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A hypoxia risk signature 
for the tumor immune 
microenvironment evaluation 
and prognosis prediction in acute 
myeloid leukemia
Feng Jiang1,3, Yan Mao2,3, Binbin Lu2, Guoping Zhou2 & Jimei Wang1*

Acute myeloid leukemia (AML) is the most prevalent form of acute leukemia. Patients with AML 
often have poor clinical prognoses. Hypoxia can activate a series of immunosuppressive processes in 
tumors, resulting in diseases and poor clinical prognoses. However, how to evaluate the severity of 
hypoxia in tumor immune microenvironment remains unknown. In this study, we downloaded the 
profiles of RNA sequence and clinicopathological data of pediatric AML patients from Therapeutically 
Applicable Research to Generate Effective Treatments (TARGET) database, as well as those of AML 
patients from Gene Expression Omnibus (GEO). In order to explore the immune microenvironment 
in AML, we established a risk signature to predict clinical prognosis. Our data showed that patients 
with high hypoxia risk score had shorter overall survival, indicating that higher hypoxia risk scores 
was significantly linked to immunosuppressive microenvironment in AML. Further analysis showed 
that the hypoxia could be used to serve as an independent prognostic indicator for AML patients. 
Moreover, we found gene sets enriched in high-risk AML group participated in the carcinogenesis. In 
summary, the established hypoxia-related risk model could act as an independent predictor for the 
clinical prognosis of AML, and also reflect the response intensity of the immune microenvironment in 
AML.

Hypoxia has been reported as a marker of the microenvironment in tumors. Due to the lack of blood sup-
ply, tumor cells often exist in hypoxic environments1. In the microenvironment with low oxygen levels, tumor 
cells, different from healthy cells, often initiate a series of behaviors that finally lead to more aggressive tumor 
phenotypes2,3. Acute leukemia (AL) is the most frequent cancer in children, while pediatric acute myeloid 
leukemia (AML) comprises approximately 25% of pediatric AL4. In clinical practice, risk stratification of AML 
patients, which is based on the clinicopathological characteristics, enables physicians to triage patients for optimal 
chemotherapy regimens5. However, the clinical outcomes of childhood AML have been consistently inferior to 
childhood acute lymphoblastic leukemia (ALL), which accounts for more than half of the deaths due to acute 
leukemia6. More and more evidence has pointed out that hypoxia provides a pro-survival environment to AML 
cells, and protects AML cells from apoptosis7,8. In the bone marrow of AML patients, hypoxia has been found 
to partially inhibit death pathway9. Even though hypoxia generally promotes cell quiescence, it seems that such 
conditions could promote AML cell proliferation, which is also the same with results of previous studies on 
AML10,11. Hence, hypoxia is associated with tumor recurrence, anti-apoptosis, chemotherapy resistance, and 
decreased patient survival.

It is well recognized nowadays that hypoxia plays an essential role in pushing tumor immunosuppression, 
and immune escape. Previous evidence indicates that in the oxygen-depleted microenvironment, natural killer 
(NK) cells and T cells exhibit a state of anergy or exhaustion, which eventually results in dysfunction12–14. 
Hypoxia induces the development of suppressive cells and the release of immunosuppressive cytokines, which 
in turn inhibit the function of immune effector cells15. Up to now, biomarkers for predicting the outcomes of 
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immunotherapy mainly include programmed death-ligand 1 (PD-L1) and programmed cell death protein 1 
(PD1)16. However, researchers often ignore the basic problem of oxygen supply in immune microenvironment. 
Hence, hypoxia can be used to serve as a biomarker for predicting the immunotherapy outcomes.

It is well known that methods of exploring hypoxia in tumors are limited nowadays. In this study, we used 
throughput mRNA profiling data from online database to build a risk signature associated with hypoxia, which 
could reflect the immunosuppressive microenvironment in childhood AML patients and their clinical outcomes. 
Furthermore, this hypoxia risk model may provide more intuitive and rational information for physicians to 
treat AML patients in the future.

Results
Construction of a hypoxia risk model to predict the clinical prognosis of childhood AML.  We 
downloaded the gene set correlated with hypoxia from the Gene Set Enrichment Analysis (GSEA). The gene set 
contained a total of 200 genes, which had been found upregulated in response to hypoxia microenvironment 
(Supplementary Table 1). We conducted PPI network analysis using STRING database to explore the interac-
tion relationships among these genes (Fig. 1A). The word frequency cloud showed the identified top 150 genes 
with the higher node degrees (Fig. 1B & Supplementary Table 2), including GAPDH, VEGFA, IL-6, JUN, EGFR, 
LDHA, HK1, ENO1, PGK1, ALDOA and so on, suggesting their importance in hypoxia.

Based on the 150 genes, we developed a hypoxia risk signature using the univariate and multivariate Cox 
regression analyses to predict pediatric AML patients’ clinical prognoses. According to the results of the univari-
ate Cox analysis, 10 genes were found significantly associated with overall survival (OS) of pediatric AML patients 
(Fig. 1C). According to the multivariate Cox analysis, four genes (ENO3, F3, CCNA2 and SLC2A5) were further 
identified to construct the predictive model (Fig. 1D). The risk score developed was as followed: risk score = 0.8
1 × ENO3 + 0.55 × F3 + 0.41 × CCNA2 + 0.47 × SLC2A5. As shown in Fig. 1E & F, in both the TARGET and GEO 
datasets, all these four genes, closely associated with OS of pediatric AML patients (Supplementary Fig. 1), were 
also found significantly correlated with one another.

Hypoxia inducible factor-1a (HIF-1a) has been reported to be closely related to hypoxia. Considering that, 
we performed the Kaplan–Meier analysis on the expression levels of HIF-1a along with the OS of pediatric AML 
patients. As shown in Supplementary Fig. 2, the OS of AML patients with higher HIF-1a levels were not signifi-
cantly higher than that of AML patients with lower HIF-1a levels, both in TARGET (Supplementary Fig. 2A, 
P > 0.05) and in GEO (Supplementary Fig. 2B, P > 0.05), suggesting that HIF-1a did not have a significant cor-
relation with the OS of AML patients.

Prognostic value of the hypoxia risk signature in AML patients from the TARGET and GEO 
databases.  As hypoxia has been reported to promote tumor cells to exhibit more aggressive phenotypes17,18, 
we explored the prognostic value of the developed hypoxia signature. In the TARGET database (Fig. 2A) and 
GEO database (Fig. 2B), the four chosen genes’ expressions were increased along with the increase of risk score, 
which indicated that AML patients with higher hypoxia risk tended to develop a hypoxic microenvironment 
when compared with other ones. Figure 2C & D revealed the risk scores of AML patients and their grouping. The 
AML patients in the higher hypoxia risk group had higher mortality rate than those in the lower hypoxia risk 
group (Fig. 2E–H). In addition, we carried out Kaplan–Meier analysis to evaluate the hypoxia risk signature’s 
prognostic value in AML. Results showed that in the TARGET, patients with low hypoxia risk had longer sur-
vival than those with high hypoxia risk (Fig. 2I), which was validated with the GEO data (Fig. 2J). We further 
validate the prognostic value of the hypoxia risk signature in AML samples from TCGA database. As shown in 
Supplementary Fig. 3, all these results from TCGA were consistent with those from TARGET and GEO data-
bases.

Relationship between hypoxia genes’ expression and clinicopathological characteristics in 
AML.  Clinically, children with AML are often classified into different groups according to their clinical char-
acteristics and MICM characteristics in the early stage of chemotherapy, which is identified as risk stratification. 
Risk stratification of AML patients enables physicians to triage patients for optimal therapy19,20. We used “S” 
to represent the clinical risk stratification, while “S0” represented low risk, “S1” represented intermediate risk, 
and “S2” represented high risk. Taking into account the biological functions of hypoxia in the occurrence and 
development of tumors21–23, the relationship between the risk stratification of AML and the four identified genes 
associated with hypoxia were analyzed. The heatmap showed the gene expression levels and risk stratification 
of AML patients in TARGET (Fig. 3A), showing that the expression of the four genes significantly increased in 
higher risk stratification. Quantitative analyses further confirmed the significant relationship between the risk 
stratification and the four genes’ expression levels (Fig. 3B), showing that the four genes’ expression levels were 
elevated along with the increased of risk stratification.

Efficiency of the hypoxia risk signature in prognostic prediction in AML.  To evaluate the effi-
ciency of the hypoxia risk model in predicting the 1-, 3-, and 5-years survival rates, we used data obtained from 
the TARGET and GEO datasets to carry out a received operating characteristic (ROC) curve. The area under 
the ROC curve (AUC) was respectively 0.703, 0.735 and 0.715 at 1, 3, and 5-years, suggesting the hypoxia risk 
model had a high prognostic value (Fig. 4A). Data from GEO dataset further confirmed the predictive value of 
the hypoxia risk signature (Fig. 4B).

Patients with higher scores seemed to have a higher likelihood of developing hypoxia in the tumor 
immune microenvironment. Cut points based on the Youden Index were used to serve as the standard for the 
classification of the risk scores. The cut-off value divided AML patients into a high-risk group and a low-risk 
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Figure 1.   Construction of a hypoxia risk model to predict the clinical prognosis of childhood AML. (A) 
Interaction relationships among hypoxia-associated genes via STRING database; (B) Word frequency cloud 
of the top 150 hypoxia-associated genes, where the size of the gene name represented its node degree; (C, 
D) Screening of hypoxia-related genes by univariate and multivariate Cox regression analyses to construct a 
hypoxia risk model with prognosis predictive value; (E, F) Spearman correlation analysis for the identified four 
hypoxia-associated genes involved in the risk signature in the TARGET and GEO databases.
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group. Patients that were classified as high risk had a significantly lower chance of surviving. The independent 
efficiency in prognosis prediction of the risk signature in terms of OS in TARGET was then evaluated using 
univariate and multivariate Cox tests by combining the clinical characteristics of pediatric AML patients. We 
used “WBC” to represent “white blood cell count at diagnosis”, and “CR” to represent “complete remission status 
at end of course 1”, both of which were main clinical indicators in evaluation of status and outcome of AML 
patients24. According to the univariate study, higher hypoxia risk levels were associated with lower survival 
chances (Fig. 4C). Risk stratification was another element linked to poor survival. Multivariate analyses further 
indicated that the hypoxia risk score was independently correlated with OS in pediatric AML patients (Fig. 4D), 
meaning that the risk score may be used as an independent prognostic indicator for AML. Using multivariable 
logistic regression analysis, a nomogram was developed (Fig. 4E). The corresponding calibration curve for the 
nomogram proved its precision, as seen in Fig. 4F.

Identification of hypoxia‑related signaling pathways with GSEA.  We used GSEA to compare 
data of the two hypoxia risk groups to confirm related signaling mechanisms that were triggered in the high-
risk group. In TARGET, gene sets, differentially enriched in AML patients with higher risk, were found related 
to processes which promoted anti-apoptosis, as well as cell proliferation, such as cell cycle, DNA replication, 
homologous recombination, nucleotide excision repair, mismatch repair, pyrimidine metabolism and RNA deg-
radation (Fig. 5A). These results were double-checked in the GEO database, as shown in Fig. 5B. Besides, as 
shown in Supplementary Fig. 4, hypoxia gene set was differentially enriched in the high-risk groups of the TAR-
GET (Supplementary Fig. 4A) and GEO (Supplementary Fig. 4B) databases (P < 0.05).

Immune landscape between high and low hypoxia risk groups of AML patients.  More and more 
evidence has shown that the hypoxic microenvironment could protect tumor cells from anti-tumor immune 
responses, for it might inhibit the anti-tumor function of immune effector cells, so that promote immune 
escape25,26. The capability of the established hypoxia risk signature in the immune microenvironment evaluation 
needed further explore. Hence, we estimated the differences in the 22 immune cell types’ immune penetration 
between low- and high-risk AML patients using the CIBERSORT method combining with the downloaded 
LM22 signature matrix. The results of AML patients from TARGET and GEO databases were summarized in 
Fig. 6A,B. In both TARGET and GEO, AML patients with low risk of hypoxia had significantly lower propor-
tions of neutrophils, which have been defined as immunosuppressive cells linked to hypoxia (Fig. 6C). Further-
more, other immunosuppressive cells (such as TAM and monocytes) were shown to be higher in patients with 
high hypoxia risk than in patients with low hypoxia risk, while resting dendritic cells displayed the opposite 
proportion (Fig. 6D). Hence, focusing on hypoxia might have important therapeutic consequences in terms of 
enhancing immunotherapy.

Formation of immunosuppressive microenvironment in high hypoxia risk group.  Cancer 
immunotherapy studies in recent years are mostly based on the intellectual framework according to the Cancer-
Immunity Cycle27. And the Cancer-Immunity Cycle actually refers to a series of events that eliminate cancer by 
affecting the immune system’s ability28,29. These processes are often inhibited by several genes, whose expression 
levels are often increased in the immunosuppressive microenvironment of tumors30. In this study, we down-
loaded the gene signatures from the website Tracking Tumor Immunophenotype, and then explored the expres-
sion levels of genes with negative regulation in high and low hypoxia risk groups. Genes were found upregulated 
in the high hypoxia risk group, as shown in Fig. 7A, B, implying that patients with higher hypoxia risk had lower 
activities of those processes.

We further examined the expression levels of the immunosuppressive cytokines (Supplementary Table 3) 
and that of the identified immune checkpoints in the low and high hypoxia risk groups, considering previous 
indications that these molecules may be upregulated under hypoxic conditions. All immunosuppressive cytokines 
in Supplementary Table 3 were extracted from a signature set file, which was downloaded from an online web-
site named Tracking Tumor Immunophenotype (TIP, http://​biocc.​hrbmu.​edu.​cn/​TIP/​index.​jsp)31, which was 
a user-friendly one-stop shop web tool developed to comprehensively resolve tumor immunophenotype. The 
signature set file contained 23 confirmed signature sets involved in seven-step anticancer immunity32,33. After 
exploring the expression levels of all the immunosuppressive cytokines between two risk groups, we found that 
the expression levels of the six ones (ARG1, CCL2, CXCL12, DNMT1, EZH2 and SMC3) in Fig. 7C & D, were 
significantly higher in the high-risk groups than those in low-risk groups. PD1, which was positively associated 
with hypoxia risk score, was also upregulated in AML patients with higher hypoxia risk (Fig. 7E). Moreover, the 
expression levels of another two essential immune checkpoints (CTLA-4 and LAG-3) in the high hypoxia risk 
group were meaningfully higher than those in the low hypoxia risk group (Fig. 7F, G).

Figure 2.   Prognostic value of the hypoxia risk signature in AML patients from the TARGET and GEO 
databases. (A) Heatmap showing the expression profiles of the four identified hypoxia genes in groups with 
different hypoxia risks in TARGET (https://​ocg.​cancer.​gov/​progr​ams/​target); (B) Heatmap showing the 
expression profiles of the four identified hypoxia genes in groups with different hypoxia risks in GEO (https://​
www.​ncbi.​nlm.​nih.​gov/​geo); The heat maps in this manuscript were generated using R software (version 
3.6.2; https://​www.r-​proje​ct.​org/). (C, D) Distribution of patients’ risk scores in the two risk groups; (E, F) 
Distribution of patient status in the two hypoxia risk groups; (G&H) Mortality rates of the two risk groups; (I, J) 
Kaplan–Meier overall survival curves for AML patients in the two hypoxia risk groups.

◂

http://biocc.hrbmu.edu.cn/TIP/index.jsp)
https://ocg.cancer.gov/programs/target
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://www.r-project.org/
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These findings suggested that patients with higher hypoxia risk scores established an immunosuppressive 
microenvironment as a consequence of upregulated immunosuppressive cytokines and immune checkpoints.

Discussion
Significant evidence suggests that tumor hypoxia plays a role in those processes that give tumor cells a growth 
advantage and lead to the formation of malignant phenotypes3. Hypoxia in tumors has been proposed to serve as 
a prognostic indicator for patient outcome34. While techniques such as biomarkers’ expressions through immu-
nohistochemistry have been used to detect the degree of hypoxia in tumors, a definitive method is still unknown 
and urgently needed35,36.

The risk model we established mainly consisted of four genes associated with hypoxia, and most of them 
were found upregulated in hypoxia. The four identified genes were also found respectively correlated with poor 
OS in childhood AML. It has been reported that ENO3, an important glycolysis related gene, also participates 
in HIF-1 signaling pathway, which is essential in response to hypoxia37. Also, the activity of ENO3 were found 
upregulated in tumor cells, and affected their biological function38. As a key factor in cell cycle, CCNA2 could be 
up-regulated upon hypoxia-induced activation to promote cell proliferation and tumorigenesis39,40, and has been 
identified as tumor therapeutic target41. In addition, F3 is confirmed related with hypoxia-associated responses42. 
SLC2A5 promotes cell growth and metastasis in lung cancer, where hypoxia is generally associated with disease 
progression and poor prognosis43.

Figure 3.   Relationship between hypoxia genes’ expression and clinicopathological characteristics in AML. (A) 
A heatmap showing the expression profiles of the four hypoxia-associated genes in different risk stratification 
from the TARGET (https://​ocg.​cancer.​gov/​progr​ams/​target); (B) The four hypoxia-related genes’ expression 
levels in different risk stratification in childhood AML.

https://ocg.cancer.gov/programs/target
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There have been several risk models composed of multiple genes in clinic that could predict the clinical 
prognosis of patients who suffer from tumors. Here, the risk model we developed to serve as a convenient detec-
tion in clinic, consisted of four genes associated with hypoxia. Figures 3 and 4 revealed that the risk signature 
we developed may be used as an independent prognostic indicator for AML patients from TARGET. Due to 
the lack of clinical information on AML samples in GEO, we cannot group AML patients in GEO according to 
the clinical risk stratification to further analyze the relationships between the clinical risk stratification of AML 
patients and the expression levels of SLC2A5, F3, ENO3 or CCNA2, just like that in the TARGET (Fig. 3B). The 
lack of information in the GEO data set is also one of the limitations of this manuscript. We will collect more 
clinical sample data in subsequent experimental studies for further verification.

Figure 4.   Efficiency of the hypoxia risk signature in prognostic prediction in AML. (A, B) ROC curves which 
showed the hypoxia risk signature’s predictive efficiency on the survival rate in AML from TARGET and GEO 
databases; (C, D) Univariate and multivariate Cox analyses which evaluated the risk signature’s independence 
in prognostic value in terms of overall survival in pediatric AML patients; (E) Nomograms for the probability of 
death at 1-, 3- and 5-years; (F) The calibration curve of the nomograms.
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The GSEA analyses showed that in TARGET and GEO, the enriched pathways that gene sets in AML patients 
with higher risk mainly included cell cycle, DNA replication, homologous recombination, nucleotide excision 
repair, mismatch repair, pyrimidine metabolism and RNA degradation (Fig. 5), as well as hypoxia (Supplementary 
Fig. 4). Cell cycle can alter the hypoxia response44. High degree of hypoxia can induce cell cycle arrest in a variety 
of cell types45, while CCNA2 is a key factor in cell cycle and could be up-regulated induced by hypoxia to promote 
cell proliferation39. Also, acute stress caused by hypoxia arrests DNA replication and triggers DNA damage46, 
while DNA replication supported by the complexes of CCNA2‐CDK could push forward the cell cycle in the S‐
phase47. Besides, hypoxia has been reported to suppress DNA repair through homologous recombination48, while 
CCNA2 is located at sites of DNA double-strand breaks (DSB) and plays a role in homologous recombination49. 

Figure 5.   Identification of hypoxia-related signaling pathways with GSEA. (A) GSEA (http://​www.​gsea-​msigdb.​
org/​gsea/​index.​jsp) results of the gene KEGG enrichment in the AML patients from TARGET; (B) further 
validation by the GEO data.

http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
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In addition, nucleotide excision repair50, mismatch repair51, pyrimidine metabolism52 and RNA degradation53 
have been reported associated with hypoxia. Although these four pathways have not been reported directly link 
to the four genes by now, all the gene sets differentially enriched in the high-risk groups were closely associated 
with hypoxia.

Increasing evidence shows that hypoxia promotes the function of suppressive cells (such as, neutrophils 
and TAMs) and the release of immunosuppressive molecular to protect tumor cells away from natural immune 
responses54. In our study, neutrophils, a kind of the main immunosuppressive cells, were indeed increased in 

Figure 6.   Immune landscape between high and low hypoxia risk groups of AML patients. (A, B) Relative 
proportion of immune infiltration of 22 immune cell types in two hypoxia risk groups in TARGET and GEO; 
(C, D) Box plots showing significantly differences of immune cells between groups with different hypoxia risk 
scores.
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Figure 7.   Formation of immunosuppressive microenvironment in high hypoxia risk group. (A, B) Heatmaps 
of the expression profiles of genes which negatively regulated the Cancer-Immunity Cycle in TARGET (https://​
ocg.​cancer.​gov/​progr​ams/​target) and GEO (https://​www.​ncbi.​nlm.​nih.​gov/​geo); (C, D) The expression levels 
of immunosuppressive cytokines in two hypoxia risk groups; *P < 0.05, **P < 0.01 and ***P < 0.001; (E–G) 
Correlation between expressions of three immune checkpoints (PD1, CTLA-4, and LAG3) and hypoxia risk 
score, and their expressions in two hypoxia risk groups of AML patients.

https://ocg.cancer.gov/programs/target
https://ocg.cancer.gov/programs/target
https://www.ncbi.nlm.nih.gov/geo
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the AML patients in the high hypoxia risk group in TARGET and GEO. The activation of tumor antigen-specific 
dendritic cells is one of the most important steps in the anti-tumor immune surveillance process. Some studies 
have reported that hypoxia could inhibit the growth and activation of dendritic cells. For example, low oxygen 
levels impaired the maturation and function of dendritic cells for hypoxia upregulated microRNA 21, which fur-
ther down-regulated the expression of CD80, CD86 and MHCII55. Tran et al. pointed out that hypoxia-inducible 
factor 1 (HIF-1) limits dendritic cell stimulation of CD8 + T cell immunity56. In line with this evidence, our 
results showed that resting dendritic cells were higher in pediatric AML patients in the high hypoxia risk group, 
suggesting these patients were in an immune disability status.

Macrophages in the tissues of tumors are designated as TAMs, and they were mainly classified into M1-like 
macrophages and M2-like macrophages, both of which are polarized from MΦ macrophages. Previous studies 
support that MΦ macrophages migrate at the tumor site only when hypoxia takes place. The M2 macrophages 
dominates in hypoxic niches, since hypoxia is the major trigger for the transition from MΦ to the M2 phenotype57. 
Hence, hypoxia is considered playing an essential role in the regulation of TAMs phenotype transformation, for 
that factors released by the hypoxic TAMs can help promote tumor growth, and cancer immunosuppression58,59. 
Results of CIBERSORT analysis showed that pediatric AML patients with higher hypoxia risk scores had signifi-
cantly higher proportions of MΦ macrophages. Furthermore, it is well known that monocytes from the peripheral 
blood are drawn to tumor lesions, where they undergo terminal differentiation into macrophages. Consistent 
with this evidence, monocytes in the high hypoxia risk group were found increased, and were significantly 
higher than those in the low hypoxia risk group, further confirming the predictive value of the risk signature in 
immune microenvironment of AML.

Cytokines are molecules that play a crucial role in immune responses to tumors. Immune cell exhaustion 
is mostly caused by tumor immunosuppressive cytokines. As CXCL12 promoter contains two HIF-1α binding 
sites, several studies have pointed out that hypoxia in tumors could upregulate the expression of CXCL12 and 
induce its secretion60,61, which in turn inhibited the function of the immune system by preventing cytotoxic T 
cells from infiltrating the tumor and killing cancer cells62,63. ARG1, a crucial immunosuppressive mediator, has 
been shown to boost immune evasion mediated by myeloid cells and promote tumor growth64. EZH2 is a key 
regulator of AML65, and the inhibition of EZH2 has been demonstrated to reduce tumor growth and promote 
apoptosis by regulating T cell polyfunctionality and survival66,67. In this hypoxia-associated study, immunosup-
pressive cytokines were found to be significantly upregulated in high hypoxia risk AML patients, which further 
promoted the suppression of immune.

Moreover, immune checkpoints are essential in carcinogenesis for its effects of promoting immunosuppres-
sion in tumors. Tumor cells stimulate those immune checkpoint targets to prevent themselves away from the 
attack by immune cells. At present, the common targets of immune checkpoints mainly include PD1, PD-L1, 
CTLA-4, LAG3, TIM-3, and TIGIT. Hypoxia has been shown to induce PD-1 and CTLA-4 selectively upregulated 
in the tumor microenvironment68–70. Additionally, repressing hypoxia could lead to the decreased expression of 
LAG3 in colon cancer71. Here, immune checkpoints (PD1, CTLA-4, and LAG3) were meaningfully upregulated 
in the pediatric AML patients with high hypoxia risk scores.

This was the first research of its kind to create a hypoxia risk model composed of four genes for childhood 
AML. This risk signature, which was also applied to adult AML, could be used as an independent prognostic 
indicator for pediatric AML patients in clinic. It reflected the overall intensity of the immune response in the 
AML microenvironment. As a result of our findings, we now have a better idea of how hypoxia influences the 
clinical prognosis and the immune microenvironment in AML, which could help develop potential therapies 
targeting hypoxia.

Methods
Datasets.  The RNA-seq transcriptome details of pediatric AML patients, as well as the corresponding clini-
cal information, were extracted from Therapeutically Applicable Research to Generate Effective Treatments 
(TARGET) database (https://​ocg.​cancer.​gov/​progr​ams/​target) as a training set. A testing set for validation 
mainly includes all information of AML patients downloaded from Gene Expression Omnibus (GEO) online 
database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE37​642)​72. The corresponding information 
was shown in Supplementary Tables 4, 5. Information of AML patients downloaded from The Cancer Genome 
Atlas (TCGA) database (https://​www.​cancer.​gov/​tcga) was also used as an external validation. The heat maps 
based on the data of these databases were generated by using R software (version 3.6.2), which was downloaded 
online (https://​www.r-​proje​ct.​org/).

Analysis of integration of protein–protein interaction (PPI) network.  We built a network of pro-
tein–protein interaction (PPI) using the STRING database to explore the interaction relationships of the pri-
mary ones of those hypoxia-associated genes, which were downloaded from Gene Set Enrichment Analysis 
(hallmark-hypoxia). Then we calculated the numbers of interconnections using the Network Analyzer plug-in 
and labeled them as node degree. The hypoxia-related genes were ranked in descending order according to their 
node degree. The top 150 genes were chosen as the candidate hypoxia associated genes in childhood AML.

Estimation of immune cell type fractions.  An analytical tool, CIBERSORT, uses gene expression data 
to estimate the abundances of cell types in a mixed cell population. A leukocyte gene signature matrix known 
as LM22 in CIBERSORT, which contains 547 genes, was utilized to identify 22 types of immune cells73, which 
mainly includes tumor-associated macrophages (TAMs), resting dendritic cells, neutrophils and so on. The frac-
tions of immune cell types between two groups with different hypoxia risk scores were estimated using CIBER-
SORT.

https://ocg.cancer.gov/programs/target
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37642)72
https://www.cancer.gov/tcga
https://www.r-project.org/
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Survival analysis and development of a risk model.  The survival package and the survminer package 
for Kaplan–Meier analyses were used to compare overall survival (OS) between the two hypoxia risk groups, 
while the results of Kaplan–Meier analyses in Supplementary Fig. 1 were generated by a specific online web-
site for pediatric cancers (http://​pedtr​anscr​iptome.​org/). Then, we used univariable Cox regression analysis 
to identify the genes related with hypoxia, which were significantly associated with OS and might serve as 
candidate prognostic indicators in AML. Next, multivariate Cox analysis was carried out to further achieve 
the coefficients of the identified genes. The formula of the risk score was next constructed as followed: risk 
score = 

∑n
i=1 Coe(i)× Exp(i) . In this risk score, n meant four, while the Coe(i) represented the multivariable 

Cox regression coefficients of the four identified hypoxia genes, and Exp(i) was their corresponding expression 
level. After calculating the risk score of each AML sample according to the risk model, we chose the median 
value as the cutoff, based on which the AML samples were divided into the high-risk group and the low-risk 
group. The information of two hypoxia risk groups in two databases were shown in Supplementary Table 6. To 
verify the accuracy and effectiveness of the developed risk model in predicting OS of AML patients, ROC curves 
were generated.

Data of gene set enrichment analysis (GSEA).  We identified the meaningful difference of gene set 
between two groups with different hypoxia risks in the enrichment of the Molecular Signatures Database 
(MSigDB) collection (h.all.v7.4.symbols.gmt) using GSEA74,75, which was downloaded online (http://​www.​gsea-​
msigdb.​org/​gsea/​index.​jsp). For each analysis, the permutations of gene set were all performed 1,000 times. The 
KEGG pathways enrichment analyses were also done by using the GSEA software75,76. Besides, the phenotype 
label was then used to serve as a risk score.

Consent for publication.  All listed authors took part actively in the research and read and approved the 
manuscript submitted.

Data availability
The generated and analyzed datasets of this research are available in TARGET (https://​ocg.​cancer.​gov/​progr​ams/​
target), GEO (https://​www.​ncbi.​nlm.​nih.​gov/​geo) and TCGA (https://​www.​cancer.​gov/​tcga) both of which are 
freely available to the public.
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