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Abstract

Background: Cryptococcus neoformans causes serious disease in immunocompromised individuals, leading to over 600,000
deaths per year worldwide. Part of this impact is due to the organism’s ability to thwart what should be the mammalian
hosts’ first line of defense against cryptococcal infection: internalization by macrophages. Even when C. neoformans is
engulfed by host phagocytes, it can survive and replicate within them rather than being destroyed; this ability is central in
cryptococcal virulence. It is therefore critical to elucidate the interactions of this facultative intracellular pathogen with
phagocytic cells of its mammalian host.

Methodology/Principal Findings: To accurately assess initial interactions between human phagocytic cells and fungi, we
have developed a method using high-throughput microscopy to efficiently distinguish adherent and engulfed cryptococci
and quantitate each population. This method offers significant advantages over currently available means of assaying host-
fungal cell interactions, and remains statistically robust when implemented in an automated fashion appropriate for
screening. It was used to demonstrate the sensitivity of human phagocytes to subtle changes in the cryptococcal capsule, a
major virulence factor of this pathogen.

Conclusions/Significance: Our high-throughput method for characterizing interactions between C. neoformans and
mammalian phagocytic cells offers a powerful tool for elucidating the relationship between these cell types during
pathogenesis. This approach will be useful for screens of this organism and has potentially broad applications for
investigating host-pathogen interactions.
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Introduction

Cryptococcus neoformans is an opportunistic fungal pathogen of

mammals, which causes life-threatening illness in severely

immunocompromised hosts. Inhalation of the infectious particle

results in a primary pulmonary infection that can lead to a fatal

meningitis [1]. Cryptococcosis affects close to one million people

annually and kills over 600,000 of them, mainly in sub-Saharan

Africa [2]. This virulence is mediated by multiple factors, but

prominent among them is the ability to form an anti-phagocytic

polysaccharide capsule [3].

The first step of cryptococcal infection occurs when a

mammalian host inhales the infectious particles, which are of a

size that allows them to reach the alveoli. Fungi can then persist

and replicate in the alveolar spaces, or they may encounter host

macrophages and become internalized [4–6]. These infected

macrophages may remain in the lungs or leave the pulmonary

system, allowing fungal dissemination. Once within macrophages,

there are several possible fates for C. neoformans. The fungus can

exit the macrophage by causing host cell lysis. Alternatively, it can

remain sequestered within the host cell, where it can either

continue to replicate or potentially exist in a latent form until

reactivation in the setting of immune compromise [7–9]. The

fungus may also be killed by the macrophage, or exit the host cell

through an intriguing non-lytic mechanism that may also allow

direct transfer between host cells [10–13]. Understanding the

interactions between mammalian host macrophages and C.

neoformans is key to explaining successful fungal pathogen

dissemination, latency, and host damage [14–18].

Host-microbe interactions at the cellular level can be investi-

gated in multiple ways [19–22]. We have used microscopy to

quantitate the initial interactions between C. neoformans and host

cells: cell adherence and fungal internalization. Although direct

imaging of these events may be possible in some model organisms

that have been used to study cryptococcal infection, such as

Caenorhabditis elegans [20], we have chosen to assay cells in culture to

facilitate automation and high-throughput approaches. Multiple

systems have been used to study fungal engulfment by phagocytes

in culture, ranging from single celled organisms like Acanthamoeba

and Dictyostelium to cell lines derived from Drosophila, mouse, and
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human. While most studies of C. neoformans phagocytosis have been

performed in murine cell lines, we chose human cell lines as the

phagocytic partner in our assay because of the significant human

disease caused by this organism.

A variety of methods have been used to quantitate in vitro studies

of interactions between intracellular pathogens and host cells.

Some of these measure total pathogens associated with host cells:

for example by exposing host cells to the infecting microbe,

washing them, and then assessing associated colony forming units

(CFU) [23]; or by using flow cytometry to sort host cells exposed to

fluorescent microbes [24,25]. Although these methods are useful,

they generally do not differentiate between adherent and

internalized organisms, which are distinct populations in terms

of host interactions. One approach to specifically assessing

internalized microbes is to add a non-membrane permeant drug

to the assay, such that adherent microbes are killed and therefore

not viable in CFU assays [26–28]. While extremely powerful [29],

this method does not allow direct measurement of adherent cells.

For directly measuring both adherent and internalized microbes,

judicious use of fluorescent staining in conjunction with light

microscopy has been most effective [30,31]; we have applied such

an approach below.

Fungal pathogens are an emerging threat for which we have a

limited toolbox. These pathogens are evolving rapidly, and

severely affect both immunocompromised and immunocompetent

individuals [2,32–36]. We have established a new, fast, and

accurate method for studying the initial interactions of C.

neoformans cells with host macrophages. This method offers a

powerful approach to understanding cryptococcal biology and has

potential application to other pathogens.

Results

Assay development
Our goal was to develop a rapid and effective method to

differentiate between adherent and engulfed cells after in vitro

exposure of host cells to C. neoformans, and to quantitate each

population. We began with a mouse macrophage-like cell line,

J774.16, which has been extensively evaluated for interactions with

C. neoformans. To assess adherence and internalization, we first

tested a strategy that has been effective in C. neoformans [37–39]

and other eukaryotic pathogens [40]: performing antibody

labeling before and after host cell permeabilization. To do this

we exposed host cells to serum-opsonized C. neoformans cells, and

then stained the samples with an anticapsular monoclonal

antibody (3C2 [41], generously provided by T. Kozel) to identify

cryptococci that only attach to the host cell surface (Fig. 1A). We

next washed the samples, permeabilized the host cells with

saponin, and restained the samples using the same antibody tagged

with a second fluorophore to label all cryptococci associated with

the host cells (Fig. 1B). As shown in the merged image (Fig. 1C;

which also shows a DIC image and DAPI-staining of the J774.16

cells), a doubly-labeled adherent yeast (yellow) is clearly distin-

guishable from the internalized cells that are only labeled with the

second fluorophore (green). While this method was clearly

effective, and could be scored by automated microscopy (not

shown), it requires multiple staining steps and relies on a biological

reagent that is organism-specific and not commercially available.

For these reasons we considered other methods for identifying

fungal cells.

We had previously observed that Lucifer Yellow dye uniformly

stains cryptococcal cell walls without affecting cell morphology or

subsequent growth in culture (A. Yoneda and T.L. Doering,

unpublished observations). This staining is rapid, inexpensive, and

commercially available. Before applying this reagent to our

studies, however, we needed to be sure that this staining did not

adversely affect the fungal cells in terms of their host interactions.

To test this, we performed sequential antibody labeling studies (as

in Fig. 1A–C) using fungi with or without prior Lucifer Yellow

staining. Staining of the fungi before host cell exposure did not

alter adherence and uptake as measured by this assay (Table S1).

We next tested Lucifer Yellow-stained cryptococci in a mouse

model of infection (see Methods). We found that the stained fungal

cells were able to proliferate in the mouse lungs to the same degree

as the untreated fungal cells (Fig. 2; p value = 0.37), suggesting that

the dye caused no significant alteration in their host interactions or

growth.

Based on our results in tissue culture and in mice, we used

Lucifer Yellow-stained cryptococci to assay interactions with

THP-1, a human monocytic cell line [42,43] that has been used

Figure 1. Distinguishing adherent and internalized cryptococci. Panels A–C, J774.16 cells were exposed to fungi labeled with anti-capsular
mAb and adherent fungi were labeled with an Alexa Fluor 546-labeled secondary antibody (red). Host cells were then permeabilized, and the samples
were restained with an Alexa Fluor 488-labeled secondary antibody to stain all fungi (green). Panel A, red channel; Panel B, green channel; Panel C,
merge with DIC and DAPI-stained images. Panels D–E, Confocal images of THP-1 cells were challenged for 1 hr with Lucifer Yellow-stained fungi and
stained with CellMask (pink). All fungi appear green in the merged image (D), but only engulfed fungi exclude the cytosolic dye and appear as dark
silhouettes in the pink channel (E). Scale bars, 5 mm.
doi:10.1371/journal.pone.0022773.g001
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to study host cell interactions with other pathogenic microbes [44–

47]. We exposed THP-1 derived macrophages to Lucifer Yellow-

stained fungi, washed them with PBS to remove non-adherent

cells, and then stained the host cytosol with CellMask. As shown

by confocal fluorescent imaging (Fig. 1D), both cell types are easily

visualized, and the displacement of the cytosolic dye by

internalized fungi (Fig. 1E) allows those that have been engulfed

(seen as silhouettes in the host cytosol) to be readily distinguished

from those that are adherent to the host cell surface. We also

analyzed assay samples in parallel using this method or the method

described above that is based on antibody staining before and after

host cell permeabilization. The results from the two methods were

indistinguishable (not shown).

While developing our assay, we observed that fungi interacted

more extensively with THP-1 cells than with J774.16 (Fig. 3A). To

quantitate this result and explore additional host lines, we

compared the interactions between C. neoformans and J774.16,

THP-1, RAW 264.7 (a murine macrophage-like cell line [48]), and

U937 (a human monocytic cell line [49]). All of these cell lines

share characteristics important for our assay: they display

receptors involved in the complement pathway (known to be

important in cryptococcal infection [50–53]), and they have

phagocytic capabilities. In a direct comparison we found that

THP-1 cells were most active in our assay (Fig. 3B), so we used this

human cell line for all subsequent studies.

Automated imaging and assay kinetics
Our studies up to this point were analyzed manually, with

visualization by conventional fluorescence microscopy. While this

method yielded clear and reproducible results, we wished to

automate our assays to reduce the time required for analysis. To

do this we took advantage of automated high-content imaging,

after first scaling our assay up to 96-well microtiter plate format.

As in the earlier studies, we challenged host cells with Lucifer

Yellow-stained cryptococci, then fixed and stained the samples

with DAPI and CellMask. We next imaged the wells with a GE

INCell Analyzer, using individual channels to visualize Lucifer

Yellow-stained fungi (Fig. 4A), DAPI-stained host nuclei (Fig. 4B),

and CellMask-stained host cytosol (Fig. 4C). The relationship

between these stains is clearly seen in a merged image of a

representative assay (Fig. 4D). Finally, we used an automated

developer to identify each stained entity (Fig. 4E), and to classify

each fungal cell in terms of its relationship to the host cells. We

defined adherent cells as those where signal overlap with a host cell

was greater than 1% and less than 50%, and engulfed cells as those

where the overlap was equal to or greater than 50%, recording all

results on an individual cell basis to allow flexible analysis. We

recognize that this classification may not always be precise because

of cell positions in the imaging field, but parallel manual inspection

(including examination of multiple focal planes) yielded results that

were statistically indistinguishable (Table S2). This suggests that

we have developed a robust and biologically meaningful assay.

Having established a reliable assay with automated analysis, we

used it to characterize various experimental parameters. Among

these we noted a linear relationship between the number of

cryptococcal cells added to each host well and their adherence or

uptake by the phagocytes, up to a ratio of at least 1:1 (Fig. 5A). We

also performed a time course study to examine the kinetics of

interactions with the host cells. We found that adherence begins to

level off close to 30 minutes after exposure, while uptake does not

begin to plateau until significantly later (Fig. 5B; see Discussion).

Biological and statistical assay validation
We next wanted to apply our assay to a feature of C. neoformans

with known biological relevance to phagocyte interactions. The

cryptococcal capsule, mentioned above as a major virulence factor

of this pathogen, is known to be antiphagocytic [53–56]. Capsule

size increases during growth in various inducing media, including

the ‘host-like’ conditions of growth in mammalian tissue culture

medium at 37uC in a 5% CO2 atmosphere. Enlarged capsule can

be readily observed as a halo surrounding the cell wall upon

negative staining with India ink (Fig. 6B), and is typically visible by

such staining after 4–8 hours in inducing conditions (not shown).

We grew cells in parallel under these inducing conditions or in the

same medium at 37uC but in room air (which does not yield

Figure 2. Lucifer Yellow does not alter cryptococcal survival in
mouse lung. Mice were infected with fungal cells treated without
(standard) or with Lucifer Yellow. Lungs were harvested for CFU counts
at 1 hour (yellow bars) or 1 week (blue bars) after infection. Mean and
standard deviation of values are shown.
doi:10.1371/journal.pone.0022773.g002

Figure 3. Host lines differ in phagocytosis of C. neoformans.
Panel A, bright-field microscopy of J774.16 and THP-1 cells challenged
with fungi. All fungal cells shown were internalized except one (yellow
arrowhead). Scale bar, 5 mm. Panel B, adherence (yellow bars) and
uptake (blue bars) values for the indicated macrophage-like cell lines.
Mean and standard deviation values are shown.
doi:10.1371/journal.pone.0022773.g003
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appreciable capsule, Fig. 6A), and removed samples at various

time points for testing in our assay. We saw reduced adherence as

early as 1 hour after the start of capsule induction (Fig. 6C), a time

point at which changes in capsule size are not visible by India ink

staining (not shown). Both adherence and uptake were almost

completely repressed in capsule induced samples by 24-hours

(Fig. 6C and data not shown), a time point at which uptake and

adherence of uninduced samples is still robust.

The experiments described above, including the capsule

induction study, demonstrated that our automated assay is rapid

and sensitive to cellular features of biological significance,

suggesting it will be appropriate for large-scale screening projects.

For such studies, however, it is necessary to statistically

characterize and validate the assay. To do this, we assayed sets

of 96-well plates in triplicate using unopsonized and opsonized

cryptococcal cells as negative and positive control conditions,

respectively (Fig. 7). We then evaluated our assay with two

different statistical measures, Z factor [57] and SSMD (strictly

standardized mean difference [58–60]). Z factor compares the

variation in average assay values for positive and negative controls

to the difference between those values, and is best applied to

studies in which a normal distribution of data is expected. We

routinely observed Z factor scores between 0.5 and 1, indicating

an excellent screening assay, appropriate for high-throughput

studies. SSMD relates the difference between the mean values of

two control populations to the standard deviation of the difference

between them [58], and is more robust to variation in data ranges

(outliers) and to data variability. Our calculated SSMD scores

were typically above 3 (Table S3), which, like the results for Z-

factor, demonstrate that the assay is appropriate for high-

throughput screening.

Discussion

Central features of cryptococcal pathogenesis, including dis-

semination, latency, and host cell damage, depend upon the

interactions between Cryptococcus neoformans cells and mammalian

phagocytes. Screening approaches are potentially powerful for

elucidating these processes. However, current ways to assess

fungal-host cell interactions, such as protocols that rely on low-

throughput imaging techniques and limited reagents [37,61], are

not ideal for screens. To enable efficient screening of interactions

between C. neoformans and host phagocytes, we have applied high-

content automated microscopy and analysis. This allows us to

assess the initial interactions of Cryptococcus neoformans with

mammalian host macrophages in a high-throughput manner.

A key parameter in this work was the choice of host cell type, so

we investigated the uptake and adherence indices of four

macrophage/macrophage-like cell lines, ultimately choosing the

human THP-1 cell line for our assay. Although most studies of C.

neoformans have used mouse lines such as J774.16, we chose to work

within the human system, using both human serum and a human

cell line. THP-1 cells may be readily differentiated into

macrophage-like cells in culture and demonstrate a high

phagocytic capability in our assay, even without activation by

antibodies or LPS (which have been frequently used for

cryptococcal uptake studies). Importantly, these cells display Fc

and C3 receptors, which play roles in pathogen recognition; the

latter are particularly important for recognition of the cryptococcal

capsule [50]. We have validated the biological sensitivity of THP-1

cells to C. neoformans by our demonstration that they can detect

alterations in capsule within less than two hours of capsule

induction by ‘host-like’ conditions.

Our protocol readily distinguishes between adherent and

engulfed cryptococci in an efficient and cost-effective manner. It

requires fewer manipulations than antibody-based protocols,

reducing cell loss as well as effort and reagents. The method

directly images the particles of interest, in contrast to studies that

use antibodies or quenching [23] to calculate pathogen distribu-

tion based on differences in signal. Importantly, this assay may also

be readily adapted to multiple cell types by using widely available

stains to label the host nuclei and cytosol as well as the

cryptococcal cells. The ability to simultaneously track adherent

and internalized cells has allowed us to observe differences in the

kinetics of appearance of these populations (Fig. 5). These results

suggest that adherence precedes internalization, as might be

expected, and further that these processes may be saturable. The

ability to differentiate between bound and internalized popula-

tions, which is not currently possible with other high-throughput

assays, allows us to study these distinct steps independently.

The largely automated protocol we have developed has multiple

technical advantages. Up to eighty samples plus controls can be

screened simultaneously in 96-well format, and higher density

formats offer promising preliminary results (not shown). Our

statistical analysis reveals consistent results across and within

multiple plates, and the assay is appropriate for high-throughput

screening based on two different statistical parameters (Z factor

Figure 4. Automated fluorescent microscopy and segmenta-
tion analysis. Uptake of Lucifer yellow-stained fungal cells by THP-1
cells was performed as described in Methods. Panels A–C, cryptococcal
cells imaged by Lucifer Yellow (A), host nuclei imaged with DAPI (B),
and host cytosol imaged by CellMask (C). Panel D, fused image of Panels
A–C. Panel E, the image in panel D automatically annotated to indicate
boundaries of host cells (red), host cell nuclei (turquoise), and fungi
(green). Fungal cells overlapping the cell body by less than 50% are
considered adherent (yellow arrow) and those overlapping by $50%
are considered engulfed (white arrow). The fungal cell at upper left
appears pale because it overlies the host nucleus. Scale bars, 10 mm.
doi:10.1371/journal.pone.0022773.g004
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and SSMD). We are able to minimize the subjectivity that is

associated with microscopy based assays by using automated

imaging, and the high-content images generated in this way are

rich in information which can be mined for additional phenotypic

details. We have validated the method through the use of different

cell types, both host (Fig. 2) and pathogen (not shown), and the

data quality matches that of the ‘‘gold standard’’ method of using

manual inspection of antibody-labeled samples (Table S2). Finally,

our automated collection of data on individual host and fungal

cells offers great flexibility in terms of analysis.

Cryptococcus neoformans is a successful fungal pathogen. Much of

this is due to its ability to produce capsule polysaccharides, which

impede host defenses including phagocytic cell deployment and

phagocytosis. Multiple aspects of the latter process may be studied

using variations of our assay. For example, we have an excellent

vantage point for the initial stages of host cell entry, which also

avoids the potential complication of fungal growth. We can change

that view by altering the time from our current one hour exposure,

potentially using shorter co-incubations to study the earliest

fungal-host cell interactions. Similarly, we can use later time points

Figure 5. Effects of cell ratio and exposure time on adherence and uptake. Indices of adherence (open circle) and uptake (closed circle) vary
with the number of fungal cells added per well (A) and with time (B). Mean and standard deviation are plotted (some error bars are too small to see).
doi:10.1371/journal.pone.0022773.g005
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to assess downstream events, perhaps including intracellular fungal

replication [36] or fungal cell expulsion [10,11]. We can also

examine perturbation of the fungal-host interactions by assessing

the effects on this assay of introducing cryptococcal mutants,

down-regulating host genes, or adding various drugs. Together,

this assay and these variations will increase our understanding of

key events in cryptococcal pathogenesis.

Materials and Methods

Ethics Statement
All animal protocols were conducted following the guidelines

found in the Guide for the Care and Use of Laboratory Animals of

the National Institutes of Health and were approved by

Washington University School of Medicine DCM (#20080269).

All efforts were made to minimize animal suffering.

Yeast cell growth and conditions
C. neoformans strain H99 (cultured from the ATCC C. neoformans

deletion collection, #208821) was grown in YPD broth (1% Yeast

extract, 2% peptone and 2% dextrose) and maintained at 30uC on

YPD plates containing 2% agar. To induce capsule formation,

cultures were grown overnight from single colonies in YPD and

the cells were harvested and washed in DMEM (Sigma). The cell

density was measured using a hemocytometer and the culture was

diluted in DMEM to 1.26107/ml in a tissue culture flask. The

flasks were incubated at 37uC in a 5% CO2 incubator to induce C.

neoformans capsule formation or in room air for control cultures.

Capsule formation was assessed by India ink staining as in [62].

Mammalian cells and growth conditions
All mammalian cell lines were grown and maintained at 37uC

under 5% CO2. Human monocytic cell lines THP-1 and U937

were obtained from J. Atkinson and J. Vogel, respectively, and

cultured in RPMI-1640 (Invitrogen) supplemented with 10% heat-

inactivated FBS (Gibco), 100 mg/ml penicillin and 100 U/ml

streptomycin (Pen/Strep; Gibco), 1 mM sodium pyruvate (Cell-

gro), and 48 mM b-mercaptoethanol (Fisher Scientific). Murine

macrophage-like cell lines J774.16 and RAW264.7 were obtained

from the ATCC and D. Sibley, respectively, and cultured in

DMEM (Sigma) supplemented with 10% heat-activated FBS and

Pen/Strep. Monocytic cells were passaged every two days to

maintain cell density between 1.56105/ml and 96105/ml.

Macrophage-like cells were passaged every three days.

Macrophage uptake assessed by manual counts
For manual uptake assays, freshly harvested J774.16 cells were

washed twice in DMEM, adjusted to 8.36105/ml in DMEM, and

300 ml aliquots of the suspension were seeded onto 12 mm

silanized coverslips (Ingen Lab) in 24-well tissue culture plates

(TPP) and incubated at 37uC/5% CO2 for 24 hours. In parallel,

overnight cultures of C. neoformans in YPD were washed twice in

PBS and adjusted to 4.26106/ml in PBS. 240 ml of the yeast cell

suspension were opsonized and labeled by mixing with 160 ml

human serum (from healthy volunteers, following a protocol

approved by the Washington University School of Medicine IRB),

followed by the addition of 2 mg anti-cryptococcal capsule

antibody 3C2 (from T. Kozel). After a 30 min incubation (37uC,

room air, with rotation) the cells were washed three times in PBS

and re-suspended at 3.36106 cells/ml in DMEM (Fig. 1).

To perform the assays, prepared J774.16 macrophages were

washed gently once with DMEM to remove non-adherent cells,

and 106 prepared fungal cells were added to each well. The plates

were incubated at 37uC/5% CO2 for 4 hours, washed three times

with PBS to remove excess fungal cells, fixed for 10 min on ice

with 4% formaldehyde in PBS, and washed twice with PBS. To

Figure 6. Cryptococcal host interactions are highly sensitive to
capsule induction. Upper panels, India ink staining of fungal cells at
24 h without (A) or with (B) capsule induction. Panel C, standard assay
performed with cells grown for the indicated times in the conditions
shown. Mean and standard deviation are plotted for indices of
adherence. All samples were grown at 37uC in either room air (white
bars) or 5% CO2 (blue bars).
doi:10.1371/journal.pone.0022773.g006

Figure 7. Positive and negative controls used for statistical
analysis of assay power. Standard assays were performed using the
controls shown above. Mean and standard deviation are plotted for
adherence (yellow bars) and uptake (blue bars). Representative images
for each control are shown above the bars. Scale bar, 5 mm.
doi:10.1371/journal.pone.0022773.g007
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stain fungal cells adhering to the surface of the macrophages,

300 ml Alexa Fluor 546-conjugated goat anti-mouse IgG antibody

(Invitrogen) in PBS (25 mg/ml final concentration) was added to

each well and the plates were incubated at 37uC/5% CO2 for

30 min and then washed three times with PBS. Macrophages were

next permeabilized by incubating for 30 min at 25uC with 300 ml

0.1% saponin in PBS, washed with PBS, and stained as before but

using 10 mg/ml Alexa Fluor 488-conjugated goat anti-mouse IgG

antibody (Invitrogen). Finally, 300 ml of 1 mg/ml DAPI in PBS was

added to each well to stain macrophage nuclei and the plates were

incubated for 15 min at 25uC and washed four times with PBS.

For visualization, 10-ml drops of Prolong Gold (Invitrogen) were

placed onto microscope slides (VWR) and the coverslip from each

well of the tissue culture plate was inverted onto one drop,

incubated at 25uC overnight in the dark, and observed by

fluorescence microscopy to determine the index of adherence

(adherent fungi per 100 macrophages) and the phagocytic index

(ingested fungi per 100 macrophages). Triplicate counts were

performed on each well, samples were tested in triplicate, and each

experiment was repeated at least three times.

Automated assessment of macrophage uptake and
adherence

For automated assays using monocytic cell lines, THP-1 or

U937 cells were harvested and then induced to differentiate by

resuspension at 3.46105/ml in growth medium supplemented

with 0.2 mg/ml phorbol 12-myristate 13-acetate (PMA) (Sigma).

Flat-bottomed polystyrene 96-well microtiter plates (Costar) were

then seeded with 3.46104 cells per well, incubated at 37uC/5%

CO2 for 48 hrs, washed three times with RPMI-1640 to remove

unattached cells, and incubated for an additional 24 hours in

RPMI-1640 containing Pen/Strep and 0.2 mg/ml PMA. (It has

recently been suggested that growth with and without PMA be

extended to 3 and 5 days, respectively, to generate macrophage-

like cells which more closely resemble monocyte-derived macro-

phages [63]. We find the absolute difference between assay results

using cells differentiated by either method is below 4% (Table S4).)

For automated assays using macrophage cell lines, RAW264.7 or

J774.16 cells were harvested and washed three times in DMEM,

re-suspended in DMEM supplemented with Pen/Strep and

incubated at 37uC/5% CO2 for 24 hours.

In parallel to host cell preparation, 66106 C. neoformans cells

grown as above were dispensed into each well of a 96-well

microtiter plate. Cells were washed twice in PBS and once in

MacIlvaine’s buffer, pH 6.0, and then labeled by the addition of

Lucifer yellow (Sigma) in MacIlvaine’s buffer to each well

(100 mg/ml final concentration) and incubation for 30 min at

25uC with shaking on an orbital shaker (BELLCO). The labeled

cells were then washed with and resuspended in 1 ml PBS in a

1.5 ml microcentrifuge tube. For opsonization the cells were

mixed with one half volume of human serum and incubated at

37uC for 30 min with orbital shaking. Finally, the opsonized

fungal cells were washed three times with PBS and resuspended at

1.76106/ml in RPMI-1640 or DMEM. All uptake experiments

with this protocol were opsonized using only human serum.

To perform the assays, the prepared host cells were washed

once with RPMI-1640 or DMEM depending on cell type, the

medium was aspirated, and 100 ml of the labeled and opsonized

fungal cell suspension was added to each well. The co-inoculated

plates were incubated at 37uC/5% CO2 for 1 hour and washed

four times with PBS using an ELx405 Select CW plate washer

(BioTek; used for all washes in this paragraph). Cells were fixed as

above, washed twice with PBS, permeabilized for 20 min at 25uC
with 0.1% saponin in PBS, and washed again with PBS. The

macrophage nuclei and cytoplasm were stained for 15 min at

25uC with PBS containing 2 mg/ml DAPI and 250 ng/ml

CellMask Deep Red (both from Sigma), washed twice with PBS,

and stored in PBS containing 10 mM sodium azide at 4uC in the

dark. Plates were imaged using an IN Cell analyzer (GE

Healthcare) scanning on channels of wavelengths 360/460, 475/

535, and 620/460 (to detect DAPI, Lucifer Yellow, and CellMask,

respectively). Images were analyzed using the IN Cell Developer

Toolbox (GE Healthcare). Each sample was replicated in multiple

wells within one 96-well microtiter plate and/or one well in the

same position located on 3 separate 96-well plates. 15–20 counts

were performed on each well, and all experiments were repeated

at least twice.

Mouse infection
C. neoformans from overnight cultures in YPD were washed twice

in PBS and the pellet resuspended in MacIlvaine’s Buffer pH 6.0

at a final cell density of 1.36108/ml. Cells were mixed with

100 mg/ml Lucifer yellow (final concentration) or an equal volume

of sterile water (for controls), incubated at 25uC with shaking for

30 minutes, washed twice with PBS, and resuspended in PBS to a

final cell density of 2.56105/ml. For each cell population to be

tested, eight female C57BL/6J mice, aged 4–6 weeks, were

anesthetized with 150 ml ddH2O containing 2 mg/ml xylazine

(VEDCO) and 10 mg/ml of ketaset (Fort Dodge Animal Health)

by intraperitoneal injection and intranasally inoculated with 50 ml

of the fungal suspension (1.256105 cells). Mice were sacrificed at

one hour (3 animals) or one week (5 animals) post infection, and

the lungs were harvested and homogenized in 5 ml PBS. Serial

dilutions of 50 ml aliquots of the lung homogenate were spotted

onto YPD plates, incubated at 30uC overnight, and used to

calculate colony forming units (CFU) per animal. In this time

period, mice infected by this protocol exhibit no symptoms of

illness.

Supporting Information

Table S1 Cryptococcal adherence and uptake of cells without or

with prior staining with Lucifer Yellow. Adherence and uptake

were assessed by antibody staining as described in the Methods.

(XLS)

Table S2 Comparison of automated and manual counts on

control assays using Lucifer Yellow-labeled fungi and THP-1 cells.

(XLS)

Table S3 Derivation of SSMD values for control studies.

(XLS)

Table S4 Comparison of PMA-differentiation protocols for

THP-1 cells.

(XLS)
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