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Summary
Clinical routine in hepatology involves the diagnosis and treatment of a wide spectrum of meta-
bolic, infectious, autoimmune and neoplastic diseases. Clinicians integrate qualitative and quanti-
tative information from multiple data sources to make a diagnosis, prognosticate the disease
course, and recommend a treatment. In the last 5 years, advances in artificial intelligence (AI),
particularly in deep learning, have made it possible to extract clinically relevant information from
complex and diverse clinical datasets. In particular, histopathology and radiology image data
contain diagnostic, prognostic and predictive information which AI can extract. Ultimately, such AI
systems could be implemented in clinical routine as decision support tools. However, in the context
of hepatology, this requires further large-scale clinical validation and regulatory approval. Herein,
we summarise the state of the art in AI in hepatology with a particular focus on histopathology and
radiology data. We present a roadmap for the further development of novel biomarkers in hep-
atology and outline critical obstacles which need to be overcome.
© 2022 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the
Liver (EASL). This is an open access article under the CC BY license (http://creativecommons.org/licenses/
by/4.0/).
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Introduction
Hepatology - a complex art
Hepatology is the clinical study of liver disease and
is a prime example of the complexity of modern
medicine. To diagnose disease, make a prognosis
about disease outcomes, and recommend an
optimal treatment, clinicians rely on a vast array of
diagnostic data modalities. The standard clinical
workup of patients with suspected or confirmed
liver disease includes taking the clinical history,
performing a clinical examination, running labo-
ratory tests, and interpreting imaging studies.
Liver biopsies may even be performed, requiring
assessment of changes in tissues, cells and molec-
ular markers. Collectively, these data modalities
contain a wealth of information. Interpretation of
this information is a challenging task, even for
seasoned clinicians, and diagnostic ambiguities
abound in hepatology.1

Machine learning and deep learning
Artificial intelligence (AI) enables computers to
learn from complex datasets and solve real-world
problems within and beyond medicine, leading to
performances on par with or better than those of
their human counterparts. AI refers to computa-
tional approaches to data analysis in which com-
puter programmes are not explicitly guided by
experts but primarily learn from examples.
Throughout this article, we will use AI as a broad
term that includes classical machine learning (ML)
and deep learning (DL) techniques.2 Classical ML
techniques do not require dedicated hardware and
have been used for decades in medicine, including
hepatology and gastroenterology studies.3 These
techniques rely on “handcrafted features” defined
by human investigators. What does this mean in
the context of hepatology? An example of AI as
applied to hepatology is automatic prognostication
of solid tumours based on imaging data. Using a
handcrafted approach, human investigators
assemble a list of quantitative visual features such
as tumour size, roundness, symmetry and intensity
on images.4 These features are subsequently
inputted into a classification algorithm, for
example, the “random forest” method, which ex-
cels at categorising such tabular data.5 In radiology
image analysis, handcrafted image analysis ap-
proaches are traditionally termed “radiomics” (or
“classical radiomics”). In addition to this estab-
lished ML approach, “deep learning” (DL) has
blossomed in the last 10 years thanks to algo-
rithmic advances, improved hardware, and large
datasets. While conceptually similar to classical ML
approaches, DL methods usually have thousands
more free parameters than classical ML methods.
This abundance of parameters makes DL models
more flexible and better suited for processing and
classifying complex data sets such as language data
or imaging data. In medicine, the most commonly
used DL methods are artificial neural networks
(used for image processing6 and processing of time
(J.N. Kather).
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Key points

� Clinical decision making in hepatology relies on a diverse set of data
modalities.

� Classical machine learning tools such as random forests and deep
learning tools such as convolutional neural networks can extract clin-
ically useful information from complex data.

� In particular, histopathology and radiology images of liver diseases
contain a wealth of information.

� A number of proof-of-concept studies have demonstrated the useful-
ness of these methods in hepatology.

� Future efforts from academic and industry partners are required to
establish machine learning and deep learning tools in the clinical
practice of hepatology.
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series7) and transformers (used for language processing8 and,
more recently, image processing9). Importantly, in a DL
approach, investigators do not assemble lists of handcrafted
features. Rather, a DL network is entrusted with automatically
finding features associated with an endpoint, specifically the
clinical outcome. Given today’s technologies, DL methods usually
outperform handcrafted feature-based approaches and conse-
quently dominate the field of AI in hepatology. However, the
demarcation between handcrafted approaches and DL is not
absolute; multiple studies have used DL systems to extract fea-
tures, which are subsequently combined with handcrafted fea-
tures.10,11 Application-wise, ML/DL approaches can be used for
two ends. First, they can recapitulate, and thus automate, the
interpretation of data normally performed by human experts.
Second, they can extract subtle features from complex data
which are not immediately obvious to the human eye.12

Academic research on AI in hepatology
Academic research groups from multiple countries are actively
engaged in ML/DL research in hepatology. Based on a quantita-
tive survey of the MEDLINE database (supplementary
information), researchers from China and the USA are the most
prolific, with between 30 and 40 total publications on ML/DL in
hepatology (Fig. 1A). By far the most common application is
automatic diagnosis of liver disease from imaging data (Fig. 1B).
In these cases, the ground truth is derived from the image data
itself. For instance, an expert radiologist diagnoses a malignant
liver mass in a CT dataset and the ML/DL algorithm is tasked with
reproducing this diagnosis in a supervised training experiment.
Another group of studies involves prognosis prediction from
image-based data. Forecasting the natural course of a disease can
have direct implications for the clinical management of patients.
Accurate prognostication allows clinicians to adjust follow-up
intervals, convey the urgency of lifestyle changes to patients,
and adjust the intensity or type of pharmacological treatment. A
third category of applications is segmentation of structures of
interest. Segmentation studies aim to generate an accurate
outline around a region of interest. As a clinical example, algo-
rithms can delineate organs at risk before radiation therapy of
cancer. While ML/DL studies in hepatology address a range of
diseases, almost all published studies address either neoplastic
or metabolic diseases of the liver, which are the major causes of
liver-related morbidity and mortality besides viral hepatitis13

(Fig. 1C). ML/DL studies in hepatology currently incorporate a
range of imaging modalities. The 3 most commonly analysed
modalities are CT scans, MRI scans and H&E-stained histopa-
thology slides (Fig. 1D). In the last 4 years, the number of ML/DL
studies in hepatology has exponentially grown (Fig. 1E), even
more so in radiology than in histopathology (Fig. 1F), and only 1
study has combined both data modalities so far.14 In addition, a
trend toward a larger growth of DL studies compared to hand-
crafted feature-based studies can be observed (Fig. 1G).

Implementation of AI in hepatology
At this point, a number of ML/DL tools are already approved for
clinical use by the US FDA and similar regulatory agencies
worldwide.15 Nevertheless, there is a wide gap between the
burgeoning number of research articles and the limited number
of clinically approved, available applications. This discrepancy is
exacerbated by missing external and prospective validation of
models, lack of technological infrastructure in health facilities,
lack of knowledge and trust in ML/DL systems amongst medical
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personnel, as well as data privacy issues.16,17 Furthermore, the
clinical implementation of ML and DL methods in hepatology
lags far behind that in other fields of medicine. Recently, the first
ML/DL algorithms for management of patients with liver dis-
eases were clinically approved in Europe and the US. In contrast,
ML/DL algorithms have already been available in other areas of
medicine for a few years, such as polyp detection in colonoscopy,
fracture detection in X-ray images and brain volume quantifi-
cation in magnetic resonance scans.15 This is possibly due to the
complex nature of hepatology, which rarely depends on a single
data type for diagnosis and clinical management. In the
following sections, we will review the current progress of ML/DL
in hepatology from clinical and technical perspectives, focusing
on histopathology and radiology image analysis.
AI in liver histopathology
State of the art
Challenges in liver histopathology
One of the key challenges in liver histopathology is the clinical
decision to obtain liver tissue via biopsy. While liver biopsy is a
safe procedure for most patients, it is associated with non-
negligible morbidity. Moreover, national guidelines and clinical
practice are not always consistent about when a biopsy’s benefits
outweigh its risks.18 This explains the obvious need for non-
invasive biomarkers and likely explains the abundance of ML/
DL studies in liver radiology (Fig. 1F). Nevertheless, once a biopsy
has been obtained, there is a clinical need for a fast, definitive,
reliable, reproducible and quantitative diagnosis.19 It was not
until 2020 that the application of ML/DL methods in liver his-
topathology gathered pace. Unlike radiology which adopted
radiomics in several studies, histopathology did not extensively
apply ML methods using handcrafted features. Rather, most
research groups immediately adopted emerging DL algorithms
based on convolutional neural networks (CNNs), which were
originally developed for non-medical computer vision tasks.

Diagnosis and segmentation in fatty liver disease
Most studies in histopathology have used data (whole slide im-
ages [WSIs]) from patients with non-alcoholic fatty liver disease
(NAFLD), non-alcoholic steatohepatitis (NASH) or hepatocellular
carcinoma (HCC) (Table S1). All of these diseases share the
clinical need for clear-cut diagnostic and prognostic systems.
Several studies have focused on models quantifying steatosis,
inflammation, hepatocellular ballooning and other morpholog-
ical patterns in patients with NAFLD, as well as the staging of
liver fibrosis.20–22 In 2014, Vanderbeck et al. published one of the
2vol. 4 j 100443
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Fig. 1. Digital pathology and radiology using artificial intelligence for management of liver diseases. (A) Number of studies by country of the first author. (B)
Number of studies by prediction of the models. (C) Number of studies by liver disease. (D) Number of studies stratified by the clinical input data used. Raw data for
this figure is available in Tables S1 and S2. Methodological details are available in the supplementary materials and methods. (E) Cumulative number of published
original studies per half-year from 2010 to mid-2021. (F) Cumulative number of published original studies per half-year by research field. (G) Cumulative number
of published original studies per half-year by either deep learning or handcrafted feature extraction. CCA, cholangiocarcinoma; CLD, chronic liver disease; HCC,
hepatocellular carcinoma; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis.
first studies using handcrafted features in a support vector ma-
chine algorithm to identify and quantify macrosteatosis, central
veins, bile ducts and other structures on scanned H&E slides
from NAFLD and healthy liver biopsies, with an overall accuracy
of 89%.23 In the following year, the same group extended their
algorithm for the classification of lobular inflammation and he-
patocyte ballooning with AUCs of 0.95 and 0.98, respectively.
Another study developed a ML quantifier of morphological fea-
tures of NAFLD to calculate a diagnostic score for NASH, yielding
an AUC of 0.80 (95% CI 0.68-0.89).24 Applying classical ML
techniques, Leow et al. used unstained liver biopsies and second-
harmonic imaging microscopy to stratify stage 1 and 2 NASH
fibrosis.25 Roy et al. developed an algorithm with a U-Net ar-
chitecture which adequately segmented and quantified hepatic
steatosis.26 Another benchmark study in the field of quantifying
morphological features and staging of fibrosis in NASH biopsies
was conducted by Taylor-Weiner et al., who developed and
validated their models retrospectively on 3 patient cohorts from
large randomised controlled trials. Their quantifications
JHEP Reports 2022
correlated with the assessment of 3 experienced pathologists.
Specifically, the feature outputs of their model were able to
predict disease progression in patients with NASH, with C-
indices of up to 0.73.27 Gawrieh et al. designed a model to
quantify fibrosis in trichrome-stained biopsies of patients with
NASH, achieving good correlation with pathologists’ assess-
ments. Additionally, their model was able to classify different
patterns of fibrosis with AUCs between 0.77 and 0.95.28 Overall,
these studies show the potential of ML/DL technology for seg-
mentation, quantification and standardisation of diagnosis in
patients with NAFLD and NASH.

Diagnosis and segmentation in primary liver cancer
In recent years, multiple studies have generated AI models for
classifying, segmenting and diagnosing tissue from HCC sam-
ples.29–31 Li et al. published a CNN-based DL algorithm that was
able to grade HCC nuclei on liver histopathology, while Lal et al.
published a more complex model to fulfil the same task 4 years
later in 2021.32,33 Wang et al. developed a DL model which
3vol. 4 j 100443
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accurately identified tumour tissue in hyperspectral data of un-
stained HCC samples.34 Sun et al. used the DL technique of
multiple instance learning to distinguish between HCC and
normal liver tissue in WSIs, reporting AUCs of nearly 1.00.35

Using a convolutional autoencoder, Roy et al. detected tumour
tissue and segmentedWSIs.36 Some of the challenges of adopting
a medical AI-assistance tool were highlighted by Kiani et al., who
trained a CNN on image patches from H&E slides of hepatic tu-
mours to distinguish between HCC and cholangiocellular carci-
noma with a slide level accuracy of 0.88 (95% CI 0.71–0.96).
Subsequently, the model’s performance as an assistive tool for 11
pathologists with different experience levels was evaluated. The
results showed that even though it did not significantly improve
the accuracy of diagnosis for the whole group of pathologists, the
tool improved the accuracy for a subgroup. It also showed that a
false prediction of the tool had a negative influence on the pa-
thologist’s decision.37 Further development and validation of the
findings of these proof-of-concept studies will be needed before
their implementation into clinical workflows.

Outcome prediction for liver disease
While the previously described studies focused on models
imitating human tasks in histopathology, some recent studies
have tried to infer clinical endpoints directly from histopathol-
ogy images. As such, Liao et al. developed an image segmentation
pipeline capable of distinguishing HCC from healthy liver tissue
with an AUC of 0.87 on an external dataset and calculated a risk
score associated with overall survival after resection in patients
with HCC, facilitating a significant separation of high- and low-
risk patients’ Kaplan Meier survival.38 A group from Japan used
handcrafted features from nuclei segmentation to predict early
recurrence after resection of HCC with an accuracy of nearly
0.90.39 The capability of DL algorithms to predict survival of
patients with HCC from H&E-stained WSIs was impressively
shown by Saillard et al., in which a DL risk score outperformed
common clinical, biological and pathological features; the
American Joint Committee on Cancer staging system; and a
composite score of all these variables.40 Histopathology’s po-
tential for predicting survival was further corroborated by Shi
et al.’s DL model, where a “tumor risk factor” was an indepen-
dent predictor of overall and recurrence-free survival in multi-
variable analysis adjusted for known prognostic factors in
patients with HCC.41 Yamashita et al. created a risk score
showing independent association with recurrence-free survival
in patients with HCC who underwent cancer resection.42

Applying new techniques of multimodal data input, He et al.
combined histopathology, MRI, and clinical data to train a model
that predicted the risk of HCC recurrence in patients after liver
transplantation (AUC of 0.87).14 These promising studies are just
the tip of the iceberg in an emerging field of research that seeks
to find better prognostic markers for clinical endpoints and to
harness the potential of digitised histopathology images to
support physicians in their clinical decision making.

What is missing
Standardisation of image analysis
In histopathology, a wave of digitisation is expected to occur in
the next 5 to 10 years.43 However, most diagnostic pathology
departments still rely on manual handling of glass slides. Once
routine workflows are digitised, DL-based biomarkers can be
inexpensively added. However, universal standards for data
formatting, image data compression, and storage of metadata do
JHEP Reports 2022
not exist for digital histopathology WSIs. Currently, the field is
dominated by vendor-specific data formats, which are similar to
multichannel TIFF images and store high-resolution image data
in a pyramidal way. This is in stark contrast to radiology, where
the Digital Imaging and Communications in Medicine (DICOM)
format is the standard for storing image data and metadata,
providing a firm ground for the discovery of biomarkers.

Diversity and bias in database curation
The performance of AI systems in histopathology generally in-
creases with the number of patients,44,45 while the general-
isability of such systems increases with the diversity of patients
in the training set.46 In the field of cancer research, including
HCC, The Cancer Genome Atlas (TCGA) database provides
publicly available histologic, genetic, and clinical data on
thousands of patients and has served as a key resource for early
studies on DL-based biomarkers in HCC.10,47 However, recent
studies have uncovered potential biases in the TCGA database
leading to overperformance of DL systems.48 Therefore,
external validation of TCGA-derived classification systems is
crucial for generalisability.16

The next steps
Optimistically, ML/DL systems could help resolve the diagnostic,
prognostic and predictive issues that limit liver histopathology
image analysis. This would improve and facilitate clinical trials in
liver disease in which inclusion criteria, patient strata and his-
tological endpoints are often manually defined by pathologists
and therefore subject to intra- and inter-observer variability.49 As
in other disease contexts, there is a place in clinical decision
making for invasive tissue-based diagnostics. ML/DL approaches
could conceivably improve the consistency, quality and amount
of information which researchers and healthcare providers can
extract from this tissue. The benefits of these ML/DL approaches
to histopathological analysis may incentivise patients to undergo
an invasive procedure such as liver biopsy. However, for some
problems in the management of liver disease, non-invasive
radiology images, instead of invasive diagnostics, can be ana-
lysed to unveil biomarkers. In the following section, we will re-
view the state of the art in ML/DL approaches applied to such
radiology data.
AI in liver radiology
State of the art
Challenges in liver radiology
Patients with liver disease, particularly those with liver cancer,
undergo multiple imaging studies to establish a diagnosis, pre-
operatively plan interventions, and monitor response to ther-
apy (Table S2). Each of these imaging studies contain numerous
data points that could be potentially analysed to improve pre-
dictions. However, there is a formidable challenge in trans-
forming this burden of clinical and imaging data into something
of clinical value.

This challenge in image interpretation is confounded by
several considerations. There are at least 25 guidelines for HCC
diagnosis with varying, inconsistent definitions for imaging
features. Although LI-RADS is the most standardised50 of these
guidelines, there is no unified imaging guideline that encom-
passes a patient’s journey from diagnosis and treatment rec-
ommendations to therapeutic response assessment. Similarly,
treatment recommendations for patients can be inconsistent
4vol. 4 j 100443



amongst HCC prognostic staging systems depending on func-
tional status, tumour imaging characteristics, liver function, and
geography.51–53 In addition, several locoregional and systemic
therapies exist,54,55 each of which may introduce distinctive
appearances on follow-up imaging.56 Finally, ultrasound and
elastography are used to non-invasively assess steatosis and
fibrosis, but the calibration and discriminative accuracy of these
modalities vary greatly.57

To facilitate transformation of imaging data into clinically
accessible information, AI may derive predictions in a more
personalised fashion. Two categories of AI that have shown
promise in liver imaging are radiomics (relying on classical ML)
and DL systems (relying on CNNs) (Fig. 2A). Radiomics is a
strongly supervised and expert-guided approach where hard-
coded algorithms extract quantitative image features that are
fed into an ML algorithm.58 In contrast, DL with a CNN consti-
tutes an automatic feature extraction where the algorithm self-
learns salient features and self-optimises parameters by
running an input image through mathematical operations
embedded in multiple layers.59 Because both approaches aim to
predict a pre-defined “ground truth,” they are considered su-
pervised learning approaches. Herein, we review AI tools for liver
imaging in segmentation, classification of disease severity and
lesions, and outcome prediction.

Segmentation of liver and liver lesions
Segmentation involves drawing boundaries of the entire organ, a
lesion, or other structures of interest on an imaging study
(Fig. 2B). CNNs employing a U-Net architecture have been uti-
lised extensively in the medical imaging literature for
A
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Fig. 2. Radiology image analysis workflows. (A) Handcrafted feature extraction
radiology image analysis. Alternatively, deep learning, in the form of neural netw
fashion (end-to-end analysis). (B) Common tasks in radiology image analysis are
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segmentation tasks.60 Namely, Christ et al.’s landmark study used
a combination of cascaded CNNs with U-Net architectures and
dense 3D conditional random fields to determine segmentation
of the whole liver and liver lesions on abdominal CT.61 While not
based on a U-Net architecture, Sun et al. used a CNN based on
multi-phase contrast-enhanced CT images to segment liver tu-
mours.62 To enable head-to-head comparisons of segmentation
algorithms, the Liver Tumor Segmentation Benchmark (LiTS)
supplied a public dataset of liver CTs and showed that algorithms
could achieve segmentation of livers and tumours with Dice
scores greater than 95% and 70%, respectively.63 A noteworthy
example that excelled in lesion segmentation on the LiTS dataset
is the H-DenseUNet, a hybrid U-Net fusing 2D intra-slice and 3D
inter-slice features.64 DL for liver and HCC segmentation can be
further refined by excluding false positive segmentations using a
radiomics-based random forest and thresholding of mean neural
activation.65 Practical studies of segmentation include delinea-
tion of ablation zones66 and anatomy-guided multimodal regis-
tration of the liver fromMRI to intraprocedural cone-beam CT for
locoregional therapy.67

Tissue characterisation of fibrosis and liver lesions
CNN classification tools may potentially replace liver biopsy for
grading the severity of NAFLD and liver fibrosis in some patients
(Fig. 2B). CNNs were initially used to classify the presence of fatty
liver disease with AUCs of almost 1.00.68,69 Since then, CNNs
have been applied for quantification of liver steatosis on
abdominal CT screening70 and ultrasound.71 CNNs classified F3
and F4 fibrosis on 2D shear wave elastography72 and portal
venous phase CT images73 with AUCs of at least 0.95,
ification
n

Prognostication

nd-crafted
eatures

Supervised
learning
target
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, also referred to as “radiomics,” is an established image analysis technique in
orks, can be used to learn features and predict a target label in a supervised
segmentation, classification and prognostication.
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outperforming the AST-to-platelet ratio index and the fibrosis-4
index. Gadoxetic acid-enhanced hepatobiliary phase MR images
have also been inputted into a CNN for fibrosis staging, achieving
AUCs of 0.84, 0.84, and 0.85 for classification of F4, F3, and F2
fibrosis, respectively.74

CNNs also excel in classification of liver masses. Yasaka et al.’s
DL CNN model used multi-phase contrast-enhanced CT to di-
agnose 5 categories of malignant and benign liver masses with a
median accuracy of 0.84. The AUC for differentiating HCCs and
other malignant lesions vs. indeterminate and benign masses
was 0.92.75 Hamm et al. developed a CNN system based on
multiphasic MRI that identified 6 classes of hepatic lesions with
an AUC of 0.99 for test cases and a sensitivity and specificity
(90%/98%) that exceeded that of radiologists (82.5%/96.5%).76 For
challenging HCC diagnoses, Oestmann et al. trained a DL model
with multiphasic MRI to differentiate HCC with typical and
atypical appearances from non-HCC lesions.77

Outcome prediction for malignant disease
Given its association with high rates of recurrence after HCC
resection, microvascular invasion (MVI) has been the focus of
predictive radiomics nomograms. Nomograms using contrast-
enhanced CT radiomics signatures yielded AUCs ranging from
0.80 to 0.90 during validation.78–80 Notably, Xu et al. showed that
although radiomic features did not add additional benefit to
radiologist scoring of HCC, the integrated nomogram of radio-
mics, clinical factors, and radiographics achieved an AUC of 0.90
in the test set for predicting MVI.80 Feng et al. used radiomics
features on preoperative Gd-EOB-DTPA (gadolinium
ethoxybenzyl-diethylenetriaminepentaacetic acid)-enhanced
MRI to predict MVI for curative hepatectomy with an AUC of 0.85
in the validation cohort.81 Recent DL models on CT82 and
contrast-enhanced MRI83,84 can predict MVI with AUCs
exceeding 0.90.

Finally, AI has found utility in predicting response to trans-
arterial chemoembolisation (TACE). Abaijian et al. used MRI im-
aging features and clinical variables to develop logistic
regression and random forest models that predicted response to
TACE.85 Morshid et al. trained 2 CNNs to segment the liver and
HCC, extracted textures from segmented HCCs, and used a
random forest to classify patients as being susceptible or re-
fractory to TACE using the extracted textures and the BCLC
score.86 A residual CNN was utilised in transfer learning to pre-
dict RECIST response to TACE based on pretreatment CT images
of intermediate stage HCC, with AUCs above 0.90 in independent
validation cohorts.87 Jin et al. created a nomogram of clinical
features, radiological characteristics, and a pretreatment CT
radiomics signature to predict extrahepatic spread and MVI in
patients with HCC who underwent TACE.88

What is missing
Standardisation of image analysis
Despite AI’s promise for translation in liver imaging, discrep-
ancies in methodology prevent incorporation into clinical deci-
sion making. Considerable variation exists within the radiomics
workflow starting from data acquisition to final selection of
features,58,83 although similar considerations apply to DL. In liver
imaging, CT, MRI, or ultrasound constitute imaging modalities
with distinct data acquisition parameters. As such, the use of
specific scanners, imaging protocols, and image reconstruction
methods could affect later extraction of features.58,69,81,89 While
most imaging data is stored in a PACS (Picture Archiving and
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Communication System) as DICOM files, further variability is
introduced when files are converted to user-friendly versions
such as PNG, TIFF, and NIFTI (Neuroimaging Informatics Tech-
nology Initiative).90

Difficulties in standardisation also arise during image anal-
ysis. Little unity exists around segmentation methods from
various vendors,58 while DL-based segmentation methods
diverge in their architectures. As for preparation of imaging data
for feature extraction, image processing steps such as interpo-
lation, normalisation, and discretisation depend on imaging
modality, which may affect the reproducibility of radiomic fea-
tures.58 Finally, heterogeneity exists amongst in-house software
used for feature selection and dimensionality reduction.

Diversity and bias in database curation
In order for AI algorithms to be widely applicable beyond their
initial training and validation phases, well-curated databases are
crucial for external validation. It is critical to generate an
epidemiologically diverse dataset to ensure all imaging appear-
ances are included. For instance, an algorithm developed for
fibrosis staging in an East Asian population, where patients
predominantly have chronic hepatitis B, may not be general-
isable to Western populations, where NAFLD and alcohol-related
liver disease are common. In addition, class imbalance in non-
diverse datasets can compromise generalisability by negatively
affecting the algorithm’s ability to classify test cases that were
less represented during the training phase. This could explain
why an algorithmmay less effectively classify F2 fibrosis, as more
advanced F3 and F4 stages are over-represented.72,73

External validation may also be compromised when a dataset
unintentionally perpetuates existing disparities in healthcare
through the labels it chooses for prediction. This very issue was
highlighted in a commercial algorithm that used predicted cost
as the algorithmic risk score. At a given algorithmic risk score,
Black patients had a higher number of active chronic conditions
than White patients, but similar actual, realised costs to White
patients. This discrepancy suggested less health spending was
allocated to Black patients for their true illness burden, possibly
due to barriers in care experienced by Black patients not
captured by predicted cost.91

The next steps
Concrete steps can be taken to standardise data collection and
image analysis. The Quantitative Imaging Biomarker Alliance
(QIBA) has sought to standardise the measurement and analysis
of Quantitative Imaging Biomarkers (QIBs) by drafting QIBA
profiles dedicated to certain QIBs, whereas the European Imaging
Biomarker Alliance has tabulated organ systems-based in-
ventories detailing the evidence for biomarkers.92–94 With
respect to radiomics, workflows can adhere to the Radiomics
Quality Score and Transparent Reporting of a Multivariable Pre-
diction Model for Individual Prognosis or Diagnosis (TRIPOD)
statements to ensure technical rigor and verify features are
consistent with the Image Biomarker Standardisation Initiative
Reference Manual.95–97 In addition, publicly sharing details of
algorithm development would foster mutual agreement on im-
aging formats and annotations,90 establish benchmarks for
methodologies, and facilitate comparisons amongst studies.
Finally, AI algorithms should be tested on prospectively collected
data to assess the robustness of features in the face of new data.

To supply the diversity of images needed to represent all
possible pathologies, multi-institutional databases should be
6vol. 4 j 100443



established. Datasets should include multiple geographic re-
gions, provide data from different imaging vendors, and reflect
the racial and socioeconomic diversity of the population the AI
algorithm will be implemented upon.90 Strategies such as data
augmentation or general adversarial networks can also be used
to expand the dataset and compensate for under-represented
classes of images.

Anticipating sources of bias which threaten the external val-
idity of an algorithm will involve pre-emptively acting on biased
predictions. AI algorithms should employ continuous, real-time
learning in which new input data are monitored for biases98

and predicted labels are modified accordingly in external
testing to minimise bias.90

Sharing all details of algorithm development, especially the
datasets and computer source code underlying the model, will
be critical for reproducibility, validation, and eventual translation
into clinical workflows.99–101 The Checklist for Artificial Intelli-
gence in Medical Imaging (CLAIM) and the assessment checklist
developed by the Fairness, Universality, Traceability, Usability,
Robustness and Explainability AI (FUTURE-AI) initiative establish
reporting guidelines for appraisal of AI studies.102 Similarly, the
checklists for established reporting guidelines, such as STARD
(Standards for Reporting Diagnostic Accuracy), CONSORT
(Consolidated Standards of Reporting Trials), and TRIPOD, are
being expanded specifically to account for ML and AI applica-
tions.103,104 The Evaluating Commercial AI Solutions in Radiology
(ECLAIR) Guidelines expand upon the aforementioned checklists
for AI studies by adding considerations related to information
technology infrastructure, user accessibility, medical device
regulation, data protection, licensing, and product mainte-
nance.105 With greater adherence to reporting guidelines, AI will
be able to clearly define its roles in hepatology clinical work-
flows. Indeed, AI can potentially facilitate triage of patients,
enhance consult evaluations, or conveniently summarise all
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patient clinical data under a single clinical interface.12 Moreover,
standardisation of AI tools will be needed to encourage the
adoption of more clinically relevant performance metrics such as
classification/re-classification accuracy and quality of life mea-
sures, rather than indices such as the AUC.16,105

Finally, holding algorithms accountable for their predictions
may involve proactively ensuring that clinicians understand how
algorithms use input data to make decisions, or interpretability.
Visualisation methods mapping which pixels contribute to the
classification of an input image can aid interpretability of DL
systems.106 Wang et al. worked within the framework of Hamm
et al.’s DL system to infer features most relevant to hepatic lesion
classification and produce feature maps corresponding to areas
where features were detected.76,107 Zhen et al. generated saliency
heatmaps to visualise pixels most relevant to classification of 7
types of focal liver lesions on MRI.108 Wei et al. utilised an inte-
grated gradients method to show which pixels corresponded to
the most important clinical and radiomics features for prediction
of overall survival in patients with HCC undergoing stereotactic
body radiation therapy.109
Outlook
Overcoming obstacles on the way to clinical implementation
Even though AI carries much promise for changing future clinical
practice, a number of issues must be addressed before broad
implementation is possible. The problems of data stand-
ardisation, biases introduced through unrepresentative training
data, and explainability of ML/DL algorithms have already been
mentioned above. However, these issues are more concerned
with model development, rather than deployment. Building up
the necessary healthcare infrastructure and training medical
personnel to sensibly use new technology are important cor-
nerstones of the deployment side. To fully realise the benefits of
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Big Data, stakeholders must enforce and accelerate the digitisa-
tion of healthcare units. In that respect, whereas most radiology
units in industrialised countries are fully digitised, most pa-
thology departments are not. Nevertheless, we believe that
digitised workflows will soon be adopted by pathology, permit-
ting seamless integration and application of ML/DL tools
amongst departments heavily dependent on imaging. At present,
most AI tools are designed for a single specific task. In the future,
we envision a standardised software suite that will incorporate
many different plug-in options. Ideally, this software suite would
be publicly available through an open-source project funded by
government or independent healthcare institutions. This would
avoid dependency on private companies and nudge industry to
standardise its products, reducing the cost and the number of
proprietary data formats and software solutions. Additionally, a
single software platformwould make it easier for medical staff to
work with several applications and algorithms, hence reducing
the investment in training.

Multimodal input models for clinical decision making
Decision making in clinical routine is rarely based on a single
data modality. Usually, healthcare providers integrate a number
of different data types into clinical decisions. This is especially
true in hepatology – a field in which it is rare for diseases to be
directly observed and the differential diagnosis can be uncertain.
For example, one of the most common hepatology consults is an
incidental finding of elevated liver enzymes. Diagnosing the
aetiology of this abnormality requires a battery of tests, including
detailed clinical history, additional laboratory tests, ultrasound,
and even histopathology. Supporting, and ultimately mimicking,
human decision making in such complex tasks is currently out of
reach for narrow and specialised AI systems. At present, different
AI approaches are required to process various types of clinical
JHEP Reports 2022
input data (Fig. 3). Recently, there have been increasingly suc-
cessful attempts to integrate multimodal data in non-medical
fields,110 but such endeavours have not been systematically
applied in a medical context beyond highly simplified laboratory
conditions.111

Interdisciplinary teaching and training
The medical profession will not be replaced by AI in the future, as
the need to adapt to incomplete data, engagement in shared
decision making with patients, and the ethical and legal obli-
gation to assume responsibility will continue to remain in
medicine. However, doctors can include the predictions of AI
models in their recommendations and decisions, and thus use
existing information more effectively. This incorporation of AI
will require communication platforms, namely, user interfaces,
dashboards, and innovative visualisation methods, to optimise
the flow of information from AI to physicians. In order for AI to
be widely adopted by the medical community, “digital literacy”
needs to be a core medical competency. A necessary prerequisite
for such “digital literacy” is basic knowledge of programming,
which, in principle, can be learned by everyone. In the medical
context, structured training programmes should be employed to
teach programming. To that end, doctors must learn the neces-
sary skills to use AI methods in research; validate algorithms in
clinical studies; and critically question the benefits, data security,
and possible biases of algorithms, even after regulatory approval.
In our experience, it has been especially encouraging to witness
medical students and young doctors who are earnestly inter-
ested in gaining a deeper understanding of AI and applying this
technology to clinical problems. In time, this new generation of
digital clinician scientists will acquire the rigorous training to
advance AI research and pave the way for AI implementation
into routine clinical workflows.
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