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Abstract: In the present study, we confirmed that α-asaronol, which is a product of the active metabo-
lites of alpha Asarone, did not affect n-butylphthalide efficacy when n-butylphthalide and α-asaronol
were co-administered to rats with cerebral ischemia-reperfusion injury. Our research revealed that
the co-administration of α-asaronol and n-butylphthalide could further improve neurological func-
tion, reduce brain infarct volume, increase the number of Nissl bodies, and decrease the ratios of
apoptotic cells and the expression of the caspase-3 protein for cerebral ischemia-reperfusion injury
model compared to n-butylphthalide alone. Additionally, α-asaronol could significantly decrease the
incidence of post-stroke epilepsy versus n-butylphthalide. This study provides valuable data for the
follow-up prodrug research of α-asaronol and n-butylphthalide.
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1. Introduction

Stroke, a nervous system disease which is caused by acute cerebral blood circulation
disorder, is the second leading global cause of death and a leading cause of long-term
disability [1]. It poses a serious threat to human health, with a high incidence, and results
in high mortality and disability rates [2]. According to its pathological mechanisms, stroke
can be clinically categorized into ischemic and hemorrhagic. Ischemic strokes, accounting
for approximately 87% of all strokes, are primarily caused by thrombosis and arterial
obstruction [3].

Patients with ischemic strokes are susceptible to a variety of complications, of which
epilepsy can further lead to the aggravation of hypoxia/anoxia in brain tissue, ultimately
adversely affecting patients’ recovery of motor function [4]. This complication is a common
clinical problem and is found in 8.6% of patients with ischemic stroke [5]. In general,
seizures following stroke can be divided into early- and late-onset. The former refers to
the development of seizures within 2 weeks of suffering stroke, while the latter refers to
onset after 2 weeks [6]. It has been reported that early-onset seizure was a risk factor for
the development of late-onset seizures following stroke [7]. In addition, status epilepticus
in the acute phase of ischemic stroke usually causes the severe dysfunction of the cerebral
nervous system, which further increases mortality in patients with ischemic stroke [8,9].
The prevention of seizure after ischemic stroke is highly beneficial to patients; however,
the American Heart Association Stroke Council and the European Stroke Organization do
not recommend the prophylactic use of anti-epileptic drugs for early- or late-onset seizures
after ischemic stroke. This is primarily because of the lack of robust evidence in previous
studies [10,11]. The clinical treatment of seizure prevention after stroke by the prophylactic
administration of anti-epileptic drugs has led to increased complications and mortality in
patients being observed in some studies [12,13]. Additionally, anti-epileptic drugs have
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many side effects such as drowsiness, impaired memory, and blurred vision [14]. Hence,
there is an urgent need to address this problem.

In recent decades, Chinese herbal medicines, which have thousands of years of history
of use in therapy, have become increasingly popular in clinical use due to their good safety
profiles and few toxic side effects [15,16]. Alpha Asaronem is one of the active components
of Acorus calamus, a traditional Chinese medicine which exhibits distinct anticonvulsant
and anti-epileptic effects [17,18]. α-asaronol ((E)-3(2,4,5-trimethoxyphenyl)-prop-2-en-1-ol),
which is the product of active metabolites of alpha Asarone [19], possesses an even better
anticonvulsant activity than alpha Asarone [20]. Racemic 3-n-butylphthalide (NBP), which
is a natural compound extracted from the seeds of Chinese celery, is approved by the State
Food and Drug Administration of China for the treatment of patients with acute ischemic
stroke [21,22]. Given this, we expect that combining α-asaronol (ASOL) and NBP could
lead to better outcomes in patients with ischemic stroke by reducing seizures while limiting
adverse outcomes.

2. Results and Discussion
2.1. The Effect of ASOL on mNSS

In the present study, in order to explore the effect of ASOL in the presence of NBP
on cerebral ischemia-reperfusion injury, we investigated a model of cerebral ischemia-
reperfusion injury. The vehicle group had the highest score of mNSS among the five
groups, which revealed that the modeling was successful (Figure 1A). Compared to the
vehicle group, CA-LD (coadministration of 10 mg/kg NBP and 15 mg/kg ASOL), CA-HD
(coadministration of 10 mg/kg NBP and 30 mg/kg ASOL), and NBP significantly decreased
the score for mNSS (CA-LD p < 0.05, CA-HD p < 0.001, NBP p < 0.01). The difference in the
scores of mNSS of CA-LD and CA-HD versus NBP was not statistically significant. Further,
the score obtained for CA-HD performed slightly better than that for NBP. These results
show that ASOL did not affect NBP efficacy when NBP and ASOL were co-administered.
On the other hand, high-dose α-asaronol (CA-HD) was beneficial to the recovery of the
neurological function of rats with cerebral ischemia-reperfusion injury.
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Figure 1. ASOL treatment in the presence of NBP enhanced neurofunctional recovery, reduced
infarct volume, and decreased the incidence of post-stroke epilepsy. (A) Quantitative analysis
results obtained for the neurological score for rats with cerebral ischemia-reperfusion injury (n = 12).
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(B) Representative images of coronal brain sections for rats with cerebral ischemia-reperfusion injury
with TTC staining. (C) The quantitative analysis results of infarct volume for rats with cerebral
ischemia-reperfusion injury (n = 12). (D) Quantitative analysis results of the incidence of post-stroke
epilepsy for rats with cerebral ischemia-reperfusion injury (n = 22). CA-LD, coadministration of
10 mg/kg NBP and 15 mg/kg ASOL. CA-HD, coadministration of 10 mg/kg NBP and 30 mg/kg
ASOL. ns means not significant, * p < 0.05, ** p < 0.01, *** p < 0.001.

2.2. The Effect of ASOL on Infarct Volume

The un-infarcted area was red and the infarcted area was white in the representative
photographs of TTC staining for rat with cerebral ischemia-reperfusion injury (Figure 1B).
The results obtained for infarct volume are shown in Figure 1C, which demonstrates
that the vehicle group had the highest percentage of infarct volume. It can be seen that
CA-LD, CA-HD, and NBP significantly reduced the percentage of infarct volume when
compared with the vehicle group (CA-LD p < 0.01, CA-HD p < 0.001, NBP p < 0.01).
Furthermore, compared with NBP, there was no statistical significance for CA-LD and
CA-HD. Additionally, the infarct volume of CA-HD performed slightly betterthan that for
NBP. This further confirmed the suggestion made above that a high dose of α-asaronol
(CA-HD) was beneficial for the recovery of rats with cerebral ischemia-reperfusion injury.

2.3. The Effect of ASOL on the Incidence of Post-Stroke Epilepsy

Post-stroke epilepsy is a very common complication in stroke survivors [23]; as such,
we aimed to test whether ASOL treatment was effective in preventing post-stroke epilepsy
for rats with cerebral ischemia-reperfusion injury. As demonstrated in Figure 1D, the
highest incidence of post-stroke epilepsy was observed in the vehicle group. CA-LH, CA-
HD, and NBP reduced the incidence of post-stroke epilepsy, whereas only CA-HD showed
a statistically significant difference compared to the vehicle group (p < 0.01). Furthermore,
compared with NBP, CA-HD showed a very significant reduction in the incidence of post-
stroke epilepsy (p < 0.05). It was suggested that ASOL treatment may be an effective means
to prevent the occurrence and development of post-stroke epilepsy in the presence of NBP
for rats with cerebral ischemia-reperfusion injury.

Post-stroke epilepsy, which accounts for almost 50% of newly diagnosed epilepsy in
patients with an age greater than 60 years, could lead to the aggravation of the disease state,
seriously affect the prognosis, and even endanger life [24]. However, most antiepileptic
drugs that are used to prevent and treat epilepsy have obvious toxic side effects [25].
Interestingly, ASOL possesses a very low toxicity and minimal side effects. Furthermore, the
acute toxicity of ASOL is far less than that of α-asarone, which is its parent compound [20].
In a previous study, NBP was shown to exert multi-target pharmacological functions against
ischemic stroke, including reducing oxidative stress, inhibiting inflammatory responses,
alleviating neuronal apoptosis, and increasing regional blood flow [21]. However, it does
not have any antiepileptic effects. Thus, ASOL, which exhibits distinct anticonvulsant and
anti-epilepsy effects, is a promising therapeutic drug for the prevention and treatment of
post-stroke epilepsy in the future.

2.4. The Effect of ASOL on the Results of Nissl Staining

Nissl bodies are a marker of mature neurons that reflect the functional state of neurons
and can be used to detect neuronal apoptosis [26]. In this light, we evaluated the effects
of ASOL treatment in the presence of NBP on the peri-infarct cortical neurons of rats with
cerebral ischemia-reperfusion injury using Nissl staining. The data (Figure 2) showed that
the vehicle group had the lowest number of Nissl bodies in the peri-infarct cortical regions,
which was also significantly reduced compared to the sham group (p < 0.001). Both CA-HD
and NBP showed remarkable increases in the number of Nissl bodies compared with the
vehicle group (CA-HD p < 0.01, NBP p < 0.05). Furthermore, the number of Nissl bodies
in CA-HD was shown to be slightly higher than that in NBP. This is consistent with the
above findings.
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Figure 2. The effects of ASOL treatment in the presence of NBP on the peri-infarct cortical neurons of
rats with cerebral ischemia-reperfusion injury. (A) Representative images of histological examination
by Nissl staining showing the survival of neurons in the peri-infarct cortical region. (B) Graphical
representations of the data through box-and-whisker plots, where the whiskers indicate the minimum
and maximum (n = 6). CA-LD, coadministration of 10 mg/kg NBP and 15 mg/kg ASOL. CA-
HD, coadministration of 10 mg/kg NBP and 30 mg/kg ASOL. ns means not significant, * p < 0.05,
** p < 0.01, *** p < 0.001.

2.5. The Effect of ASOL on the Results of TUNEL Staining

TUNEL staining is a method that is used to detect the DNA fragmentation generated
during apoptosis [27]. TUNEL-positive cells exhibit green fluorescence, while TUNEL-
negative nuclei show a blue color under DAPI. The data (Figure 3) showed that there were
no apoptotic cells in the sham group, and that the ratio of apoptotic cells in the vehicle group
was the highest. Treatment with CA-HD or NBP was shown to reduce the ratio of apoptotic
cells significantly (<0.01) compared to in the vehicle group. No significant differences
were found between the CA-HD and NBP groups. Furthermore, CA-HD exhibited lower
mean ratios than the NBP’s for TUNEL-positive cells. These findings indicated that the
coadministration of NBP and ASOL further attenuated neuronal damage in the peri-infarct
cortex area.
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by TUNEL staining showing the death of neurons in the peri-infarct cortical region (400-fold visual
field). (B) Graphical representations of the data through box-and-whisker plots, where the whiskers
indicate the minimum and maximum (n = 6). CA-LD, coadministration of 10 mg/kg NBP and
15 mg/kg ASOL. CA-HD, coadministration of 10 mg/kg NBP and 30 mg/kg ASOL. ns means not
significant, ** p < 0.01.

2.6. Immunohistochemical Analysis of Caspase-3 Expression

The activation and expression of caspase-3, a cysteine protease, preceded neuronal
damage, which ultimately leads to cell apoptosis [28–30]. Therefore, we evaluated ASOL’s
effect on the peri-infarct cortical neurons of rats with cerebral ischemia-reperfusion injury
by the immunohistochemical detection of the caspase-3 protein. The more strongly the
caspase-3 protein is expressed, the more severe the neuronal damage in the peri-infarct
cortical region is. From Figure 4, it can be seen that the caspase-3 expression in the vehicle
group was significantly increased when compared to that in the sham group (p < 0.01). After
the administration of CA-HD and NBP, the expression of the caspase-3 protein significantly
decreased (CA-HD p< 0.01, NBP p < 0.05) compared to that in the vehicle group. There
was no significant difference between the CA-HD and NBP groups, but the CA-HD group
showed a lower mean optical density than the NBP’s for the expression of caspase-3. These
results further confirm that α-asaronol was beneficial to the recovery of rats with cerebral
ischemia-reperfusion injury.
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Figure 4. The effects of ASOL treatment in the presence of NBP on the peri-infarct cortical neurons of
rats with cerebral ischemia-reperfusion injury. (A) Representative images of immunohistochemistry
showing the distribution of caspase-3 protein in the peri-infarct cortical region. (B) Graphical
representations of the data through box-and-whisker plots, where the whiskers indicate the minimum
and maximum (n = 6). CA-LD, coadministration of 10 mg/kg NBP and 15 mg/kg ASOL. CA-
HD, coadministration of 10 mg/kg NBP and 30 mg/kg ASOL. ns means not significant, * p < 0.05,
** p < 0.01.

3. Conclusions

In this study, we firstly confirmed that α-asaronol did not affect the efficacy of NBP
when NBP and α-asaronol were co-administered to rats with cerebral ischemia-reperfusion
injury. Subsequently, we determined that the co-administration of α-asaronol and NBP
could further improve neurological function, reduce brain infarct volume, increase the
number of Nissl bodies, and decrease the ratios of apoptotic cells and the expression
of the caspase-3 protein compared to NBP alone. More importantly, α-asaronol could
significantly decrease the incidence of post-stroke epilepsy versus NBP. These positive
results substantiate the notion that α-asaronol treatment is an effective means to prevent
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the occurrence and development of post-stroke epilepsy. A prodrug could be made via an
esterification reaction from hydroxyl groups of α-asaronol and carboxylic groups which
the ester hydrolysis of NBP afforded.The results of this study provide a theoretical basis for
follow-up prodrug research on α-asaronol and NBP.

4. Materials and Methods
4.1. Drug

α-asaronol (purity: >99%) was kindly provided by Prof. Hu from Chongqing Medical
University. Racemic 3-n-butylphthalide was purchased from Macklin. ASOL and NBP
were dissolved in 5–10% Solutol HS-15 and 90–95% saline.

4.2. Animals

Male Sprague Dawley rats (200~220 g) were obtained from the Animal Laboratory
Center of Chongqing Medical University (Chongqing, China). All animals were housed
under a 12 h light–dark cycle ad libitum in a temperature-controlled (25 ± 1 ◦C) facility
and maintained on standard food and water. All animal experimental protocols were in
accordance with the guidelines of the National Institutes of Health and approved by the
Experimental Ethics Committee of Chongqing Medical University (license number: SYXK
(YU) 2010-001).

4.3. Middle Cerebral Artery Occlusion (MCAO) and Treatments

All animals were fasted for 10–12 h before the study but had free access to water. All
animal experiments were performed in a blinded setup. The MCAO model was established
according to the literature with minor modifications [31]. Briefly, animals were anesthetized
via intraperitoneal injection with 10% chloral hydrate (350 mg/kg). The right common
carotid artery (CCA), right external carotid artery (ECA), and right internal carotid artery
(ICA) were exposed and isolated. Then, a 4-0 monofilament nylon suture (Cinontech Co.,
Ltd., Beijing, China) with silicon coating was inserted into the ICA via the ECA stump
and gently advanced to occlude the middle cerebral artery after the CCA and ECA were
simultaneously ligated. Zea-longa scores were used to evaluate the neurological function
of the SD rats after they had regained full consciousness (post-anesthesia) to verify the
success of modeling [32]. Following 2 h of MCAO, the monofilament was gently removed
to allow reperfusion. The surgical neck wound was closed immediately with sutures. Next,
SD rats in the different groups were intravenously injected with the appropriate drugs or
a volume-matched vehicle. Following injection, the animals were placed in the cage for
normal feeding. The sham group underwent the same procedures, except for the occlusion
of the middle cerebral artery.

4.4. Evaluation of the Neurological Deficits

Sixty male adult SD rats (200~230 g) were randomly distributed into five groups
(n = 12): sham, vehicle, coadministration of NBP (10 mg/kg) and ASOL (15 mg/kg)
(CA-LD), coadministration of NBP (10 mg/kg) and ASOL (30 mg/kg) (CA-HD), and
administration of NBP (10 mg/kg) only. After 24 h of cerebral ischemia-reperfusion, the
neurological deficit scores were assessed blindly according to the modified neurological
severity score (mNSS) system [33]. The mNSS test included assessments of four different
functions (motor, sensory, reflex, and balance), with the highest possible score being 18. In
this scoring system, higher scores reflected more severe injury.

4.5. Determination of Infarct Volume

The brain tissue of each group was quickly isolated, frozen for 30 min at −20 ◦C,
and cut into 2 mm-thick coronal sections after a neurological function evaluation. The
sections were then stained with 2% 2,3,5-triphenyltetrazolium chloride (TTC; Macklin) in
phosphate-buffered saline (PBS) for 30 min in the dark and fixed with 4% paraformaldehyde
(PFA) for 24 h. These slices stained with TTC were photographed and the infarction areas
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were measured using the Image J 1.52p analysis software (National Institutes of Health,
Washington, DC, USA). The calculation of the percentage of infarct volume was performed
with the sum infarct area of the ipsilateral hemisphere/the sum area of the hemisphere.

4.6. Evaluation of Post-Stroke Epilepsy

SD rats (200~230 g) were randomly divided into five groups (n = 22): sham, vehicle,
coadministration of NBP (10 mg/kg) and ASOL (15 mg/kg) (CA-LD), coadministration of
NBP (10 mg/kg) and ASOL (30 mg/kg) (CA-HD), and administration of NBP (10 mg/kg)
only. Rats were closely observed for the occurrence of tonic-clonic seizures and status
epilepticus in the 24 h after cerebral ischemia-reperfusion and administration.

4.7. Brain Tissue Preparation

After conducting post-stroke epilepsy tests on the sham, CA-HD, and NBP groups, six
rats were randomly selected from each group. The selected rats were deeply anesthetised
by injecting them with 10% chloral hydrate and then perfused with saline, followed by
20 mL of 4% PFA. The brain was removed and then fixed with 4% PFA for 72 h. The fixed
brain tissues were dehydrated sequentially in 70%, 80%, and 90% alcohol for 90 min each.
Finally, the tissues were paraffin-embedded, and serial coronal sections were sectioned at
5 µm thicknesses for later use [34].

4.8. Nissl Staining

Nissl staining was carried out according to the standard practices of pathological
examination to measure the number of Nissl bodies in the peri-infarct cortex area. In brief,
5 µm sections were transferred and immersed in 3-aminopropyl-3-ethylylsilane (APES)
to closely pack the brain tissues to the slides. After the coronal sections were dewaxed
and rehydrated, these sections were stained with a toluidine blue solution, washed with
distilled water, soaked in 70% alcohol, and differentiated in 95% alcohol. Sections were then
subjected to dehydration with anhydrous ethanol, cleaned with xylene until transparent,
and sealed with neutral gum. Nissl staining images were acquired from the peri-infarct
cortex area with a Panoramic 250 digital slice scanner (Danjier, Jinan, China) and analyzed
via the Image J 1.52p analysis software (National Institutes of Health, Washington, DC,
USA). The mean density of neurons was calculated from up to three non-overlapping and
representative images obtained from the brain sections of rats from different groups.

4.9. TUNEL Staining

TUNEL staining was performed according to the manufacturer’s instructions using
the cell death detection kit (Roche, Basel, Switzerland). In brief, after being deparaffinized
and rehydrated, the sections were repaired with the citrate repair solution (pH 6.0) and
washed with phosphate-buffered saline (PBS). TUNEL staining solution was added and the
sections were incubated in dark for 60 min at room temperature. After rinsing, the sections
were then stained with DAPI (Leagene Biotech, Beijing, China). Finally, the sections were
washed with PBS and sealed with a glycerin gelatin mixture. TUNEL staining images
were acquired from the peri-infarct cortex area with a Panoramic 250 digital slice scanner
(Danjier, Jinan, China) and analyzed via the Image J analysis software (National Institutes
of Health). The TUNEL-positive cells and the total number of nuclei were counted from up
to three non-overlapping and representative images obtained from the brain sections of rats
from different groups, and the ratios of apoptotic cells were then calculated in each group.

4.10. Caspase-3 Activity Determination

After dewaxing sections, the sections were treated with 3% H2O2 in methanol for
10 min, then washed with PBS for 5 min at RT; this process was repeated three times.
Subsequently, the sections were dipped into citrate solution (pH 6.0), heated to boiling,
and then cooled at room temperature. After 10 min, the heating and cooling cycle was
repeated once. After being cooled to room temperature, sections were washed with PBS
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twice for 6 min each at room temperature. The sections were blocked with normal goat
serum (ZSGB-BIO, Beijing, China) at RT for 25 min and incubated with primary antibody
against caspase-3 (rabbit polyclonal antibody, abcam, UK) at 4 ◦C for 12 h. Then, sections
were incubated with the secondary antibody of biotin-labeled goat anti-rabbit (ZSGB-BIO,
Beijing, China) at 37 ◦C for 40 min and washed with PBS three times for 6 min each
time. The slides were developed with the DAB chromogen kit (ZSGB-BIO, Beijing, China),
their color development was checked under a microscope, and then they were washed
with distilled water. Finally, the sections were slightly counterstained with hematoxylin,
dehydrated, transparentized, and sealed with neutral gum. Sections were scanned using a
Panoramic 250 Digital Slide Scanner (Danjier, China) and analyzed using Image-Pro Plus
6.0 (Media Cybernetics, Rockville, MD, USA). Integrated optical density (IOD) and the
positive area of all images in the peri-infarct cortical neurons were measured from up to
three non-overlapping and representative images obtained from the brain sections of rats
from the different groups. The calculation of the mean optical density (MOD) of each image
was performed by dividing the IOD by the positive area.

4.11. Statistical Analysis

All data were analyzed using the IBM SPSS Statistics 26.0 software (IBM, New York,
MY, USA), and the graphical representations were performed via GraphPad Prism 8.0 soft-
ware (GraphPad Software, San Diego, CA, USA). If the data followed a normal distribution
and the groups had equal variances, multiple comparisons among groups were analyzed
via a one-way analysis of variance (ANOVA), followed by LSD post hoc analysis. If the
data followed a normal distribution and the groups had unequal variances, multiple com-
parisons among groups were evaluated by a one-way ANOVA with Dunnett’s T3 test. The
incidence of post-stroke epilepsy was analyzed using the chi-square test for comparisons
among groups. Values of p < 0.05 were considered statistically significant.
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