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Abstract: In this paper we consider the metric entropies of the maps of an iterated function system
deduced from a black hole which are known the Bekenstein–Hawking entropies and its subleading
corrections. More precisely, we consider the recent model of a Bohr-like black hole that has been
recently analysed in some papers in the literature, obtaining the intriguing result that the metric
entropies of a black hole are created by the metric entropies of the functions, created by the black
hole principal quantum numbers, i.e., by the black hole quantum levels. We present a new type of
topological entropy for general iterated function systems based on a new kind of the inverse of covers.
Then the notion of metric entropy for an Iterated Function System (IFS) is considered, and we prove
that these definitions for topological entropy of IFS’s are equivalent. It is shown that this kind of
topological entropy keeps some properties which are hold by the classic definition of topological
entropy for a continuous map. We also consider average entropy as another type of topological entropy
for an IFS which is based on the topological entropies of its elements and it is also an invariant object
under topological conjugacy. The relation between Axiom A and the average entropy is investigated.

Keywords: iterated function system; Axiom A; metric entropy; topological entropy; black hole entropy;
Bohr-like black hole

1. Introduction

This article begins with the quantum black hole (BH) physics. Referring to the recent Bohr-like BH
model [1–3], we see that the Bekenstein–Hawking entropy and its subleading corrections is a metric
entropy of an iterated function system, and we see that the metric entropy of a BH is function of the
BH principal quantum number (the “overtone” number). We know that the topological entropy is an
invariant object under topological conjugate relation which denotes the measure of the complexity of a
dynamical system. Topological entropy for a continuous map f : X → X on a compact metric space
(X, d) has been considered from different viewpoints [4–8]. In [4], the authors introduce the notion of
topological entropy using open covers of X, another definition of topological entropy was given in [5]
which is known as metric entropy. It is proved that these two definitions are equivalent [7].

In the present paper we extend the notion of topological entropy to a finite set of continuous
functions on X which is called an Iterated Function System (IFS) [9,10]. We prove that this extension is
invariant under topological conjugate relation for iterated function systems. We show that topological
entropy of the inverse of an IFS when it’s elements are homeomorphisms is the same as it’s topological
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entropy. In section three we present the notion of metric entropy for IFSs, and we prove that it is
equal to topological entropy for IFSs on the compact metric spaces. We prove that if F is an IFS,
then h(Fm) = mh(F ), where h(.) denotes the topological entropy. If F and G are two IFSs we prove
that h(F × G) = h(F ) + h(G). We also consider Average Entropy as a new approach for topological
entropy for an IFS based on the topological entropies of the functions of it. It is also shown that for an
IFS, F which all its function satisfies Axiom A there exists a neighborhood of F , such that the average
entropy of every IFS in this neighborhood is less than or equal to average entropy of F .

2. Appearance of Iterated Function Systems in Black Hole Quantum Physics and Bohr-Like
Black Hole

Researchers in quantum gravity have the intuitive, common conviction that, in some respects,
BHs are the fundamental bricks of quantum gravity in the same way that atoms are the fundamental
bricks of quantum mechanics [11]. This similarity suggests that the BH mass should have a discrete
spectrum [11]. On the other hand, the analogy generates an immediate and natural question: if the
BH is the nucleus of the gravitational atom in quantum gravity, what are the electrons? One of us
(Christian Corda) gave an intriguing answer to that question, showing that the BH quasi-normal
modes (QNMs) triggered by the emission of Hawking quanta and by the potential absorptions of
neighboring particles can be considered as the electrons of that gravitational atom [1–3]. Thus, the
intuitive picture is more than a picture as QNMs can be really interpreted in terms of BH quantum
levels in a BH model somewhat similar to the semi-classical Bohr model of the structure of a hydrogen
atom [1–3]. This issue has important consequences on the BH information puzzle [12]. In fact, showing
BHs in terms of well defined quantum mechanical systems, having an ordered, discrete quantum
spectrum, looks consistent with the unitarity of the underlying quantum gravity theory and with the
idea that information should come out in BH evaporation [1–3]. A fundamental feature of the Bohr-like
BH model that we are going to resume is the discreteness of the BH horizon area as the function of
the QNMs principal quantum number, which is consistent with various models of quantum gravity
where the spacetime is fundamentally discrete [13]. We also stress that, in our knowledge, the first
who viewed BHs as similar to gravitational atoms was Bekenstein [11]. In [1–3], it has been indeed
shown that the semi-classical evaporating Schwarzschild BH is somewhat similar to the historical
semi-classical model of the structure of a hydrogen atom introduced by Bohr in 1913. The results
in [1–3] are founded on the non-thermal spectrum of Parikh and Wilczek [14], which implies the
countable character of subsequent emissions of Hawking quanta enabling a natural correspondence
between Hawking radiation [15] and the BH quasi-normal modes (QNMs) triggered by the emissions
of Hawking quanta and by the potential absorptions of neighbouring particles. In such an approach,
those QNMs represent the “electron” which jumps from a level to another one. The absolute values
of the QNMs frequencies triggered by emissions (Hawking radiation) and absorption of particles
represent, in turn, the energy “shells” of the gravitational hydrogen atom [1–3]. Remarkably, the time
evolution of BH evaporation is governed by a time-dependent Schrodinger equation and represents an
independent approach to solve the BH information puzzle [2,3]. The results in [1–3] are also in perfect
agreement with previous existing results in the literature, starting from the famous result of Bekenstein
on the area quantization [16]. Using Planck units (G = c = kB = h̄ = 1

4πε0
= 1), for large values of the

principal quantum number n (i.e., for excited BHs), the energy levels of the Schwarzschild BH which is
interpreted as gravitational hydrogen atom are given by [1–3]

En ≡ |ωn| = M−
√

M2 − n
2

, (1)

where M is the initial BH mass and En is interpreted like the total energy emitted when the BH is
excited at the level n [1–3]. During a quantum jump a discrete amount of energy is radiated and,
for large values of n, the analysis becomes independent of the other quantum numbers, in complete
consistence with Bohr’s Correspondence Principle [17], which states that transition frequencies at large
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quantum numbers should equal classical oscillation frequencies. In Bohr’s model electrons can only
gain and lose energy by jumping from one allowed energy shell to another, absorbing or emitting
radiation with an energy difference of the levels according to the Planck relation (in standard units)
E = h f , where h is the Planck constant and f the transition frequency. In the analysis in [1–3] QNMs
can only gain and lose energy by jumping from one allowed energy shell to another, absorbing or
emitting radiation (emitted radiation is given by Hawking quanta) with an energy difference of the
levels according to [1–3]

∆En1→n2 ≡ En2 − En1 = Mn1 −Mn2 =
√

M2 − n1
2 −

√
M2 − n2

2 , (2)

Equation (2) represents the jump between the two levels n1 and n2 > n1 due to the emission of
a particle having frequency ∆En1→n2 , where Mn is the residual mass of the BH excited at the level n,
that is the original BH mass minus the total energy emitted when the BH is excited at the level n [1–3].
Thus, Mn = M− En [1–3]. Then, the jump between the two levels depends only on the initial BH
mass and on the correspondent values of the BH principal quantum number [1–3]. In the case of an
absorption one gets instead [1–3]

∆En2→n1 ≡ En1 − En2 = Mn2 −Mn1 =
√

M2 − n2
2 −

√
M2 − n1

2 = −∆En1→n2. (3)

The similarity with Bohr’s model is completed if one notes that the interpretation of Equation (3)
is of a particle, the electron, quantized on a circle of length [1–3]

L = 4π

(
M +

√
M2 − n

2

)
, (4)

which is the analogous of the electron traveling in circular orbits around the hydrogen nucleus,
similar in structure to the solar system, of Bohr model [1–3].

The analysis in [1–3] permits to show that the famous formula of Bekenstein–Hawking
entropy [15,18] is a function of the QNMs principal quantum number, i.e., of the BH quantum level [3]

(SBH)n−1 ≡
An−1

4
= 8πNn−1Mn−1 · ∆En−1→n = 4π

(
M2 − n + 1

2

)
(5)

before the emission and

(SBH)n ≡
An

4
= 8πNn Mn · ∆En−1→n = 4π

(
M2 − n

2

)
(6)

after the emission respectively.
On the other hand, it is a general belief that there is no reason to expect that Bekenstein–Hawking

entropy will be the whole answer for a correct quantum gravity theory [3]. For a better understanding
of BH entropy we need to go beyond Bekenstein–Hawking entropy and identify the sub-leading
corrections [3]. Using the quantum tunneling approach one obtains the sub-leading corrections to
the third order approximation [19]. In this approach BH entropy contains four parts: the usual
Bekenstein–Hawking entropy, the logarithmic term, the inverse area term and the inverse squared
area term [19]

Stotal = SBH − ln SBH +
3

2A
+

2
A2 (7)

In this way, the formulas of the total entropy that takes into account the sub-leading corrections
to Bekenstein–Hawking entropy become

(Stotal)n−1 = 4π
(

M2 − n−1
2

)
− ln

[
4π
(

M2 − n−1
2

)]
+ 3

32π(M2− n−1
2 ))

+ 2

[16π(M2− n−1
2 )]

2 (8)
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before the emission, and

(Stotal)n = 4π
(

M2 − n
2
)
− ln

[
4π
(

M2 − n
2
)]

+ 3
32π(M2− n

2 )
+ 2

[16π(M2− n
2 )]

2 (9)

after the emission, respectively. Thus, also the total BH entropy results a function of the BH excited
state n. Here we improve the result in [3] where only the second order approximation has been taken
into account. We stress that the present results are in perfect agreement with existing results in the
literature. In fact, as we consider large n, it is ∆En−1→n ≈ 1

4M , see [3,20] and references within. Thus,
if one neglects the difference between the original BH mass and the residual mass Mn, i.e., Mn ' M
the Bekenstein–Hawking entropy reads (n ≈ n− 1 and Nn ≈ Nn−1 ≡ N)

SBH =
A
4

= 8πNM · ∆En−1→n, (10)

which is consistent with the standard result, see [3,20] and references within,

SBH → 2πN. (11)

Again, the consistence with well known and accepted results cannot be a coincidence, but it is a
confirmation of the correctness of the current analysis instead. Then, the total entropy reads

Stotal = 8πNM · ∆En−1→n − ln [8πNM · ∆En−1→n]

+ 3
64πNM·∆En−1→n

+ 2
(32πNM·∆En−1→n)

2

(12)

which is well approximated by

Stotal ' 2πN − ln 2πN +
3

16πN
+

2

(8πN)2 . (13)

Also Equations (12) and (13) improve the results in [3] where only the second order approximation
has been taken into account. Now, let us explain the way in which the Bohr-like BH model works
following [3]. Let us consider a BH’s original mass M. After an emission from the ground state
to a state with large n − 1, or, alternatively, after a certain number of emissions (and potential
absorptions as the BH can capture neighboring particles), the BH is at an excited level n − 1
and its mass is Mn−1 ≡ M− En−1 where En−1 is the absolute value of the frequency of the QNM
associated to the excited level n − 1. We recall again that En−1 is interpreted as the total energy
emitted at that time [1–3]. The BH can further emit an energy to jump to the subsequent level:
∆En−1→n = En − En−1 = Mn−1 −Mn. Now, the BH is at an excited level n and the BH mass is

Mn ≡ M− En−1 − ∆En−1→n = M− En−1 + En−1 − En = M− En. (14)

The BH can, in principle, return to the level n− 1 by absorbing an energy ∆En→n−1 = −∆En−1→n.
In [1–3]. it has been also shown that the quantum of area is the same for both absorption and emission
and it is given by

|4An| = |4An−1| = 8π, (15)

which is exactly the original result of Bekenstein [16]. Again, we stress that the Bohr-like BH model has
important implications for the BH information paradox see [12]. In fact, the results in [1–3] show that
BH QNMs are really the BH quantum levels in our Bohr-like semi-classical approximation. The time
evolution of the Bohr-like BH obeys a time dependent Schrodinger equation for the system composed by
Hawking radiation and BH QNMs see [2,3]. Such a time evolution enables pure quantum states to
evolve in pure quantum states, while subsequent emissions of Hawking quanta are entangled with BH
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QNMs [2,3]. On the other hand, consistence between the Bohr-like BH model and a recent approach
to solve the BH information paradox [21] has been recently highlighted in [22]. Thus, the general
conviction that BHs result in highly excited states representing both the “hydrogen atom” and the
“quasi-thermal emission” in an unitary theory of quantum gravity is in perfect agreement with the
Bohr-like BH model which seems to approach the final theory of quantum gravity in the same way the
Bohr model of hydrogen atom approached the final theory of quantum mechanics.

Appearance of the logarithmic term in Equation (8) implies to the congruence of BH entropy with
the metric entropy of a function fn from a state space X to itself for a fixed n with 1 ≤ n ≤ 2(M2 − 1).
The metric entropy can not work when we want to consider different states as a whole. More precisely,
the BH entropy depends on n. The problem is finding a suitable mathematical model to consider all
the n-states with 1 ≤ n ≤ 2(M2 − 1) as a system. Our mathematical suggestion for considering this
situation is an iterated function system (IFS)

F = (X, f1, ..., fN),

where X is a compact metric space. In the classical case we work with autonomous systems, i.e.,
f1 = f2 = · · · = fN , but our suggested model is a non-autonomous system.

It is clear that, an iterated function system creates a multifunction with finite range [23].
The orbit of x0 ∈ X corresponding to a sequence {in}n∈N with in ∈ J = {1, ..., N} is the sequence

(xn)n∈N0 , where xn := fin(xn−1) and n ∈ N.
Let α be an open cover for a compact topological space X. Then we define:

F−iα =
⋃

[ji ]∈Ji

f−[ji ](α), (16)

where [ji] = (j1, ..., ji) ∈ Ji = J × ...× J︸ ︷︷ ︸
i

and f−[ji ](α) = f−1
j1

o...o f−1
ji

(α) for i ≥ 1 and F 0α = α. It is

clear that for each i ∈ N0, F−iα is an open cover for the space X.
If N(α) is the number of sets in α with the smallest cardinality (the number of the members) which

covers the space X, then H(α) = log N(α).
We use of the following lemma.

Lemma 1. For a given open cover α we have H(F−1α) ≤ H(α). Moreover if fi is an onto map for some
1 ≤ i ≤ N, then H(F−1α) = H(α).

Proof. Let {A1, ..., An} be a subcover of α for X. Then {F−1(A1), ...,F−1(An)} is a subcover of F−1α.
So H(F−1α) ≤ H(α). Now, let fi : X −→ X be an onto map, and {F−1(A1), ...,F−1(An)} be a
subcover of F−1α. Then {A1, ..., An} is a subcover of α. Hence H(α) ≤ H(F−1α).

For two open covers α = {A1, ..., An} and β = {B1, ..., Bm}, we define

F−1(α ∨ β) = { f−1
k (Ai ∩ Bj) : 1 ≤ k ≤ N, 1 ≤ i ≤ n, 1 ≤ j ≤ m},

and

F−1(α) ∨ F−1(β) = { f−1
k (Ai) ∩ f−1

L (Bj) : 1 ≤ L, k ≤ N, 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

If α and β are two open covers for the space X, then the open cover α is called a refinement of β if
each member of α is a subset of a member of β. In this case we write β ≺ α.

Let f−1
k (Ai ∩ Bj) be a member of F−1(α ∨ β). Then f−1

k (Ai ∩ Bj) ⊆ f−1
k (Ai) ∩ f−1

k (Bj).
Thus F−1(α) ∨ F−1(β) ≺ F−1(α ∨ β) for each two covers α, β. So we have N(F−1(α) ∨ F−1(β)) ≤



Entropy 2018, 20, 56 6 of 17

N(F−1(α ∨ β)). It is not necessary that F−1(α) ∨ F−1(β) = F−1(α ∨ β), (see Example 1). Similarly
we have F−i(α) ∨ F−i(β) ≺ F−i(α ∨ β), for each i ≥ 0, and

∨n−1
j=0 F

−k(αj) ≺ F−k(∨n−1
j=0 (αj)).

Thus

H(∨n−1
j=0 F

−k(αj)) ≤ H(F−k(∨n−1
j=0 (αj))), (17)

for every finite covers α0, α2, ..., αn−1.
The following example shows that the converse of the Inequality (17) is not always true.

Example 1. Consider the IFSF = (X, f , g) where X = [0, 1] and f , g : X −→ X are defined by f (x) = 1− x
and g(x) = x2. If α = {[0, 1

2 ), [
1
2 , 1]} and β = {[0, 1

3 ), [
1
3 , 1]} on X, then we have

F−1(α ∨ β) = {(2
3

, 1], (
1
2

,
2
3
], [

1
2

,
2
3
], [0,

1
3
), [

1√
3

,
1√
2
), [

1√
3

,
1√
2
]}

but

F−1(α) ∨ F−1(β) = {(2
3

, 1], (
1
2

,
2
3
], (

1
2

, 1], [0,
1
2
],

(
2
3

,
1√
2
), [0,

2
3
], [0,

1√
3
), [

1√
3

,
1√
2
), [

1√
2

, 1]}.

Lemma 2. limn→∞
1
n H(∨n−1

i=0 F
−iα) exists.

Proof. Consider the sequence (an)n∈N which an = H(∨n−1
i=0 F

−iα) for all n ∈ N. Then for each k, n ∈ N
we have

an+k = H(∨n+k−1
i=0 F−iα)

≤ H(∨n−1
i=0 F

−iα) + H(∨n+k−1
i=n F−iα)

= H(∨n−1
i=0 F

−iα) + H(∨k−1
i=0F

−i−nα)

≤ H(∨n−1
i=0 F

−iα) + H(F−n(∨k−1
i=0F

−iα)) Inequality (17)

≤ H(∨n−1
i=0 F

−iα) + H(∨k−1
i=0F

−iα) Lemma 1

= an + ak.

So an+k ≤ an + ak. Thus an+k is a subadditive sequence [7]. Hence we have
limn→∞

1
n H(∨n−1

i=0 F
−iα) = limn→∞

an
n .

Now we define the topological entropy of F , based on the open covers of X.

Definition 1. We define the topological entropy of F relative to α by:

hτ(F , α) = lim
n→∞

1
n

H(∨n−1
i=0 F

−iα),

and the topological entropy F by

hτ(F ) = sup
α

hτ(F , α).

This is well known that topological entropy is an invariant of topological conjugacy. Now we
define topological conjugacy for iterated function systems and in Theorem 1 we prove the same result
for iterated function systems.
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Let (X, τ1) and (Y, τ2) be two compact topological spaces and J = {1, ..., N} be a finite set.
If F = (X, f1, ..., fN) and G = (Y, g1, ..., gN) are two IFSs, then we say that F is topologically conjugate
to G if there is a homeomorphism φ : X −→ Y such that φo fi = gioφ, for all i ∈ J.

Remark 1. Let α be an open cover for X and let φ : X −→ X be an onto continuous map. Then H(φ−1α) =

H(α) (Remark 5, Chapter 5, [7]).

Theorem 1. With the above assumptions, if F and G are topologically conjugate then hτ1(F ) = hτ2(G).

Proof. Since φo fi = gioφ, for all 1 ≤ i ≤ N, then by Remark 1 we have

hτ2(G, α) = lim
n→∞

1
n

H(∨n−1
i=0 G

−iα)

= lim
n→∞

1
n

H(φ−1(∨n−1
i=0 G

−iα)) by Remark 1

= lim
n→∞

1
n

H(∨n−1
i=0 φ−1(G−iα))

= lim
n→∞

1
n

H(∨n−1
i=0 F

−i(φ−1α)) Because φo fi = gioφ,

= hτ1(F , φ−1(α)).

Hence hτ1(F ) ≥ hτ2(G). Similarly, by replacing φ with φ−1 we have hτ2(G) ≥ hτ1(F ).
So hτ1(F ) = hτ2(G).

Theorem 2. Let F = (X, f1, ..., fN) be an IFS, and let f1, ..., fN : X −→ X be homeomorphisms.
Then hτ(F ) = hτ(F−1), where the IFS F−1 is defined by:

F−1 := (X, f−1
1 , ..., f−1

N ).

Proof.

hτ(F−1, α) = lim
n→∞

1
n

H(∨n−1
i=0 F

iα)

≤ lim
n→∞

1
n

H(Fn−1(∨n−1
i=0 F

iα)) by Lemma 1

= lim
n→∞

1
n

H(∨n−1
i=0 F

−iα)

= hτ(F , α).

So hτ(F−1) ≤ hτ(F ). Similarly we have hτ(F ) ≤ hτ(F−1). Thus hτ(F ) = hτ(F−1).

3. Metric Entropy

Let F = (X, f1, ..., fN) be an IFS with continuous maps { fi}. For a given n > 1, we define a
metric dn on X by:

dn(x, y) = max
[ji ]∈Ji
{d(x, y), d( f [ji ](x), f [ji ](y))}, (18)

where [ji] = (j1, ..., ji) ∈ Ji, 1 ≤ i ≤ n− 1 and f [ji ](x) = f ji o....o f j1(x).

A neighborhood of x with the radius ε with respect to dn is:⋂
0≤i≤n−1

f−[ji ](N( f [ji ](x), ε)),
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where (j1, ..., ji) ∈ Ji, f [j0] = f−[j0] = IX and N(x, ε) is a neighborhood of x with the radius ε with
respect to d.

Let K be a compact subset of X. A subset E of K is called (n, ε)-separated if for each x, y ∈ E we
have x = y or dn(x, y) > ε. s(n, ε, K,F ) denotes the largest cardinality of (n, ε)-separated sets of K.

A subset W of X is called (n, ε)-spanning set for a compact subset K, if for every x ∈ K there is a
y ∈W with dn(x, y) ≤ ε. r(n, ε, K,F ) denotes the smallest cardinality of (n, ε)-spanning sets of K.

Now we present the notion of metric entropy for IFS.

Definition 2. The metric entropy of an IFS F = (X, f1, ..., fN) is:

hd(F ) = sup
Kis compact

lim
ε→0

lim sup
n→∞

1
n

log(s(n, ε, K,F ))

= sup
Kis compact

lim
ε→0

lim sup
n→∞

1
n

log(r(n, ε, K,F ))

Next theorem shows that the metric entropy and the topological entropy of an IFS are equal.

Theorem 3. If F = (X, f1, ..., fN) is an IFS on the compact metric X, then hτ(F ) = hd(F ).

Proof. Suppose that α is a finite open cover for X and diam(α) = sup{d(A) : A ∈ α} ≤ ε,
where d(A) = sup{d(x, y) : x, y ∈ A}. Let E be an (n, ε)-separated set with the cardinality s(n, ε,F )
and let x, y be two distinct members of E. Since dn(x, y) > ε then x, y can not lay in the one member of
∨n−1

i=0 F
−i(α), so s(n, ε,F ) ≤ N(∨n−1

i=0 F
−i(α)). Hence hd(F ) ≤ hτ(F ).

Now we prove hd(F ) ≥ hτ(F ). Let α be an open cover of X with the Lebesgue number δ. For an
(n, δ

2 )-spanning set W with the cardinality r(n, δ
2 ,F ) we have

X =
⋃

x∈W

⋂
0≤i≤n−1

f−[ji ](N( f [ji ](x),
δ

2
),

where (j1, ..., ji) ∈ Ji, f [j0] = f−[j0] = IX . Since for (j1, ..., ji) ∈ Ji there exists a member A ∈ α such that

N( f [ji ](x),
δ

2
) ⊆ A,

then

⋂
0≤i≤n−1

f−[ji ](N( f [ji ](x),
δ

2
)) ⊆ A ∩ f−1

j1
o f−1

j0
(A) ∩ ...∩ f−1

ji
o...o f−1

j0
(A).

Hence N(∨n−1
i=0 F

−iα) ≤ r(n, δ
2 ,F ). This implies that hτ(F ) ≤ hd(F ).

We write hτ(F ) = hd(F ) = h(F ).
It is well known that for every continuous map f : X → X, the power rule for its entropy holds,

i.e., h( f m) = mh( f ) for any positive integer m. By Theorem 4 we prove a similar result for IFS.

Definition 3. If F = (X, f1, ..., fN) is an IFS [24]. Then we define the IFS Fm by:

Fm := (X, f I1 , ..., f INm ),

where f Ii = fim o...o fi1 for all Ii = (i1, ..., im) ∈ Jm and 1 ≤ i ≤ Nm.

Lemma 3. Every (mn, ε)-spanning set of an IFS F , is a (n, ε)-spanning set for the IFS Fm.
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Proof. Let W be an (mn, ε)-spanning set for an IFS F . Then for every x 6= y, x, y ∈W we have

max
[ji ]∈Ji
{d(x, y), d( f [ji ](x), f [ji ](y))} ≤ ε,

where [ji] = (j1, ..., ji) ∈ Ji, 1 ≤ i ≤ mn− 1 and f [ji ](x) = f ji o....o f j1(x).
Hence

max
[Ii ]
{d(x, y), d( f [Ii ](x), f [Ii ](y))} ≤ ε,

where Ik ∈ Jm, 1 ≤ k ≤ n− 1, [Ii] = (I1, ..., Ii) and f [Ii ](x) = f Ii o....o f I1(x). So W is an (n, ε)-spanning
set for the IFS Fm.

Theorem 4. Suppose that F = (X, f1, ..., fN) is an IFS, where f1, ..., fN : X −→ X are continuous maps,
and m ∈ N, then h(Fm) = mh(F ).

Proof. By Lemma 3 each (n, ε)-spanning set of an IFS Fm is an (mn, ε)-spanning set of F .
So r(n, ε, K,Fm) ≤ r(mn, ε, K,F ). Thus h(Fm) ≤ mh(F ).

Now, we prove the other inequality. Since each fi is continuous and X is compact, then for ε > 0
there is a δ > 0 such that

d(x, y) < δ =⇒ d( f [ji ](x), f [ji ](y)) < ε,

for all 0 ≤ i ≤ m− 1. If E is a (n, δ)-spanning set for K with respect to the IFS Fm, then for each x ∈ K
there is y ∈ E such that

d(x, y) < δ

d( f [I1](x), f [I1](y)) < δ

d( f [I2]( f [I1](x)), f [I2]( f [I1](y))) < δ

.

.

.

d( f [In−1]o...o( f [I1](x), f [In−1]o...o( f [I1](y)) < δ,

where Ii ∈ Jm and 1 ≤ i ≤ n− 1. So

d(x, y) < ε and d( f [ji ](x), f [ji ](y)) < ε,

for every [ji] = (j1, ..., ji) ∈ Ji, 1 ≤ i ≤ nm − 1. Hence every (n, δ)-spanning set of K
with respect to the IFS Fm is a (nm, ε)-spanning set of K with respect to the IFS F . Therefore
r(n, δ, K,Fm) ≥ r(mn, ε, K,F ), this implies that m lim supn→∞

r(mn,ε,K,F )
mn ≤ lim sup r(n,δ,K,Fm)

n .
Thus mh(F ) ≤ h(Fm).

This is well known that if f , g : X → X are two continuous functions then h( f × g) = h( f ) + h(g).
Now we consider the product of two IFS and prove the similar property.

Definition 4. Suppose that (X, d1) and (Y, d2) are two compact metric spaces, and F = (X, f1, ..., fN),
G = (Y, g1, ..., gM) are two IFSs. Then the product of F , G is defined by:

F × G = (X×Y, f j × gi),
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where j ∈ J = {1, ..., N} and i ∈ L = {1, ..., M}. Additionally, (X × Y, d) is a compact metric space,
where d((x1, x2), (y1, y2)) := max{d1(x1, y1), d2(x2, y2)}.

Theorem 5. Let (X, d1) and (Y, d2) be two compact metric spaces, and F = (X, f1, ..., fN), G = (Y, g1, ..., gM)

are two IFS. Then

h(F × G) = h(F ) + h(G).

Proof. Consider W1 and W2 as two (n, ε)-spanning sets for F and G respectively. For each
x1 ∈ X, x2 ∈ Y there are y1 ∈W1, y2 ∈W2 such that

d1(x1, y1) < ε, d1( f [ji ](x1), f [ji ](y1)) ≤ ε,

and

d2(x2, y2) < ε, d2( f [li ](x2), f [li ](y2)) ≤ ε,

where [ji] = (j1, ..., ji) ∈ Ji, 1 ≤ i ≤ n− 1 and [li] = (l1, ..., li) ∈ Li, 1 ≤ i ≤ n− 1 and L = {1, ..., M}.
If we take F × G = (X×Y, h1, ..., hNM) with hi = fsi × gti then

d(hri o...ohr0(x1, x2), hri o...ohr0(y1, y2))

=max{d1( f [ji ](x1), f [ji ](y1)), d2(g[li ](x2), g[li ](y2))} ≤ ε,

where 0 ≤ i ≤ n − 1, (j1, ..., ji) ∈ Ji, (l1, ..., li) ∈ Li, f [j0] = IX and g[l0] = IY. Hence W1 ×W2 is
an (n, ε)-spanning set for the IFS F × G and consequently r(n, ε, X × Y,F × G) ≤ r(n, ε, X,F ) ×
r(n, ε, Y,G). Thus h(F × G) ≤ h(F ) + h(G). If E1 and E2 are (n, ε)-separated subsets of X and
Y respectively, then E1 × E2 is an (n, ε)-separated subset of X × Y. Thus s(n, ε, X × Y,F × G) ≥
s(n, ε, X,F )× s(n, ε, Y,G), and we have h(F × G) ≥ h(F ) + h(G).

In the following example we compute topological entropy for an IFS.

Example 2. Suppose that F = (R, 2x, 3x). By using of Formula (18) we have

dn(x, y) = max
[ji ]∈Ji
{d(x, y), d( f [ji ](x), f [ji ](y))}

= max
0≤i≤n−1

{d(x, y), d(2i × 3n−1−i × x, 2i × 3n−1−i × y)}

= max
0≤i≤n−1

{|x− y|, |2i × 3n−1−i × x− 2i × 3n−1−i × y|}

= max
0≤i≤n−1

{d(x, y), |2i × 3n−1−i × x− 2i × 3n−1−i × y|}

= 3n−1|x− y|.

where ji = (j1, ..., ji) ∈ Ji, 1 ≤ i ≤ n− 1 and f [ji ](x) = f ji o....o f j1(x). Now suppose K is a compact subset of R
with sup{d(x, y) : x, y ∈ K} = r and E is an (n, ε)-separated subset of K. Since x, y ∈ E⇐⇒ |x− y| > ε

3n−1 ,

then s(n, ε, K,F ) ≤ r×3n−1

ε , and h(F ) = limε→0 lim supn→∞
1
n log( r×3n−1

ε ) = log 3, hence h(F ) = log 3.

Similar calculations imply that if F = (R, ax, bx), then h(F ) = log b, where b ≥ a > 1.

4. Average Entropy

In this section we present another method to define the entropy of an IFS.
Let X be a topological space, and let F = (X, f1, ..., fN) be an IFS on X, where fi : X −→ X,

i ∈ J = {1, ..., N} are distinct continuous maps. A typical element of JN can be denoted by
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σ = {λ1, λ2, ...} and we use the notation Fσn = fλn o fλn−1 o...o fλ1 , for n ∈ N. Fσ = {Fσn : n ≥ 1}
and we denote the set of Fσ = {Fσn : n ≥ 1} by A(F ).

Definition 5. For an IFS, F = (X, f1, ..., fN), and σ = {λ1, λ2, ...} we define the topological entropy of Fσ by:

h(Fσ) =
N

∑
k=1

bkh( fk), (19)

where bk = lim supn→∞
∑n

i=1 δ(λi=k)
n , δ(λi = k) =

{
1 i f λi = k
0 i f λi 6= k

, and h( fk) is the topological entropy

of the fk.

Lemma 4. Let {ai}∞
i=1 and {bk}N

k=1 be two sequences of positive numbers. Then

N

∑
k=1

(lim sup
n→∞

∑n
i=1 ai

n
)bk ≥ lim sup

n→∞

N

∑
k=1

∑n
i=1 aibk

n

Proof. For fixed bk

∑n
i=1 aibk

n
= (

∑n
i=1 ai

n
)bk

≤ (lim sup
n→∞

∑n
i=1 ai

n
)bk.

Thus

N

∑
k=1

(
∑n

i=1 ai

n
)bk ≤

N

∑
k=1

(lim sup
n→∞

∑n
i=1 ai

n
)bk.

So

lim sup
n→∞

N

∑
k=1

(
∑n

i=1 ai

n
)bk ≤

N

∑
k=1

(lim sup
n→∞

∑n
i=1 ai

n
)bk.

Theorem 6. Suppose that F = (X, f1, ..., fN) is an IFS then for every σ = {λ1, λ2, ...} ∈ JN

min{h( fk) : k ∈ J} ≤ lim sup
n→∞

n

∑
i=1

h( fλi )

n
≤ h(Fσ) ≤

N

∑
k=1

h( fk).

Proof.

h(Fσ) =
N

∑
k=1

(lim sup
n→∞

∑n
i=1 δ( fλi = fk)

n
)h( fk)

≥ lim sup
n→∞

N

∑
k=1

∑n
i=1 δ( fλi = fk)h( fk)

n
by Lemma 4

= lim sup
n→∞

n

∑
i=1

∑N
k=1 δ( fλi = fk)h( fk)

n

= lim sup
n→∞

n

∑
i=1

h( fλi )

n
.
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For every m ∈ N we have

lim sup
n→∞

n

∑
i=1

h( fλi )

n
≥

m

∑
i=1

h( fλi )

m

≥ min{h( fk) : k ∈ J}.

Since for all k ∈ N we have bk ≤ 1, then

h(Fσ) =
N

∑
k=1

bkh( fk) ≤
N

∑
k=1

h( fk). (20)

Example 3. Let F = (R, f1(x) = 2x, f2(x) = 3x) and let

σ = {1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, ....}.

Put An = ∑n
i=1 δ( fλi = 2x) and Bn = ∑n

i=1 δ( fλi = 3x), n ≥ 1.
Then

A3×2k−2+i = 2k+1 − 1, B3×2k−2+i = 2k − 1 + i, 0 ≤ i ≤ 2k

A3×2k−2+2k+i = 2k+1 − 1 + i, B3×2k−2+2k+i = 2k+1 − i, 0 ≤ i ≤ 2k+1 − 1.

So

lim sup
n→∞

An

n
=

2
3

, lim sup
n→∞

Bn

n
=

1
2

.

Thus

h(Fσ) =
2
3

log 2 +
1
2

log 3.

The following theorem is the main result of this paper. It gives a new type of topological entropy
for an IFS, F = (X, f1, ..., fN) based on the usual topological entropy of f1, ..., fN .

Theorem 7. Let F = (X, f1, ..., fN) be an IFS, then

sup{h(Fσ) : σ ∈ JN} =
N

∑
k=1

h( fk).

Proof. Let F = (X, f1, ..., fN) be an IFS with distinct continuous maps f1, ..., fN . Define the maps
( f ′j )j∈N by:

f ′j = fi, j
N∼= i.
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We define (gk)j∈N by:

g1 = f ′1,

g2 = f ′2,

g3 = g4 = ... = g6︸ ︷︷ ︸
22

= f ′3,

g7 = ... = g7+62−1︸ ︷︷ ︸
62

= f ′4,

g7+62 = ... = g7+62+(7+62−1)2−1︸ ︷︷ ︸
(7+62−1)2

= f ′5

.

.

.

This means that for each n ≥ 2, gn1 = gn1+1 = .... = gn2 = f ′n. So

gn2+1 = gn2+1+(n2)2−1 = f ′n+1︸ ︷︷ ︸
(n2)2

.

If Fσ = {Fσn} where Fσn = g1o...ogn then Fσ ∈ A(F ). Now we claim that h(Fσ) = ∑N
k=1 h( fk).

To prove this claim, take c(n, i) = ∑n
j=1 δ(gj = fi), where n ∈ N and 1 ≤ i ≤ N. For every

1 ≤ i ≤ N and n ∈ N, there exist A(n, i), B(n, i) ∈ N such that:

gA(n,i) = gA(n,i)+1 = ... = gB(n,i) = f ′nN+i.

If B(j, i) = nj, then c(nj ,i) = c(B(j,i),i). Thus

lim
j→∞

c(nj, i)
nj

= lim
j→∞

c(B(j, i), i)
nj

≥ lim
j→∞

(aij − 1)2

(aij − 1)2 + aij
= 1,

where

gaij = gaij+1 = ... = gaij+(aij−1)2 = f ′B(j,i)N+1.

Hence, lim supn
c(n,i)

n ≥ 1. Since for each 1 ≤ i ≤ N, n ∈ Nwe have c(n,i)
n ≤ 1, then lim supn

c(n,i)
n ≤ 1.

Thus lim supn
c(n,i)

n = 1. Hence the claim is proved and h(Fσ) = ∑N
i=1 h( fi).

The method of the proof of Theorem 7 yields that for any x ∈ [aN , AN ] there is at
least Fσ(x) ∈ A(F ) such that h(Fσ(x)) = x, where min{h( fk)} = aN and AN = ∑N

k=1 h( fk).
This fact and the above theorem motivate us to present the following definition.

Definition 6. Let F = (X, f1, ..., fN) be an IFS. Then we define the entropy of F by

h∗(F ) = sup{h(Fσ) : Fσ ∈ A(F )} =
N

∑
k=1

h( fk).

Theorem 8. If F = (X, f1, ..., fN) is topologically conjugate to K = (Y, k1, ..., kN), then h∗(F ) = h∗(K).
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Proof. Let φ : X −→ Y be a homeomorphism such that φo fi = kioφ, for all i ∈ J. Then

h∗(F ) =
N

∑
i=1

h( fi)

=
N

∑
i=1

h(φ−1okioφ)

=
N

∑
i=1

h(ki)

= h∗(K).

Theorem 9. If (X, d1) and (Y, d2) are two compact metric spaces, and if F = (X, f1, ..., fN), G = (Y, g1, ..., gM)

are two IFS, then

h∗(F × G) = M× h∗(F ) + N × h∗(G).

Proof.

h∗(F × G) = ∑
i,j

h( fi × gj)

= ∑
i,j
(h( fi) + h(gj))

= ∑
i,j

h( fi) + ∑
i,j

h(gj)

= M× h∗(F ) + N × h∗(G).

Theorem 10. Let F = (X, f1, ..., fN) be an IFS on a compact topological space X then

(a) If f1, ..., fN : X −→ X are homeomorphisms, then h∗(F ) = h∗(F−1),
(b) h∗(Fm) ≥ mh∗(F ).

Proof. (a)

h∗(F ) = ∑N
i=1 h( fi)

= ∑N
i=1 h( f−1

i ) Theorem 7.3 of [7]
= h∗(F−1).

(b) Suppose that

Fm := (X, f I1 , ..., f INm ),

where f Ii = fim o...o fi1 for Ii = (im, ..., i1) ∈ Jm and 1 ≤ i ≤ Nm, then

h∗(Fm) = ∑Nm

i=1 h( f Ii )

≥ ∑N
i=1 h( f m

i )

= ∑N
i=1 mh( fi) Theorem 7.10 of [7]

= mh∗(F ).
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Example 4. Suppose X is the unit interval [0,1]. We consider the 2-ary expansion 0. x0x1x2x3... for x ∈ [0, 1]
and let Σ : X −→ X be the shift map, then h(Σ) = log 2 (Theorem 7.12, [7]). In addition, if Λ(x) =

1− |1− 2x| is the tent map, then h(Λ) = log 2 (Example 13, [25]). Thus for the IFS F = (X, Σ(x), Λ(x))
we have h∗(F ) = log 2+log 2= log 4.

Example 5. In Example 2 with F = (R, 2x, 3x) we have h(F ) = log 3. By a similar method one can show
that h( f ) = log 2 and h(g) = log 3 where f (x) = 2x and g(x) = 3x. Thus h∗(F ) = log 3 + log 2 > h(F ).

4.1. Non Wandering Sets and Topological Entropy of IFS

In this section we restrict ourself to IFSs on a compact manifold M which all of it’s functions are
Axiom A diffeomorphisms.

A diffeomporphism f : M→ M is an Axiom A diffeomorphism if

(a) Ω( f ) is a hyperbolic set and
(b) the periodic points of f are dense in Ω( f ), where Ω( f ) is the set of non-wandering points of f .

We recall that, a point x ∈ M is called a non-wandering point if for each neighborhood U of x
there is an n ∈ Z such that f n(U) ∩U 6= ∅.

Theorem 11. Let f ∈ Di f f (M) satisfies Axiom A then there is a neighborhood N f of f such that for every
g ∈ N f have h( f ) ≤ h(g) [26].

Now we extend this theorem for iterated function systems.

Theorem 12. Let F = (X, f1, ..., fN) be an IFS such that for every 1 ≤ i ≤ N, fi ∈ Di f f (M) and it satisfies
Axiom A. Then there is an r > 0 such that for each IFS, G = (X, g1, ..., gN) with d( fi, gi) < r for every
1 ≤ i ≤ N, where d( fi, gi) = max{d( fi(x), gi(x)) : x ∈ M}, we have h∗(F ) ≤ h∗(G).

Proof. In Theorem 11 there are {r fi
}with d( fi, g) ≤ r fi

implies that h( fi) ≤ h(g), 1 ≤ i ≤ N. We choose
r = min{r f1 , ..., r fN}. Then d(F ,G) ≤ r, where G = (X, g1, ..., gN). So

h∗(F ) =
N

∑
k=1

h( fk) ≤
N

∑
k=1

h(gk) = h∗(G).

Theorem 13. Let F = (X, f1, ..., fN) be an IFS such that for every 1 ≤ i ≤ N, fi ∈ Di f f (M) and satisfies
Axiom A and let σ be an arbitrary sequence in {1, 2, ..., N}N. Then there is an r > 0 such that for every IFS,
G = (X, g1, ..., gN) with d( fi, gi) < r for 1 ≤ i ≤ N we have h(Fσ) ≤ h(Gσ).

Proof. We assume that Fσ = {Fσn} ∈ A(F ) and

h(Fσ) =
N

∑
k=1

bkh( fk),

where bk = lim supn→∞
∑n

i=1 δ( fσi= fk)

n . Consider the number r > 0 and the IFS, G = (X, g1, ..., gN) as in
the proof of Theorem 12. So Gσ = {Gσn} ∈ A(G) with h(Gσ) = ∑N

k=1 b′kh(gk). Thus

h(Gσ) =
N

∑
k=1

b′kh(gk),



Entropy 2018, 20, 56 16 of 17

where b′k = lim supn→∞
∑n

i=1 δ(gσi=gk)

n , and h(gk) is the topological entropy of the gk.
Since h( fk) ≤ h(gk), for every 1 ≤ k ≤ N and bk = b′k, then

h(Fσ) =
N

∑
k=1

bkh( fk) ≤
N

∑
k=1

b′kh(gk) = h(Gσ).

5. Conclusions

We consider topological entropy of iterated function systems from different ways, and we
prove the essential properties of topological entropy for them. We conclude this paper with the
following conjecture.

Conjecture: If F = (X, f1, ..., fN) then h(F ) ≤ h∗(F ).
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