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Abstract: Development of low-cost contaminant sorbents from industrial waste is now an essential
aspect of the circular economy since their disposal continues to threaten ecological integrity. Semicoke
(SC), a by-product generated in large quantities and described as solid waste from gasification of
low-rank coal (LRC), is gaining popularity in line with its reuse capacity in the energy industry but
is less explored as a contaminant adsorbent despite its physical and elemental carbon properties.
This paper summarizes recent information on SC, sources and production, adsorption mechanism of
polluting contaminants, and summarizes regeneration methods capable of yielding sustainability for
the material reuse.
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1. Introduction

In recent years, much attention has been directed to treating and restoration of contaminated land
and water bodies as a requirement for future land uses increases [1]. Several technologies have been
explored for a variety of contaminants comprising in-situ chemical oxidation (ISCO), pump and treat,
bioremediation, solidification, stabilization, and electrokinetics, among others [2]. Due to the nature
of contaminant formation, specific remediation technologies, or sometimes a combination of two or
more technologies, may be employed. Adsorption has become accepted as a cost-wise and efficient
technology for the treatment of contaminated drinking water, wastewater, and soil [3]. An important
aspect of adsorption technology is the application of effective and sustainable adsorbent (sorbent)
material. Some commercial adsorbents include activated carbons, amorphous ferric oxyhydroxide
(AFO), biomass waste, zeolites, and ion exchange resins [4]. Early classification of these adsorbents
based on their raw material sources generated three categories; carbon, mineral, and other adsorbents [5].
The term ‘green adsorbents’ was later introduced to describe adsorbents obtained solely from forest
products [6]. A narrower and simplistic classification into two groups as either conventional and
non-conventional adsorbents was later reported [7]. Much recent and broader classification according
to feedstock, by-products generated, and modifications, into five groups, are shown in Table 1 [1].
Among the conventional adsorbents, activated carbons (+++), zeolites (++), silica gel (+), and activated
alumina(-) have been found to be successful for commercial applications in order of magnitude listed [8],
and a large body of literature exists on their contaminant adsorptive capacities. Nevertheless, the high
cost of preparation, frequent requirement for regeneration, and the replacement of fresh materials
during application limit their sustainability in the contaminant remediation process [4]. Scientific
inquiry for identifying what is described as ‘low cost’ but high-performance adsorbents, based on
natural bio-physicochemical properties or by engineered modification processes, is pioneering [9].
The term ‘low cost’ is discussed in association with biological and synthetic waste ‘solid waste’ or
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by-products from manufactured and industrial operations with the capacity for reuse as sorbents [10].
A very good ‘low cost’ adsorbent is proposed to possess significant carbonaceous structural formations,
being capable of yielding an estimated contaminant removal rate within few hours to approximately
eight hours daily, comparable to other carbon-based adsorbents [4]. Above all, a ‘low cost’ adsorbent
should also be readily available and accessible.

Table 1. Categorization of adsorbents.

Category Description Example

1. Natural material Sawdust, wood, earth, bauxite
2. Natural materials treated to develop their structures and properties Activated carbons, activated alumina, silica gel
3. Manufactured materials Polymetric resins, zeolites, aluminosilicates
4. Agricultural solid waste and industrial by-products Date pits, fly ash, red mud
5. Bio-sorbents Chitosan, fungi, bacterial biomass

Advancement in industrial modernization has triggered an ever-increasing demand for energy
with the reliance and use of coal resources continuously growing to support such needs. The direct
combustion of coal to produce energy is typically not sufficient and tends to generate some prominent
environmental problems in its conversion process [11]. Therefore, diversification and transformative
utilization of coal resources and end products can serve as an important means of achieving sustainability
in resource use. Globally, low-rank coal (LRC) is abundant, making it low priced, and constitutes
a significant component of energy-chemical feedstock [12]. A major by-product of the gasification,
liquefaction, and pyrolysis of LRC is semi-coke (SC) [13]. The massive amounts of SC produced during
the coal transformative process have resulted in it being described as a ‘solid waste’ with its disposal
becoming an intractable problem [14]. Large amounts of SC are reported to be disposed of in open
dumps, potentially threatening surface and groundwater pollution through leaching of polycyclic
aromatic compounds and heavy metals [15]. Unlike fly-ash, which has found some significant post uses
as filter material [16] and as an improvement agent for soil fertility [17], there is a paucity of literature
regarding the application of SC, with perhaps its most important cited post usages for re-gasification
in its “lump form” whilst the “powder form” yet remains an environmental threat [18].

Semicoke (SC) is generally characterized by lower moisture, ultralow volatile contents, low
adhesiveness, and ultrafine particle size (<100 µm) with a typical block structure of 10–60 mm [19].
The carbon content alternates as low or high depending on its derivative source [20]. Its major
composition comprises total soluble solids, carbonates, sulfate, bicarbonates, organic contaminants, and
trace elements [21]. Following these characteristics, SC can be put into category 1 under Table 1. Since SC
contains a large quantity of unburned carbon (30–70%), its re-utilization for environmental remediation
can present a sustainable means of reducing its impact rather than disposal [13]. The potential
transformation to high-value SC sorbent material will not only improve environmental gains, but have
economic viability [22]. Recent advances in the transformation of SC have sought to produce a type
of slurry fuel, semi-coke water slurry (SCWS) as potential clean material that can replace oil usage
in the power combustion industry [23]. A similar product, described as lignite water slurry (LWS),
was reported by [24].

This review provides a summary of the recent information on SC contaminant remediation
application through a discussion of its nature (sources, types, production, physical, chemical properties,
engineered modifications), and integration of SC application to general contaminant adsorption.

2. Materials and Methods

To obtain recent information and evidence on SC adsorption research, the search databases Web of
Science and Scopus were explored with search items by combining ‘semi-coke’ as a constant word with
other key terminologies, adsorption, removal, organic pollutants, heavy metals, and regeneration. The
logic operator “AND” was used to refine all searches. A total of 303 records were retrieved. All records
were imported to Endnote X8 and securitized for duplication before further selection analysis. By
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applying a designed qualitative spreadsheet, relevant articles were selected per title and abstract
screening via the following criterion: (a) Articles that had titles bearing ‘semicoke adsorption/removal’
and (b) abstracts that contained keywords and information on ‘semicoke adsorption, utilization,
pollutant removal’. A total of 46 articles were selected as recent adsorption-based research on SC
within the year limits of (2010–2020) per the selection criterion and included in this review. Outcomes
of the search result are shown in Figure 1, illustrating the paucity of adsorption research data in the
study area. The designation “Other publication” comprised articles retrieved but related to other
aspects of SC application e.g., re-gasification. Appendix A shows overview of search strategy.
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Figure 1. Recent research progress on semicoke adsorption.

3. Source, Type, and Production

3.1. Source and Type

The types of SC can be connected to four classes of LRCs in literature. By classification, LRCs
can be grouped per parameters of the American Society of Testing and Materials (ASTM) and the
International Standards Organization (ISO) [25]. In terms of originating sources, LRCs are reported
to occur generally from Portugal through Thailand, Canada, Chile, China, and Antarctica with
recent estimations representing approximately 55% of entire coal resources (Birkenmajer et al.) [25].
Depending on the source, SC tends to exhibit varying features that make its application and utilization
unique. Lignite, or so-called ‘brown coal’, is by far the most described and reported source of SC
production due to its characteristic reactive features [26]. It has its naturally oxidized form occurring
as leonardite [27]. Other described sources include oil shale during retorting processing under high
temperatures that have been found [28]. Oil sands or tar sands have also been investigated as sources
for SC production [29]. Other bituminous and sub-bituminous raw coal and their naturally weathered
form, humalite, have been described to produce SC [30]. Anthracite called ‘hard coal’ is a noted relative
source but rarely reported [31]. Table 2 shows some specific features of the most-reported SC types.
Amongst the three SC types indicated, lignite possesses highly described features, although it generally
has a small surface area and hence may not, for instance, support physical adsorption mechanism.
Bituminous coal, ‘soft coal’, SC, on the other hand possesses lower viscosities, hence easily undergoes
shearing allowing the migration of substances into its molecular structure. Its adsorption effects are
likely to be quicker and faster. In terms of surface volatile organic compounds, oil shale SC is higher in
PAHs comparable to lignite and Bituminous coal SC. Figures 2 and 3 show the classification of SC
based on various feedstock and a generic flow chart of SC production factors, respectively.
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Table 2. Characteristics of some semi-coke.

Type/Source of Semi-Coke Specific Characteristics Reference

Oil shale SC High ash content, low heat value, High phenol,
polycyclic aromatic hydrocarbon (PAHs) [32,33]

Lignite SC

Large porosity & roughness, higher pyrolysis
reactivity, high water absorption, high heating value,
small specific surface area, less dense internal
strength, high volatile matter, high ash content

[34–36]

Bituminous coal SC
High volatility, low viscosity, low ash, low sulfur, low
aluminum, high fixed carbon, high specific surface
resistance

[37]

3.2. Preparation

SC from any type of feedstock is produced under high heating rates and varying temperature
regimes by pyrolysis, which is the degradation of a material in the absence of oxygen [38]. The pyrolysis
process can be sub-classed into conventional pyrolysis, fast pyrolysis, flash pyrolysis, and low
pyrolysis [39]. However, pyrolysis by fast and low heating rates is mostly reported on for SC
production [40]. The formative process is characterized by first drying and desorption at temperatures
>300 ◦C, followed by primary decomposition and depolymerization with the formation of SC and
intermediates products of tar and gases [41]. Compared to slow pyrolysis, fast pyrolysis tends to
decrease tar formation yields while gases such as Carbon monoxide (CO) volume fractions increase and
a corresponding decrease in Carbon dioxide (CO2) in the process [12]. The intermediate tar formation
results in low adhesiveness which limits SC’s adsorption efficiencies [42].

Figure 4 illustrates a generic flow process of SC formation from a typical LRC. Due to its
macromolecular structure, relatively high heating (pyrolysis) is required to breakdown the networked
matrix creating significant pores of varying sizes for intraparticle dispersion to take place. Low pyrolysis
events may occur, however might affect its yield. Most of the surface and internal components of the SC
are evaporated during initial pyrolysis events. The heating process further causes a transformation in
aromatic and aliphatic structures at high temperatures resulting in significant losses and decomposition
(e.g., from four rings to two rings) of aromatic structures, affecting yield [26]. However, this can be
maintained at low-temperature pyrolysis events. These conversions are similar under the mentioned
SC processing methods with slight differences occurring during the initial handling of the SC and
heating periods.
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Amongst the noted sources of SC, lignite and oil shale are difficult to ignite due to their low organic
and mineral matter content [43]. Since SC is described as an environmental problem, the appropriate
production methods to reduce its footprint is constantly under investigation. Pyrolysis time, coal
particle size, and environmental pressure are classified as some essential ingredients to produce high
yielding SC [11]. For instance, high-pressure impregnation and heat treatment methods have proven to
yield good-performing desulfurization SC adsorbents [34]. The use of fluidized bed reactors [18], fixed
bed reactors [44], and drop tube reactors [45] have recently been reported as reducing the amount of SC
produced during gasification processes. A description of oil shale SC production methods including
the Galoter retorting process, the ATP process, the Brazilz petrosix, Kivitier, and Fushun type retorts
have been provided [46]. Although these SC traditional pyrolysis production methods are widely used,
there are noted limitations such as slow heating velocities, hence requiring a longer time to initiate
combustion and generate uneven heating, which affects the SC yield in terms of structure formation,
which leads to lower efficiencies [47]. The ecologically clean ‘Termokoks’ process of producing SC
from lignite was demonstrated by [48].

Microwave-assisted pyrolysis (MWAP) was recently described as an efficient and cleaner means
of producing SC with referred frequencies in the ranges 915 to 2450 MHz [24]. Despite a cleaner
process, it is often limited due to the dielectric properties of SC [49]. Hence, SC produced by MWAP
may have low adsorptive capacities due to poor surface charge formations. A thorough comparison of
traditional/conventional pyrolysis and MWAP was reported by [49] and the difference in pyrolysis
product formation and composition was mainly related to differential heating mechanisms as the
former displays an endothermic reaction process while the latter exhibits an exothermic process.
A type of ultrasonic irradiation method of preparing SC. which can increase the dispersion of active
components and increase surface area, was reported [50].

3.3. Characterization

Both chemical and physical characterization methods have been employed to describe SC. Typical
of any ‘black carbonaceous’ formation, carbonization causes many changes including loss of functional
groups, ordering of the carbon microstructure to become more graphitic, and a potential decrease
of the inorganic matter catalytic role [51]. Characterization, therefore, enables identification and
understanding of physicochemical transformations of the feedstock material after carbonization such
as the establishment of high hydrogen-carbon (H/C) or oxygen-carbon (O/C) ratios. which determine
their aromatic growth and maturation [28]. An understanding of its transformative process is therefore
important t as it provides a theoretical understanding for its re-utilization [26]. The formations and
assemblages of SC can be studied by observing, surface morphologies, crystalline structural formations,
and diffraction analysis. The surface behavior and constituent composition are popularly determined
by infrared spectroscopy, which can analyze its aromaticity growth [34]. Specific surface area (SSA) is
conducted popularly and most reported on according to Brauner–Emmet–Taller (BET) method while a
scanning electron microscopy analysis (SEM) is performed for surface morphologies.

A significant feature of SC characterization is the formation of micro, meso, and macropores for
which pyrolysis temperature plays an important factor [41]. The temperature in the ranges or ≥ 1000 ◦C
is reported as most efficient to achieve significant pore formation and these pore structures tend to
act as the host of chemical reactions [18]. The linearity of temperature rise to structural alteration
of SC was therefore confirmed by [15]. At high formation temperature, an opening of porous SC
structures, is expected to facilitate adsorption and other internal exchange processes [52]. Longer
pyrolysis duration tends to promote the complete removal of volatiles and results in more developed
SC pores [11]. However, higher pyrolysis temperature may cause a severe chemical reaction and more
pronounced damage to the carbon matrix thereby collapsing pore formations and disrupting any
further intra-wall processes. SC micropores have a greater influence on high processes within the SC
structures than macropores formations [53]. Pore structural formation further influences SC surface
area activities [54]. In their study, [42] confirmed that SC surfaces can be finer than general porous
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carbon (PCs) as SC is compact and exhibits a non-porous structure unlike PCs with a large amount of
pores spaces that may favor adsorbate diffusion. Table 3 shows some effects of varying temperature,
modification methods, and agents on SC enhanced surface area (SSA) and pore volume for adsorption.
The carbon and ash content are observed to increase proportionally with temperature rise while volatile
matter on the SC surface decreases [11]. The organic matter (OM) content of oil shale SC has reported
infractions of approximately 1.7–17.5% at pyrolysis of ≥500 ◦C comprising aromatic hydrocarbons,
nitrogenous organic matter, hydrocarbons, ketones, and alcohols [46]. However, the majority of OM is
lost during the pyrolysis process and this may contribute to its low adsorptive capacity in the natural
state [15]. Recent reports have identified metallic fraction constituents such as SiO2, CaO, and K2O
within SC which enhance support for needed high surface area and adsorption capacity [55]. A large
quantity of the oxygen-containing functional group on SC’s surface makes it easy to be modified and
used as a kind of adsorbent or catalyst [56]. However, the H and O concentrations that form hydroxyl
groups tend to decrease with a rise in temperatures therefore only partially preserved, impacting the
H/C atom ratios [57].

Table 3. Some temperature and activation influenced changes in the SC surface area and pore volume.

Type of SC Temperature Range
(◦C/K) Modification Method Activation Agents SSA

(m2g−1)
PV
(cm3g−1)

Reference

Lignite 723 K - - 1.03 14.1 [11]
1023 K - - 41.4 2.91

Oil shale 500 ◦C - - 12.1 0.05 [18]

Bituminous coal

Plasma(40 W) and
microwave (60 W) Physical and plasma -

84.9 0.03 [58]
Chemical HNO3, KOH, H2O2

Plasma (40 W),
H2O2, and
microwave (60W)

physicochemical KOH

Lignite 700 ◦C Chemical CeO 45.71 2.83 [59]

Lignite 600 ◦C
Chemical TEPA + HCL

15.2 0.031 [60]
800 ◦C 25.2 0.046

Lignite 109 ◦C
- - 211.9 0.18 [61]
Chemical HCl 315.5 0.34

Lignite 700 ◦C
Chemical NaOH 4.7 0.01

[62]Chemical HNO3 2.8 0.007
Physical N2 20.5 0.04

- 700 ◦C Chemical
Fe (NO3)3 + Co
(NO3) + SiO2

266.4 0.32 [63]
Fe (NO)3 + Co
(NO)3

272.1 0.51

Lignite 120 ◦C - - 247.5 0.29 [64]
500 ◦C - Fe(NO3)3·9H2O 470.6 0.39

(SSA-specific surface area, PV-pore volume).

The elemental characteristics of SC are traditionally described by proximate and ultimate analysis
as shown in Table 4 The proximate analysis measures the amount of moisture, ash, volatile matter,
and fixed carbon while ultimate analysis measures the amount of carbon (C), hydrogen (H), nitrogen
(N), sulphur (S), and oxygen (O) content. Fourier Transform Infrared spectroscopy (FTIR) coupled with
Raman spectroscopy has been cited as the most-described method for elemental analysis [56]. Similar
to its physical formation, at appropriate temperatures, SC obtains enhanced elemental properties
which may enhance its adsorptive capacity.
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Table 4. Elemental characteristics of some SC.

Type of SC Ultimate Analysis (wt%) Proximate Analysis (wt%)
Reference

C H N S O FC A V M

Shengli lignite 81.13 5.23 12.00 1.14 0.50 46.24 13.18 40.68 - [9]
Shanxi lignite SC 73.74 5.05 0.83 0.39 16.60 60.36 3.39 36.25 - [11]

Urumqi lignite SC 64.95 6.64 0.87 0.34 19.62 45.59 7.58 46.83 -
Longku oil shale SC 21.36 1.74 6.13 0.72 0.50 12.83 65.75 17.62 3.80 [18]
Longku oil shale SC 78.33 5.33 1.41 14.93 - - - - [21]
Zhaotong lignite SC 65.94 4.63 1.54 0.70 27.19 - 16.24 53.08 16.74 [34]

Shanxi SC 66.10 1.18 0.79 0.35 4.48 - 9.00 9.96 18.1 [55]
Zhaotong lignite SC 40.40 0.15 0.77 1.03 1.85 40.00 49.31 4.20 6.49 [64]

Tongda SC 83.98 - - - - - 7.55 8.47 - [65]
Subbutiminous

Shenhua SC 64.82 64.82 0.79 0.44 3.96 54.20 5.09 29.67 11.04 [66]

(FC-fixed carbon, A-Ash, V-Volatile matter, M-Moisture).

3.4. Modification and Activation

The presence of large oxygen-containing functional groups on the SC surface enables it to
undergo physical and chemical modification to enhance its capacity as a sorbent. According to [42],
these may involve physical activation processes through CO2 or steam application at temperatures
≥ 700 ◦C. Steam activation is considered more efficient due to faster reaction kinetics between carbon
ad steam [67].

Generally, chemical activation is conducted by adding constituents including KOH, NaOH, H3PO4,

K2CO2, and NaCl2. Through the introduction of surface activeness, the intrinsic properties of SC
are ignited to interact between its carbon atoms [68]. Comparatively, chemical activation is much
more useful as it promotes higher surface areas and controlled micropore distribution formation [69]
while steam activation is considered significant than CO2 activation. KOH is indicated as an efficient
activating agent, unlike HNO3, which may destroy SC pore structure and decrease surface areas [70].
The common methods of grinding and impregnation are possible routes to attain such modification,
however since the former is likely to yield un-uniform mixing, the latter is most preferred [71]. Some
researchers have reported on mixing SC with fly ash, which can alter the specific surface area and pore
structure, implying that modification of SC with other chemical inherent carbon-based materials can
enhance its efficiency of raw SC [26]. An elaborate description of hard and soft templating methods
is provided by [72] but there is no evidence of application to SC. By soft templating, uniform SC
structures can be produced with ordered micro and mesopore formation. Soft templating methods are
described by [73]. The addition of oxidizing reagents such as H2O2, O3, and KMO4 has been explored
for activating other carbon materials (e.g., biochar). It was found that by such modification, in this
process, the carbon material obtained high hydrophilicity through increased acidic functional group
formation unlike that observed during a typical thermal treatment process [74].

Heteroatom doping, a type of chemical activation, has recently been reported as an innovative
means to enhance the functionality of carbonaceous materials, although there is no discoverable
literature relating to SC. Doping by heteroatoms including (N, P, S, B, O, etc.) has been applied directly
as precursors of activation [71]. Among heteroatoms, N has been widely reported on for doping
carbonaceous materials as it enhances basicity, surface polarity, and modifies electronic structures [75].
They generate positively and negatively charged groups that are effective in adsorbing reactants or their
intermediate daughter products, product desorption, and promote the overall conversion of reactants
into desired products through bond breakages [76] and the formation of active sites, which expedite, for
example, oxidation-reduction, oxidation evolution, and hydrogen evolution reactions [77]. The dual
application of heteroatom e.g., N-S doped mesoporous carbon was reported by [78]. There is, however,
a paucity of literature on the application of iodine (I), boron (B) sulfur (S), lithium (Li), and magnesium



Materials 2020, 13, 4334 9 of 23

(Mg) heteroatoms [79]. The doping process promotes catalytic oxidation, photocatalytic reactions, and
catalytic decomposition [80]. Further surface functionalization methods include the production of
graphitic structures [31]. However, this process is considered difficult, as it requires higher temperature
ranges of ≥ 2800 ◦C. While some studies have reported on a single-step approach to modifying SC,
a combined or dual modification process is proposed as yielding high adsorption abilities [81].

Modification by metal complexes (FeO2) was found to significantly enhance SC and increase
chemical contaminant adsorption rates in a batch experiment [82]. Similar results by modification with
sulfur, chloride, and metal oxides (CuO-ZrO2) are reported [83]. Because carbon materials including
SC possess evenly distributed internal structures, these elements are uniformly dispersed in the matrix
structure at the molecular level promoting effective activation. Nanoparticles’ modification of carbon
materials by nano zero-valent iron (nZVI) has been recognized due to their large specific surface
area and associated high reactivity towards organic pollutants. nZVI’s established effectiveness in
improving the sorption abilities of carbonaceous materials lies in the collection of contaminants in
its reactive iron centers [84]. While the iron system is capable of degrading contaminants, distinct
reaction mechanisms might differ due to the different sorption properties of the system. Once nZVI
is impregnated with AC (nZVI/AC), contaminant adsorption predominantly occurs at the inner AC
surface, therefore, separated from ZVI reactive species production sites [85], which is opposite for
pure ZVI as both reaction and adsorption take place on the iron surface. Meanwhile, a hindering
aspect to its application is related to corrosion effects after long-term applications, which may further
generation sources of pollutants in the treatment system [86]. This retards the performance of nZVI in
the remediation process. The process of sulfidation of carbo-iron based materials has revealed insights
into overcoming this limitation. This is achieved by the addition of sulfur compounds during nZVI
synthesis [87]. These surface functionalization methods tend to increase oxygen functional (carboxyl,
hydroxyl, and phenolic) groups on the SC surface.

Further modification of SC using biological activation has been explored [21]. Unlike other
biological-based carbonaceous materials (e.g., biochar, bone), the impregnation of SC with a
microorganism reveals a physical-biological relationship between a non-biological material and
a biological material. The modification process enhances surface positive charges and hydrophilicity
properties of SC. The high porosity of SC serves as host sites for bacterial action eventually acting as a
preferred bio-carrier and promoting biocompatibility. The SC bio-carrier functions by immobilizing
microorganisms on its surface while creating a higher biomass concentration, higher metabolic activity,
and greater resistance to environmental contaminants. Additionally, since microorganisms possess
hydrophilic surfaces, they attract the hydrophilic portions of SC by grafting and by adhesion,
contaminant removal efficiencies are enhanced. Further adsorption process may occur if the
microorganism surface is negatively charged, hence becoming more adhered to positive charges
of SC. Therefore, by increasing positive charges on SC surfaces through chemical addition, biological
modification may be highly efficient in the removal of contaminants [88].

4. Contaminant Adsorption

Contaminants tend to describe a wide array of chemical, physical, and biological agents that
cause deleterious environmental effects. Such contaminants may be either organic or inorganic and
generated from either natural sources or anthropogenic sources [38]. Irrespective of their location
in environmental media (air, soil, water), their removal or degradation can be challenging since
contaminants can transform and exist in different molecular states. The significant properties of SC
were discussed in previous sections, and technically, SC is considered a suitable carbonaceous material
for engineering adsorbents which can sustain the removal of contaminants. Although there is a lack of
research and paucity of data in this area, unlike other carbon materials (e.g., biochar, activated carbons),
the value of SC adsorption research may be a focused point in the future for researchers. A relative
number of studies have concentrated on the removal/reduction of gaseous pollutants and other volatile
organic compounds (VOCs) during secondary re-gasification processes. Since SC is derived from
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different sources, the surface electrical properties, organic structure, and surface functional groups
that are influencing adsorption mechanism factors tend to differ [89]. When supported as a precursor,
SC catalyst may promote direct adsorption of contaminants [55].

To efficiently remove or treat contaminants by SC depends on the nature of the contaminant
and its properties. It is therefore obvious that while removal mechanisms of some contaminants may
require small quantities of SC sorbent application, others may require large quantities of application
before reaching sorption removal efficiencies. Variation in the organic structure, surface functional
groups, and electrical properties of both SC and contaminants are important determining factors in
the adsorption removal process. The presence of surface oxygen functional groups on SC surfaces
contribute significantly to the contaminant adsorption process while acidic, amine, and other aromatic
groups partly contribute electron-acceptor donor interactions. During SC production processes,
charged surface groups are established, which ignite electrostatic attraction, however, depending on
the size of each atomic charge present and their relative distances [89]. If negative charges dominate,
it is easier to attract positively charged organic compounds thereby quickening the adsorption process.
It may therefore be necessary, during the surface functionalization process, to introduce more negative
functional groups. The different factors involved in the adsorption mechanism of SC are illustrated in
Figure 5.Materials 2020, 13, x FOR PEER REVIEW 10 of 23 
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4.1. Gaseous Pollutants

Greenhouse gases and flue gases are generated from natural decomposition and industrial
combustion processes. If not captured and treated from source to reduce their pollutant toxicity levels,
they tend to cause atmospheric damages through the formation of tertiary pollutants e.g., Ozone
(O3). Gases such as NOx and SO2 are known to cause both environmental and public health issues.
Technologies such as wet desulfurization methods are reported as a common means to reducing these
gases, however it is coupled with high operating cost and secondary pollution [90]. Application
of SC for adsorption and removal of such gases at the source generation is recently increasing in
research. Typical of any carbonaceous material, degradation of inter structural formation held by
hydrogen, van der Waals forces, hydrophobic interactions, partition uncarbonized fraction, π electrons,
and π-π interactions of SC provides a breakthrough for adsorption [38]. The presence and abundance
of oxygen-containing functional groups (C=O and C—O), π-π electron-donor acceptor interactions,
and phenolic hydroxyl groups on its surface contribute to the process, the number of which differ
based on the type of SC. Lignite SC has a high predominance of these formations [34].
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The adsorption process may occur first by saturation, however surface formations, e.g., tar and
other impurities, cause a lower mass transfer hence initiated resistance to the adsorption. Except for
surface functional groups, factors include temperature (kinetics and thermodynamics) and moisture
content [62]. Increased reaction temperature results in high micropore formation, which facilities uptake
and adsorption of gases. To reduce SC surface resistance for gaseous removal, chemical and biological
modification methods have been tested. Increased chemical loading events establish effective surface
reaction, which raises the mass transfer, facilitating the uptake and adsorption of pollutant gas. However,
high and intense loading events may cause chemical agglomeration, eventually blocking micro and
mesopores and limiting pore diffusion of gases unto SC [91]. Graphene oxide (GO), with its characteristic
honeycomb carbon atom, SP

2, and SP
3 hybrid orbital structure, has modified SC for further catalytic

functions [19]. GO provided an SC surface area of 1072.08 m2/g with an iodine adsorption capacity of
1233.99 mg/g. GO has a large number of functional groups, excellent mechanical properties, and chemical
stability, which allows it to be used as an efficient carbon material to alter and adjust pore structure,
specific surface area, and enhance more developed properties of SC for gas adsorption and storage [92].

The elimination of CH4 was investigated by activating SC with methane-oxidizing bacteria (MOB),
as SC acts as a successful bio-carrier [21]. Results indicated that CH4 concentration removal was
higher (15.02% and 11.11%) than unmodified SC. Further, the MOB SC revealed superior ECs (17.88%
and 11.29%) higher than unmodified SC. The MOB was capable of providing a substrate biofilm
capable of immobilizing CH4 for adsorption and removal. The negative surface charges of the MOB and
hydrophilic attraction to the SC defines the adsorption mechanism. The modification processes enhanced
the number of oxygen vacancies, which improved the oxidation processes for CH4 removal. In other
studies, SC modification by Fe+, for removal of H2S, a harmful gas, was investigated. Surface hydroxyl
groups on SC contributed oxygen for oxidation of sulfur with Fe2O3 formation play a significant role in
the oxidation process [36]. By modification of SC with melamine and manganese oxide (MnO), nitrogen
oxide (NOx) was adsorbed by SC functional groups C=O and N–O, providing sufficient active sites for
adsorption. Overall, NO adsorption was highest within 125–200 ◦C with the highest adsorption at 59.2%
at 200 ◦C [81]. Similar results were obtained [93], however water vapor and SO2 generated in the flue gas
system may lag the denitrification process by forming a film of water on the SC surface which establishes
an isolation layer preventing adsorption. Lignite prepared SC as precursors of desulfurization was
found to have a sulfur adsorption capacity of 3.69 g/100 g of the sorbent. The pore structure and the
relative changes under high-pressure impregnation supported by oxygen functional groups influence
the adsorption process [34]. Similarly, modified SC supported by Fe2O3 sorbent was employed for the
desulfurization test for which the sorbent obtained a 9% yield capacity [94]. The adsorption results
of some noxious gases on SC is shown in Table 5. Generally, it is observed that higher adsorption of
gases occurred on SC subjected to higher pyrolysis and activation temperature. This further infers the
important role of heating regime and temperature control in the adsorption process.

Table 5. Adsorption capacity of some noxious gases on SC.

Noxious Gas
SC Pyrolysis
Temp (◦C)

Activation
Temp (◦C)

Adsorption Mechanism Adsorption Capacity (qm)
Reference

mg g−1 mmol g−1

SO2 - - - 108 [9]

SO2 and NOx 800 - Physisorption/Chemisorption
0.62 (SO2)

20.14
(NOx)

- [63]

CO2 500
600
700
800

Chemisorption -
2.81
3.5
2.9

[66]

CO2 500 700 - - 2.68 [68]

SO2 400
700
800
900

Physical adsorption -
33.7
36.6
31.5

[95]

H2S 350–550
450
500
550

- -
5.2
7.0
6.3

[96]

(CO2-Carbon dioxide, NOx-Nitrogen oxides, SO2-Sulphur dioxide, H2S-Hydrogen sulfide).
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4.2. Organic Pollutants

Organic pollutants are ubiquitous in the environment and are mainly generated from natural and
anthropogenic sources [97]. The priority list of organic pollutants includes typical pesticides, industrial
chemicals, and other unintentional by-products of industrial processes. Because organic pollutants
extend their ecological and toxicity effects through food webs, relatively accessible and cost-effective
means are being researched to remove them or lower their distribution toxicities, which is a research
focus for adsorption. Methods to remediate organic pollutant contamination in soil or water range
from bioremediation, stabilization, in-situ chemical oxidation, among others [38]. It is worth noting
that the production of SC in itself results in a large amount of wastewater containing more than 300
kinds of organic and inorganic pollutants, therefore a major contributor to organic pollutants in the
environment [98]. Despite its carbonaceous formation, the application of SC for organic pollutant
adsorption is scant in the literature. The few cited studies have concentrated on its removal effect on
organic compounds in water and wastewater with limited application to soil media. Relatively few
studies have focused on applying SC for organic contaminant adsorption while some studies have
directly applied lignite or its naturally oxidized form as activated coke. The adsorption behavior of
some organic pollutants on SC is shown in Table 6.

Table 6. Adsorption capacity of some organic compounds on SC.

Contaminant/Pollutant Pyrolysis
Temp (◦C) Adsorption Mechanism % Removal Adsorption capacity

(qm) (mg g−1)
Reference

Phenol 400 Pore filling, π electrons & π-π
dispersion interaction - - [57]

MB - Pore filling physio-sorption,
chemio-sorption - 4.287 [58]

Phenol 400 Strong surface complexation,
electrostatic interactions 95.88 - [99]

CR - physio-sorption 98.7 - [100]
MO - - 98–99 - [101]

Phenol and PNP 600 Surface complexation - 42.75
54.77 [102]

CR, MB, acid Fuchsin, MO Chemio-sorption, π-π
dispersion interaction 526.32 [103]

Phenol, MB 800 - 86.58 Phenol (280) MB (121) [104]
MB - - - 862 [105]
Oilfield wastewater 550 Pore filling 75.6 - [106]

(MB-Methylene Blue, MO-Methylene Orange, CR-Congo Red, PNP-P-nitrophenol).

Industrial wastewater is composed largely of phenolic compounds, which if not improperly
handled, causes surface groundwater contamination. These are toxic even at low concentrations and
the preferred treatment methods before discharge have been by in-situ chemical oxidation followed
by adsorption. For the removal of phenols in groundwater, it was revealed that dispersive forces
existing in π-electron and π-π interactions of the aromatic nucleus in the SC and phenol as the main
adsorption mechanisms, which resulted in the 35% removal rate [57]. The exterior surfaces of SC are
described to be significant in the adsorption process as adsorption rates occur at fast rates. By nZVI
(nano zero-valent) modification with SC, 81.3% of coal tar was removed from wastewater and the high
percentage removal associated with nZVI proved the necessary high surface activity/active sites, which
generated H+ atoms inducing C=C, thus breaking the phenol molecular structure; hence, degradation
occurred [99]. By this, it is inferred that the modification of SC has significant potential for the removal
of organic pollutants. However, phenolic compounds were removed from wastewater within 2 h
after the subsequent increase in initial SC dosages signifying that adsorbent concentration and contact
time were proportionally related [102]. The effect of initial adsorbate concentrate, adsorbent dosage,
and the adsorbent–adsorbate contact time are related factors. Therefore, intraparticle diffusion by pore
formation is not the only rate-controlling player, but physio sorption mechanisms may occur. Higher
removal rates of benzene and carbon tetrachloride in the gas and aqueous phase were observed for
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long flame coal and gas coal SC under alkali treatment at 447 mg/g (benzene) and 410 mg/g (carbon
tetrachloride) while lean coal SC recorded the least adsorption capacity of 225 mg/g. Similar high
adsorption results were obtained in the aqueous phase [107]. These higher adsorption rates are related
to the effects of alkali functionalization, which enhances micro-porosity and surface areas.

The use of dyes adds brightness to our aesthetic lifestyles; meanwhile, dye wastewater continues to
be a threatening pollutant source as the textile sector increases globally. The high chemical composition
of dyes, high chemical stability, high resistance to oxidative, and photodegradation renders even
small amounts hazardous to ecosystems. Several studies have reported on the application of low-cost
biomass adsorbents for dye removal. There is, however, a paucity of literature on SC treatment of
dyeing wastewater. Due to lignite’s low surface capacity, functionalization is necessary to facilitate
adsorption processes. Copper-modified lignite was capable of removing 369 mg/g of yellow-brown
D3G (DYB) [108]. pH dependence, electrostatic, and chelating interactions, due to additional atoms by
Cu, were observed as synergistic factors for dye adsorption. Leonardite, a naturally weathered form
of lignite, was demonstrated to efficiently remove congo red dye in aqueous solution after several
carbonizations [109]. SC’s effective adsorption of dyes can be associated with the following factors in
an effective order of magnitude i.e., dosage of adsorbent > initial concentration > pH > temperature,
to achieve a maximum removal yield of 98.97% [100].

Production of lignite-activated coke (LAC) is gaining momentum as an efficient pollutant removal
agent in wastewater and other aqueous systems. LAC was earlier reported efficient for toxic gas
removal in the treatment system [110]. Characteristic features of LAC to lignite SC were described
by [111]. LAC could remove oil from the wastewater mechanism of chemisorption associated with
carboxylic, phenolic, and lactonic formations on the surface of the LAC and existing hydrogen bonding
interactions [112]. Also, an inverse relationship between adsorbent dosage and pH was observed
when an increase in dosage from 2.0 g/L to 4.0 g/L resulted in a slow increase in pH more than a
dosage increase from 0 g/L to 2.0 g/L did. A similar inverse relationship was established by [113]
as LAC produced at 300 ◦C showed a high affinity towards the sorption of diclofenac sodium at
low concentration than LAC at 700 ◦C. An exothermic-physisorption process was similar observed
by LAC removal of TNT red water [114]. Xyloid lignite (Xylite), which is a commercialized lignite
product, was found to be less efficient to remove hydrophilic compounds (68–80%) than hydrophobic
compounds. Meanwhile, when mixed with sand, the lignite based material showed high removal
efficiencies, which can be associated with interactions with soil microorganisms, which formed a
biofilm to facilitate a biosorption process [115].

4.3. Heavy Metals

Heavy metals, whether in soil or water, present significant threats to ecological biodiversity
and human beings. Their removal from the environment has been studied under various systematic
methods including adsorption isotherms [39]. The adsorption removal of heavy metals by carbonaceous
materials have been related to pore sizes, surface area, and contact time [39]. In their investigation, [116]
discovered more than 99% of Arsenic was removed from groundwater samples by leonardite, oxidized
weathered lignite. High adsorption is achieved with smaller particle sizes as they provide large,
wider surface-active sites; therefore, carbonization at different temperatures and heating rates with
subsequent grounding to obtain fine grains is essential. The authors indicated that particle sizes
≤ 75µm are suitable and efficient. In a comparative study with black coal and other waste coals, it was
determined that SC adsorption of Mn, Cr, Fe, Cu, Zn, and Ni from sulfuric acid (H2SO4) was better
than hydrochloric acid (HCl) [117]. The high pH in sulfuric acid is attributed to the influence of the
adsorption process.

At relatively high pH (>9.6), SC surfaces become negatively charged and adsorption is less due to
the repulsion of like charges. Since SC contains some amount of heavy metals [118], there is a likelihood
of ionic competition for active site bindings, which can delay adsorption processes. Hence, high
ionic strength may hinder adsorption by SC. Meanwhile, [119] explains that some metals may have
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higher ionic radius such as Pb2+ and Ni2+, which provides for stronger adsorption. According to [120],
the discussion on ionic strength has been centered around the molecular size and surface concentration.
In terms of mass size, removal of Pb, Cd, Cu, and Zn from aqueous solution by lignite was favored by
Pb as it showed a high affinity for uptake [121]. Lignite’s with high humic substances appear to be
good adsorbents while lignite’s with high inorganic substances exhibit poor adsorption behavior.

5. Adsorption Isotherms

Adsorption isotherms quantify contaminants adsorbed unto the adsorbent surface at equilibrium
concentration at a constant temperature [122]. Since the adsorptive properties of SC are naturally
significantly low, it becomes of utmost importance to test the most suitable adsorption isotherm
to assess the success of its real application for contaminant removal. Various adsorption models
developed by two parameters or three parameters have been described [123]. For the removal of heavy
metals (Pb, Cd, Zn, Cu) from aqueous solution, adsorption data fitted better to the Langmuir isotherm
than the Freundlich isotherm as the coefficients of correlation were (R2 = 0.992, 0.956, R2 = 0.868, 0.715),
respectively [121]. This could generally mean that the maximum heavy-metal adsorption occurs best
under monolayer conditions of the adsorbate on the surface of the adsorbent. Similar results were
observed by [116], where both Langmuir (R2 = 0.9815, 0.997) and Freundlich (R2 = 0.9963, 0.9906)
isotherms fitted well for As(III) and As(IV) data, respectively; however, As(III) data fitted better to the
Freundlich isotherm. The discrepancies in the mechanism could be assigned to competing for anion
effects on the surface in aqueous solution leading to switching effects in the process.

The Langmuir–Freundlich isotherm (R2 = 0.9949, qm = 225.95 mg g−) was revealed as a better
adsorption data-fitting model compared to the general Langmuir (R2 = 0.8525, qm = 369 mg g−)
and Freundlich (R2 = 0.8709, qm = 369 mg g−) isotherms, respectively, in the adsorption of direct
yellow-brown dye by Cu modified lignite SC [108]. Similarly, [114] describes a Redlich–Peterson
isotherm for adsorption of COD and TNT, which revealed a higher correlation effect (R2 = 0.998
at 40 ◦C, qm = 47.4 mg g−1) than traditional Langmuir and Freundlich isotherms. Further, [42]
tested the Toth and Liu isotherm models against earlier isotherms tested by [114] and found the
Toth isotherm to yield a higher correlation effect (R2 = 0.9974, qm = 192.53 mg g−1) for adsorption of
p-nitrophenol (PNP). The Toth isotherm model displays an adsorption effect based on heterogeneous
surfaces, which could infer the adsorption of other organic-based contaminants. However, in a
similar comparative study on four phenolic compounds, Sips isotherm (R2 = 0.98985) derived
from the theory of Langmuir and Freundlich isotherms provided a better data fit compared to
the Redlich–Peterson isotherm (R2 = 0.96215) and the Toth isotherm (R2 = 0.97755), but adsorption
data for PNP were better fitted by Toth isotherm as confirmed by earlier [42]. For adsorption of
dyes by SC activated carbons, Freundlich isotherms were discovered to fit better (R2 = 0.92795,
0.95508) than Langmuir isotherms (R2 = 0.74361, 0.93466) for methyl orange and industrial blue dye,
respectively [65]. For adsorption and immobilization of adsorbate (Atrazine) in soil, [124], demonstrated
performance of six adsorption isotherms and observed their correlation (R2) effect in order (Freundlich
0.9917 > Langmuir, 0.994 > Linear, 0.9912 > Jovanovic, 0.9830 > Temkin, 0.9301 > Hill, 0.8177). Results
indicated that adsorbate adsorption best fitted Freundlich isotherms with a corresponding increase in
adsorbate concentration. This confirms previous results reported by [42] that SC adsorption of organic
contaminants may occur at maximum heterogeneous surfaces.

6. Reusability and Regeneration

A significant criterion for determining ‘low cost’ sorbents are their potential to be reused or
regenerated, hence not requiring a refreshing material after every treatment application process [60].
This aspect of adsorbent technology defines its economic potential. Cost and economic analysis related
to SC and direct lignite-formed adsorbents are reported [109]. The adsorbent regeneration process
can be described as an inverse process of adsorption, involving two main processes i.e., adsorbate
desorption and adsorbate decomposition [125]. The involved reaction mechanism comprises an
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outward diffusion, inward diffusion, followed by adsorption on the adsorbent solid surface. These
processes are temperature, pH, and concentration-dependent [126]. Research on the regeneration of SC
sorbents remains scant, however the following methods are cited: Thermal regeneration, ultra-sonic
water rinse, ultrasonic ammonium rinsing, and thermal vapor regeneration [127].

6.1. Chemical Regeneration

Chemical regeneration SC adsorbents involve washing the adsorbent (e.g., NaOH, acetone) and
drying at 100–110 ◦C to study the composition of formative products at various stages by an established
equilibrium between the adsorbent and adsorbate [128]. The recent demonstration indicates that
approximately 92.7% of CO2 equilibrium initial adsorption capacity by activated SC can be yielded after
10 times of adsorption-desorption cycles [62]. The results were consistent with [129]. After four cycles
of desorption-adsorption processes, PNP concentration decreased from 121.33 mg g−1 to 96.4 mg g−1

yielding approximately 79.5% of the initial adsorption capacity [42]. The reduced equilibrium and loss
of capacity may be attributed to incomplete desorption processes of SC as micropore adsorption are
too low to facilitate solvent regeneration. Chemical regeneration processes are however found to be
better than thermal regeneration and suitable for high concentration and low boiling point organic
matter adsorbent [38].

6.2. Microwave Irradiation Regeneration

Microwave irradiation regeneration involves utilizing microwave to heat sorbents over multiple
cycles, which leads to the uniform distribution of metal oxides on support surfaces of adsorbents.
The method increases the electron density of surface atoms and results in a high concentration of
surface elements and optimization of pore size formation. MW sorbents are stable and exhibit good
regeneration ability. Recent results indicated that activated SC can maintain a 98–99% regeneration
capacity within 30 s. Similar high regeneration capacities for SO2 were reported after 17 cycles [130].
However, long irradiation power may cause carbon loss leading to slow regeneration rates and eventual
decline [101]. A new method of regeneration by microwave-ultraviolet (MW-UV) system is available,
which is cited to recover carbon nanotubes (CNTs) at 100% within a time of 2.5 min, maintaining a
capacity of 80% even after five cycles [131]. This can be applied to SC regeneration. Comparatively,
microwave irradiation yields higher adsorption efficiencies than thermal regeneration [132].

6.3. Ultrasound Regeneration

Ultrasound and ultrasonic regeneration methods have been explored for the decontamination of
soil and sediments. Research by [133] observed that within the ranges of 40–1000 kHz, adsorption-
desorption of phenols on porous carbons improved and the enhancement was facilitated by surface
diffusivity. Meanwhile, inconsistencies associated with this method of regeneration under various
conditions are reported by [134]. The stronger the power and intensity of ultrasound, the higher the
desorption rates.

6.4. Thermal Regeneration

The adoption of thermal regeneration is almost the most common industrial resource recovery
mechanism. However, the high heating rates and temperature involved in the process renders its
mechanism to yield lower capacities, in most cases less than 80% of initial adsorptive capacities [135].
The process denatures the carbon structures, hence the loss of particularly micropores and decomposition
of surface oxygen groups [136].

6.5. Biological Regeneration

The process involves stimulating spent porous carbon with micro-organism to rejuvenate
regeneration adsorptive capacities. Prior mechanisms involve established a low gradient of desorption
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as adsorbates with organics are dissolved in an aqueous solution followed by microbial action [137].
The carbon pore structures provide and serve as hosts for microorganisms providing necessary
conditions for surface biofilm formation. Intraparticle diffusion into micropores is prominent here as
microorganisms secrete enzymes (exoenzymes). By this, biodegradation processes eventually occur
over time, and fractions of pollutants in contact with the carbon get degraded [138]. The merits of this
approach come with its low cost and ready availability as microorganisms abound in soil or wastewater.

7. Conclusions

Rapid development and industrialization will continuously present several environmental
pollution incidences. Finding opportunities for remediation of already polluted environmental
media (soil and land) and preventing the excessive damage of new areas is the new norm for
environmental management. A traditional environmental engineering approach has been the reuse of
by-products and solid waste from agricultural, manufacturing, and industrial operations as precursors
to developing remediation materials. Semi-coke from low-rank coal is gaining popularity as a low-cost
contaminant/pollutant adsorbent due to its significant physicochemical properties. The research
application on semi-coke has mainly focused on its reutilization in the power/energy sector due
to its high carbon content. Nevertheless, available research on its application for contaminant
removal/adsorption is scanty with the relative studies focused on a few organic pollutants, heavy
metals, and noxious gas emissions. The structural complexation of semi-coke is greatly influenced
by temperature while surface behavior and chemistry are affected by pH and the addition of other
chemical activators. Other factors, including electrostatic interactions, π-π electron donor–acceptor
relationships, hydrogen bonding, hydrophobic interactions, and intraparticle diffusion are a few that
enhance semi-coke’s capacity for contaminant removal. As a material with high capacity for reusability
and regeneration, it is essential to establish an economic output over conventional sorbents. Positive
results of semi-coke’s regeneration were observed. This review reiterates the science of semi-coke as a
low-cost sorbent material with significant adsorption application for contaminant removal.
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