21]. An
anti-α-amylase rabbit polyclonal antibody was produced against purified α-amylase Termamyl
120L. The specificity of these antibodies against target proteins was verified prior to their use.
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Analysis of the Uptake of Recombinant Proteins into Ileum and Jejunum
Cells in Mice
Balb/c mice were intragastrically administered with 100 mg of GFP-fused shuffled Cry j 2 rice
seed powder (S5 Fig.) suspended in 1 mL of PBS or wild-type rice. After 4, 8 and 12 h, intestinal
samples were dissected, fixed with 4% formaldehyde solution for 3 h at room temperature, and
embedded in Tissue-Tek OCT compound (Sakura Finetek, Tokyo Japan). Frozen sections
(7 μm) were mounted in VECTRASHILD mounting medium (VECTOR, Burlingame, CA)
and examined with a fluorescence microscope (BZ-9000; Keyence, Osaka Japan).

Feeding of Rice Seed or PB Condensation Product and Sensitization of
Mice
All experiments were conducted in accordance with the Guidelines for the Care and Use of An-
imals published by the Tokyo Metropolitan Institute of Medical Science, and the experimental
protocols were approved by the Animal Use and Care Committee of the Tokyo Metropolitan
Institute of Medical Science. Six-week old BALB/c male mice were freely fed wild-type rice
seed powder, transgenic rice seed powder, wild-type concentrated PB product, or transgenic
concentrated PB product for 7 days from week 0 to week 1. The daily amounts of rice seed
powder and concentrated PB product consumed by each mouse were approximately 2.3 g and
1.3 g, respectively. At week 1, mice were intraperitoneally sensitized with 0.1 mg total protein
extract of Japanese cedar pollen (Cosmo Bio) adsorbed on 5 mg Alum (aluminum hydroxide,
Cosmo Bio) containing recombinant mouse IL-4 (R&D Systems) at 0.1 μg per mouse to maxi-
mize the induction of allergen-specific IgE responses. At week 3 and week 5, mice were intra-
peritoneally boosted with 0.1 mg total protein extract of Japanese cedar pollen adsorbed on
5 mg Alum. At week 6, the levels of allergen-specific IgE and splenic T-cell responses were ex-
amined as described previously [6].

Statistics
Data are presented as mean values ± standard deviation. Statistical significance was determined
by Student’s t-test.

Results

Characterization of Transgenic Rice Seeds
Transgenic rice plants expressing the modified Japanese cedar pollen allergens, Cry j 1 and Cry
j 2, were used in this study [6]. The four recombinant proteins (GluA F1, GluB F2, GluC F3,
and shuffled Cry j 2, Fig. 1a) showed stable accumulation in the seeds of T5–T7 transgenic rice
plants (Fig. 1b). These transgenic rice lines were used in subsequent experiments.

Concentration of Protein Bodies (Pbs) from Milled Rice
A schematic describing the preparation of concentrated PB product is shown in Fig. 2a.

Hulled rice seeds were milled to remove the embryo and bran. Milled rice seeds were ground
into a fine powder and suspended in a thermostable α-amylase (α-amylase Termamyl 120L)
solution. The suspension was incubated at 90°C for starch gelatinization leading to smooth di-
gestion of the starch by α-amylase. The saccharification liquid derived from the starch was dis-
carded and the pellet, containing the concentrated PB product, was washed to completely
remove the saccharification liquid. The concentrated PB product was then dried in an incuba-
tor at 60°C overnight and ground into a fine powder. Approximately 8.1 g of the concentrated
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Fig 1. Transgenic rice seed used in the study. (a) Four gene cassettes expressed in transgenic rice seeds.
GluB4 P, glutelin B4 promoter; 16 kD P, 16 kDa prolamin promoter; 10 kD P, 10 kDa prolamin promoter;
GluB1 P, Glutelin B1 promoter; mGluA, modified glutelin A2 coding region; mGluB, modified glutelin B1
coding region; mGluC, modified glutelin C coding region; GluB4 T, glutelin B4 terminator; 16 kD T, 16 kDa
prolamin terminator; 10 kD T, 10 kDa prolamin terminator; GluB1 T, glutelin B1 terminator; F1, Cry j 1 F1; F2,
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PB product was produced from 100 g of milled seed powder (8.5 g, 8.0 g, and 7.8 g), represent-
ing an approximately 12.5-fold concentration.

Characterization of Concentrated PB Product
The distribution of recombinant proteins among brown rice, bran, milled rice, and PB product
was investigated by immunoblot analysis using specific antibodies (Fig. 2b). Before being sub-
jected to SDS-PAGE, the deconstructed Cry j 1 and Cry j 2 proteins in the concentrated PB ex-
tract were diluted (12.5-fold) to adjust the quantity of loaded samples. The recombinant
proteins were not detected in non-transgenic rice samples (Fig. 2b). Specific signals for the re-
combinant proteins were detected with equal intensity in brown rice, milled rice, and PB ex-
tract from transgenic rice seeds, whereas weak signals were detected in the bran fraction. This
indicated that the recombinant proteins were specifically expressed in endosperm tissue under
the control of the rice endosperm-specific promoters used in this study. Immunoblot analysis
of the levels of endogenous seed storage proteins, including GluB (GluB1 and GluB2), 26 kDa
α-globulin (Glb-1), 13 kDa cysteine rich prolamin (RM1), and 13 kDa cysteine-poor prolamin
(RM2) in the same tissues (S1 Fig.) showed a pattern similar to that observed in the recombi-
nant proteins, with high levels of expression in brown rice, milled rice, and PB extract, and low
levels in the bran fraction (S1 Fig.).

Comparison of the protein content between the milled seed powder and the concentrated
PB product showed that protein accounted for approximately 6.9% of the total weight in the
milled seed powder, whereas it accounted for 72.6% in the PB product (Table 1).

The levels of four recombinant proteins were examined in milled rice and PB extract by
ELISA (Table 1). The results showed that the concentrations of GluAF1, GluBF2, GluCF3, and
shuffled Cry j 2 were 2.84, 2.03, 2.93, and 3.67 mg/g, respectively, in the PB product, represent-
ing 8.6-, 6.8-, 7.9-, and 6.6-fold concentrations, respectively, compared to the levels in milled
rice. Immunoblotting and ELISA together with measurement of protein amounts suggested
that a small amount of recombinant protein was lost during the amylase digestion and washing
steps. Lipid, carbohydrate, moisture and ash contents were also investigated (Table 1). Lipid
and ash contents were concentrated by approximately 3- and 6- fold, whereas moisture and
carbohydrate were reduced from 8.8% to 4.0% and from 82.2% to 15.5%, respectively. The car-
bohydrate content in the PB product was 15.3%; however, this may have been derived from
broken and punctured cell wall components such as cellulose and pectin rather than residual
starch, because the PB product did not stain easily with iodine solution (S2 Fig.).

The concentrated PB product consisted mainly of recombinant proteins and endogenous
rice seed proteins, with small amounts of lipids, carbohydrate, moisture, and ash. The fact that
most of these components are derived from the rice seed ensures the safety of the PB product.
Risk assessment for chronic toxicity, immunotoxicity, and embryo-toxicity was performed by
feeding rats 20 g of the concentrated PB product prepared from 250 g of milled rice powder/
kg/rat for 7 days. No negative side-effects were observed and the safety of the PB product was
confirmed. However, the concentrated PB product contained α-amylase, which is an exoge-
nous additive. The digestion of rice starch was performed with thermostable α-amylase (Ter-
mamyl 120L, Novozymes) derived from Bacillus licheniformis, a food grade enzyme
recommended by the FAO/WHO Joint Expert Committee on Food Additives (JECFA) and

Cry j 1 F1; F3, Cry j 1 F3; shCry j 2, shuffled Cry j 2; SP, Glutelin B1 signal peptide; KDEL, ER retention
signal. (b) SDS-PAGE (CBB) and immunoblot (IB) analyses of transgenic rice seed (T5–T7). The positions of
glutelin precursor, glutelin acidic or basic, globulin, and prolamin on the SDS-PAGE gel are indicated on the
right side of the panel. Immunoblot detection of transgene products derived from four gene cassettes.

doi:10.1371/journal.pone.0120209.g001
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Fig 2. Schematic of the preparation of concentrated PB product. (a) Outline describing the preparation of
concentrated PB product. (b) SDS-PAGE and immunoblot analyses of brown rice, bran, milled rice, and
concentrated PB product in wild-type and transgenic rice seed. The amounts of seed proteins in the
concentrated PB product were approximately 12-fold higher than those in milled rice; therefore, total protein
extracts of concentrated PB products were diluted before SDS-PAGE.

doi:10.1371/journal.pone.0120209.g002
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Food Chain Crisis Management Framework (FCC). The remaining level of α-amylase in the
isolated PB product was analyzed by immunoblotting using an anti-α-amylase antibody. As
shown in Fig. 3, the residual α-amylase in the concentrated PB product accounted for approxi-
mately 0.06% of the total weight.

The denaturation of the enzyme during the 90°C/1 h incubation could have affected its solu-
bility, possibly explaining the residual α-amylase of the final PB product (S3 Fig.).

The active form of α-amylase Termamyl 120L forms a strong high molecular weight com-
plex that is water soluble. The monomeric form (approximately 55 kDa, arrowhead) is inactive
and water insoluble. The high molecular weight complex of α-amylase showed lower affinity
for an anti-amylase antibody than the monomeric form of the same protein.

Although most of the water soluble α-amylase was removed from the concentrated PB
product by washing three times, a small amount of denatured enzyme was recovered in the pel-
let together with the PBs after centrifugation (Fig. 3b).

Recombinant Protein in the Concentrated PB Product Shows High
Stability During Long Term Storage at Room Temperature
The stability of recombinant proteins deposited in the PB product is important for the develop-
ment of pharmaceuticals. The quality and quantity of the recombinant proteins in the concen-
trated PB product that was stored in a sealed container at room temperature for 10 months
were compared by immunoblot analysis. No differences in the signal patterns of the recombi-
nant proteins were observed between the fresh and stocked PB samples (Fig. 4).

Furthermore, no signals derived from degradation products of recombinant proteins were
detected. When recombinant proteins were exposed to high temperature (116°C for 30 min),
degradation products were detected as smaller sized or reduced intensity signals (S4 Fig.).

These results indicated that recombinant proteins in the PB product are stable for at least
10 months at room temperature under sealed conditions.

Confocal Microscopy Observation of the Concentrated PB Product
The organelles in milled seed powder and concentrated PB product were compared by immu-
nostaining and chemical staining with anti-GluB antibody (green) and rhodamine (red) and vi-
sualization by confocal microscopy (Fig. 5).

The staining pattern of PB-I (red), PB-II (green) and starch granules (asterisk) was similar
between premature rice seeds (Figs. 5a–5l) and milled seed powder, indicating that the compo-
nents of seed storage organelles were preserved in the cells of milled seed powder. However, in
the concentrated PB product, starch granules were not detected and many PB-IIs were de-
formed, whereas PB-Is showed no morphological changes (Figs. 5m–5r), indicating that PB-Is
only were little affected by the concentration process of PBs.

Table 1. Component analysis of milled rice powder and concentrated PB product

Protein (g/
100 g)

Lipid (g/
100 g)

Carbohydrate (g/
100 g)

Moisture (g/
100 g)

Ash (g/
100 g)

GluA F1
mg/g

GluB F2
mg/g

GluC F3
mg/g

Shuffled Cry j
2 mg/g

Milled rice 6.9 1.5 82.2 8.8 0.6 0.33 0.3 0.37 0.56

Concentrated PB
product

72.6 4.7 15.3 4.0 3.4 2.84 2.03 2.93 3.67

doi:10.1371/journal.pone.0120209.t001
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Fig 3. Detection of residual α-amylase in the concentrated PB product. (a) One-microliter of protein
extract from 2 mg of concentrated PB product was subjected to immunoblot analysis (five independently
prepared samples). The α-amylase level in each signal was estimated by comparison with standards (2.5,
5.0, 10, and 25 ng) of α-amylase purified from α-amylase Termamyl120L. The amount of residual α-amylase
was calculated as a percentage. (b) Detection of residual α-amylase during the preparation of concentrated
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In Vitro Digestion of the Concentrated PB Product with Pepsin
The digestibility properties of milled seed powder and concentrated PB product were examined
in vitro by digestion with simulated gastric juice (0.1% pepsin). To adjust the levels of recombi-
nant proteins, 10 mg of milled seed powder and 1 mg of concentrated PB product were exposed
to digestive enzyme solution, and the products were analyzed by immunoblotting. The recom-
binant proteins in the PB product showed a greater resistance to pepsin than those in the
milled seed powder (Fig. 6a).

By contrast, recombinant proteins extracted from the PB product were completely digested
with pepsin within 30 to 60 seconds (Fig. 6b).

Solubility of Total Proteins in Seed Powder and Concentrated PB
Product
The major rice seed storage proteins are glutelins (70–80%), globulins (5–10%), and prolamins
(20–25%) [14]. In uncooked rice seed, these proteins can be isolated by step-wise extraction
based on differences in their physicochemical properties [22]. The 26 kDa α-globulin is soluble
in saline buffer. Glutelins can be solubilized with 1% lactic acid after removal of the 26 kDa
globulin. Prolamins (cysteine-poor and cysteine-rich prolamins) can be solubilized with 60%
propanol containing 5% mercaptoethanol [22]. Because recombinant products form intermo-
lecular disulfide bonds with cysteine-rich prolamins, they were expected to be soluble in lactic
acid after removal of cysteine-rich prolamins [23].

The solubility of recombinant proteins and endogenous seed proteins was compared be-
tween the milled seed powder and the PB product by step-wise extraction, followed by SDS-
PAGE and immunoblot analysis of globulins, glutelins, prolamins, transgene products, and the
residue (pellet) fraction (Fig. 7).

All components were detected in the milled seed powder in the corresponding fraction.
However, in the concentrated PB product, a high proportion of endogenous globulins and pro-
lamins were not detected in the expected fraction, and endogenous glutelins were difficult to
extract from the PB product with 1% lactic acid. The fact that most recombinant and endoge-
nous seed storage proteins remained in the residue fraction implies that the process of concen-
tration of PBs changed the physicochemical properties of seed proteins.

Uptake of Recombinant Protein into Ileum and Jejunum Cells
To determine the location of the uptake of PB-I containing the recombinant proteins in the
ileum and jejunum, we generated transgenic rice expressing shuffled Cry j 2 GFP fusion pro-
teins. The fusion proteins were expressed at high levels in the endosperm and accumulated in
PB-I, as observed in transgenic rice expressing the shuffled Cry j 2 (S5 Fig.).

In this experiment, the milled seed powder was used for oral administration because in the
concentrated PB product, breakdown of GFP during the 90°C digestion with α-amylase re-
sulted in decreased fluorescence intensity.

After intragastric administration of the transgenic seed powder in mice, sections of the
ileum and jejunum were removed sequentially for observation (Fig. 8).

PB product. Supernatants obtained in the first centrifugation after α-amylase treatment (lane 1), second to
fourth centrifugation after washing (lane 2 to lane 4) and protein extracts from the final pellet (concentrated
PB product, lane 4) were analyzed by SDS-PAGE (CBB) and immunoblotting (IB). A volume of 2 μL of
sample was subjected to SDS-PAGE. Experiments were repeated two times (Exp 1 and Exp 2).

doi:10.1371/journal.pone.0120209.g003
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Fig 4. Evaluation of shelf life of the concentrated PB product.Concentrated PB products were prepared
from transgenic rice seeds and stored at room temperature for 10 month (Stocked PB). Ten month after,
concentrated PB products were prepared again from the same transgenic rice seeds (Fresh PB). Total
proteins were extracted from flesh and stocked concentrated PB products at the same time and subject to
SDS-PAGE (CBB) and immunoblot (IB) analyses.

doi:10.1371/journal.pone.0120209.g004
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Fig 5. Indirect immunohistochemical analysis of rice cells of premature seed (a–f), seed powder (g–l)
and concentrated PB product (m–r). The left panels show PB-I (red), the middle panels show PB-II (green),
and the right panels show the merged images. PB-I was detected by rhodamine staining. PB-II was detected
by immunohistochemical staining using an anti-GluB antibody. Low and high magnifications are shown.
Arrowheads indicate PB-II. Asterisks indicate starch granules.

doi:10.1371/journal.pone.0120209.g005
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Fig 6. Comparison of resistance to digestive enzyme in rice seed powder and concentrated PB product. (a) Pepsin digestion of seed powder and
concentrated PB product for 0, 1, 5, 15, 30, 60, and 120 min at 37°C. Samples consisted of 10 mg of seed powder or 1 mg of concentrated PB products. (b)
Pepsin digestion of recombinant protein after extraction from transgenic rice seeds for 0, 0.5, 1, 3, 5, 15, 30, and 60 min.

doi:10.1371/journal.pone.0120209.g006
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Fig 7. Stepwise extraction of seed proteins from seed powder and concentrated PB product. (a) Flow
chart of stepwise extraction. (b) SDS-PAGE (CBB) and immunoblot (IB) analyses are shown. Lane 1, globulin
fraction; Lane 2, endogenous glutelin fraction; Lane 3, prolamin fraction; Lane 4, recombinant protein fraction;
and Lane 5, pellet fraction.

doi:10.1371/journal.pone.0120209.g007
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Fig 8. Uptake of antigen (GFP-fused shuffled Cry j 2) by the intestinal tract. (a) Ileum tissues before oral administration of rice seed powder expressing
GFP-fused shuffled Cry j 2. (b), (c) and (d) Ileum tissues at 4, 8, and 12 h after oral administration of rice seed powder expressing GFP-fused antigen. (e)
Ileum tissues at 12 h after oral administration of non-transgenic rice. (f) Jejunum tissues at 12 h after oral administration of rice seed powder expressing GFP-
fused antigen. (g) Average number of GFP spots in 20 regions of a 100 μm2 area of ileum and jejunum tissue sections 12 h after oral administration of rice
seed powder. WT, wild type; Tg, transgenic rice.

doi:10.1371/journal.pone.0120209.g008
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GFP fluorescence was detected at 8 h after administration and reached a peak at 12 h. Clear
GFP fluorescence signals were detected in both ileum and jejunum tissues (Figs. 8d and f). Sig-
nals were not detected in these tissues in mice fed non-transgenic rice (Figs. 8a and e). These
observations were highly reproducible and were summarized as bar graphs after statistical anal-
ysis (Fig. 8g). Particulate antigens such as PB-I are taken up by microfold cells (M-cells) overly-
ing Peyer’s patches (PPs) or directly sampled by dendritic cells (DC) that extend processes into
the lumen [24]. However, in the present study, whether the GFP signal was incorporated
through M-cells associated with PPs or by direct uptake of DCs in the lamina propria (LP)
through dendrites from the lumen remained unclear.

Oral Administration of PB Concentration Products in a Mouse Model of
Japanese Cedar Pollen Allergy
The induction of immune tolerance by oral administration of the concentrated PB product was
examined using a cedar pollen allergy mouse model. Mice were freely fed rice seed powder or
PB product for 7 days and then challenged three times with crude allergens of Japanese cedar
pollen. The levels of pollen allergen-specific IgE were significantly lower in mice fed transgenic
(Tg) rice seed powder and Tg-PB product than in the control group fed wild-type (WT) rice
seed powder andWT-PB product (Fig. 9a).

In addition, the allergen-specific T-cell responses were suppressed in mice fed Tg-rice seed
powder and Tg-PB product (Fig. 9b). These results indicated the clinical efficacy of concentrat-
ed Tg-PB product for the induction of oral immune tolerance to Japanese cedar
pollen allergens.

Discussion
Deconstructed Cry j 1 (fragmentation) and Cry j 2 (shuffling) proteins show lower binding ac-
tivity to allergen-specific IgE antibodies than the native Cry j proteins [6]. Therefore, oral vac-
cination with PB product containing these modified Cry j proteins could be an efficient, safe,
and convenient system that allows the administration of high doses of antigen required for de-
sensitization without anaphylaxis or pain. We previously reported that oral administration of
transgenic rice seed containing the same structurally disrupted Cry j 1 and Cry j 2 induced im-
mune tolerance against these allergens in a mouse model and alleviated clinical symptoms such
as sneezing [6]. In the present study, we explored a new formulation consisting of concentrated
PB product as an alternative to cooked rice and assessed its advantages regarding distribution
and cost effectiveness. The concentrated PB product allowed the delivery of larger amounts of
antigen than those provided by milled seed powder or cooked rice. Furthermore, the concen-
trated PB product can be easily encapsulated similar to conventional pharmaceutical products.
The effect of concentrated PB product on the induction of immune tolerance was compared to
that of seed powder (Fig. 9).

We showed that the stability of the PB product at ambient temperature was comparable to
that of intact seed or milled seed powder (Fig. 3). Recombinant proteins accumulated in rice
seed can be stably stored at room temperature for several years [1]. However, in the present
study, the stability of the PB product despite the absence of the cell wall and starch was unex-
pected. Furthermore, the concentrated PB product was more resistant to digestion with artifi-
cial gastric juice than the milled seed powder. Considering that the cell walls and
carbohydrates, including starch surrounding PBs, play an important role in resistance under
harsh conditions and protect against pepsin proteolysis in the stomach, this finding was re-
markable [26].
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Fig 9. Oral administration of rice seed powder and concentrated PB product. (a) The levels of serum
allergen-specific IgE were examined by ELISA. (b) Allergen-specific splenic CD4+ T-cell proliferative
responses were expressed as stimulation index. Data are expressed as the mean ± standard deviation (n = 3
mice per group). ** P< 0.01 and * P< 0.05 for the group of mice fed Tg-rice seed powder or Tg-PB product
in comparison with the group of mice fedWT-rice seed powder or WT-PB product, respectively. WT-rice, wild
type rice; Tg-rice, transgenic rice; WT-PB, wild-type concentrated PB; Tg-PB, transgenic concentrated PB.

doi:10.1371/journal.pone.0120209.g009
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The high stability of the PB product could be attributed to the high temperature concentra-
tion process, which involved amylase treatment at 90°C for 1 h. Treatment of rice seed by high
temperature, such as that used for the production of cooked rice, alters the physicochemical
properties of seed proteins as a result of the formation of protein-protein or protein and starch
aggregates [25]. In the present study, most seed storage proteins could not be extracted from
the concentrated PB product by step-wise extraction, which differed from the milled seed pro-
teins (Fig. 7). Changes in protein-protein interactions caused by high temperature treatment
may account for the high stability and high resistance to enzymatic digestion, irrespective of
the absence of the cell wall and starch.

A high resistance to gastrointestinal tract digestion is a desirable characteristic for the induc-
tion of oral immune tolerance, because it allows for the delivery of intact recombinant protein
antigens to GALT in the small intestine. In the present study, the detection of positive signals
for GFP-shuffled Cry j 2 fusion proteins in the in the GALT of the ileum and jejunum (Fig. 8)
confirmed the direct uptake of PB-I containing intact recombinant proteins in the gut epitheli-
um and LP. This result is in contrast with the finding that naked recombinant proteins were
quickly digested with proteolytic enzymes (simulated gastric juice) within 1 min (Fig. 6b). Par-
ticulate material and microbiota mostly enter into Payer’s patches (PP) by M-cell-mediated
transcytosis, whereas soluble antigens induce oral tolerance after uptake by DCs in the LP and
PP [24, 27]. In addition, protein bodies, as a particulate form, are taken up more efficiently by
antibody-producing cells (APCs) than the soluble form of antigens.

Antigen sampling (uptake) occurs at M-cells overlying PPs and at intestinal epithelial cells
overlapping the LP on the surface of the intestinal tract. Antigens in the lumen are sometimes
captured directly by dendritic cells. Incorporated antigens are processed in APCs, such as den-
dritic cells and macrophages, and subsequently presented to lymphocytes in PPs and the LP
[28, 29]. These APCs are implicated in the induction of immune tolerance through clonal dele-
tion or anergy of specific T-cells and induction of regulatory T-cells. These immune tolerance
mechanisms are determined by the tolerizing regimens and depend on dose, duration, and fre-
quency of antigen administration. M-cells can incorporate antigen proteins as well as larger
molecules such as bacteria and PBs [30]. The spherical shape of PB-I and its diameter of ap-
proximately 1–2 μm [14] allow its direct incorporation into M-cells. M-cell mediated PB-I in-
corporation was reported in transgenic rice expressing cholera toxin B subunit (CTB), which
was characterized using immunohistochemistry with an anti-CTB antibody and Urex euro-
paeus agglutinin as murine M-cell marker [31].

Conclusion
In the present study, we developed a concentrated PB fraction as an oral tolerogen formulation
for allergen-specific immunotherapy. The concentrated PB product showed several advantages
such as ease of preparation, high stability at room temperature, high safety, and high efficacy.
The design of PB products for oral administration under the guidance of ICH may result in the
development of PB product capsules as a new formulation that meets the ICH safety, quality
and efficacy guidelines.

Supporting Information
S1 Fig. Immunoblot analysis of endogenous seed storage proteins in the sample described
in Fig. 2b. Glutelin B1 (GluB1), 26 kDa globulin (Glb-1), cys-rich prolamin (RM1), and cys-
poor prolamin (RM2) are shown.
(TIF)
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S2 Fig. Residual starch level in the concentrated PB product. (a), Prediction of residual
starch in seed powder after incubation in α-amylase solution at 90°C for 0, 5, 20, 40, and
60 min. After incubation, samples were stained with iodine solution. (b), Water insoluble white
powder (agarose) containing 15% starch powder (left) and water insoluble powder only (right)
were stained with iodine solution. These results indicate that approximate 15% of carbohydrate
in the concentrated PB product (Table 1) was not derived from residual starch.
(TIF)

S3 Fig. Solubility of α-amylase in water. α-Amylase Termamyl 120L was precipitated with ac-
etone or chloroform. Acetone precipitation can concentrate target proteins without denatur-
ation, whereas chloroform precipitation partially denatures target proteins during the
precipitation steps. Precipitates were suspended with 100 μL of water and were divided into su-
pernatant and pellet fractions by centrifugation. An equal volume of urea-SDS buffer was
added to the supernatant, and the pellet was dissolved in 200 μL of urea-SDS buffer. S, superna-
tant; P, pellet;-, without boiling before SDS-PAGE; +, with boiling before SDS-PAGE.
(TIF)

S4 Fig. Degradation of recombinant protein by high temperature (116°C for 30 min) in
rice seeds. SDS-PAGE and immunoblot analysis of No treatment (NT) and high temperature
(116°C) treated-transgenic rice seeds are shown. Degradation products and/or aggregation
products were detected in GluAF1, GluBF2, and GluCF3 after high temperature treatment.
The levels of shuffled Cry j 2 (sh Cry j 2) were decreased by high temperature treatment, al-
though degradation or aggregation products were not detected.
(TIF)

S5 Fig. Development of transgenic rice seed expressing GFP-fused shuffled Cry j 2. (a) Bina-
ry vector construct used to express the GFP-fused shuffled Cry j 2 in rice seed tissue. (b) The re-
sults of SDS-PAGE (CBB) and immunoblotting (IB) of non-transgenic (wt) and transgenic
(Tg) rice seeds are shown. Recombinant proteins were detected using anti-Cry j 2 (sh Cry j 2)
and anti-GFP (GFP) antibodies. (c) Confocal microscopy images of premature seeds of trans-
genic rice. GFP (green), Rhodamine (red), and merged images are shown. GFP-fused recombi-
nant proteins were deposited into PB-I similar to shuffled Cry j 2.
(TIF)
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