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MITOCHONDRIA AND AGING

It is generally accepted that in eukaryotes the mitochondria 
comes from an endosymbiotic relationship and its DNA 
can be linked to an alpha‑proteobacterial genome.[1,2] The 
mitochondria energy requirements determine their count 
in each cell. Their numbers differ from one to thousands. 
Each mitochondrion is composed of an intermembrane 
space surrounded by an outer membrane and an inner 
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Abstract
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membrane, numerous cristae, and the matrix [Figure 1]. 
Many enzymes are engaged in ATP production. The 
translocase outer membrane (TOM) and translocase inner 
membrane (TIM) are the main enzymes for transport of 
proteins that are encoded by the nuclear DNA (nDNA) 
into the mitochondria.[3] Interestingly, mitochondria 
carry their own DNA  (mtDNA), which is obtained 
through maternal lineage. The mtDNA is a closed ring 
including 16,569 nucleotide pairs and two strands. The 
heavy strand encodes for 28 genes while the light strand 
encodes for 9 genes, which yield 13 proteins for oxidative 
phosphorylation, 2 ribosomal RNAs and 22 transfer 
RNAs.[4‑6] The mtDNAs have multiple copies per cell, 
unlike nuclear DNA, which has a single copy in each cell.

Mitochondr ia  p lay  an  impor tant  ro le  in 
formation of energy, reactive oxygen species  (ROS), 
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apoptosis  (programmed cell death) and retrograde 
signaling. Retrograde signaling demonstrates that 
mitochondria transmit signals to the nucleus and thus 
can regulate nuclear gene expression and cellular 
behavior. Hence the ‘older’ idea that the nucleus is the 
‘big boss’ and mitochondria are only involved in the 
production of ATP has changed significantly. Retrograde 
signaling (from mitochondria to nucleus) can regulate 
pathways related to complement, inflammation, 
angiogenesis, innate immunity, and, which are 
associated with development and progression of 
age‑related macular degeneration (AMD).[7]

Variations in mitochondrial DNA sequence, called 
haplogroups, have happened over 150,000 years and are 
connected to geographic ancestry of distinct populations. 
It is known that the oldest haplogroups (L haplogroup) 
originated in Africa and other haplogroups were formed 
through migration and climate adaptations  [Figure 2]. 
Single nucleotide polymorphism (SNP) variants define 
the diverse haplogroups  (populations). As a result 
of difference in the mtDNA profiles for different 
racial/ethnics groups, these SNP changes affect the rates 
of mtDNA replication and transcription. Moreover, 
different haplogroup SNP patterns can change the levels of 
oxidative phosphorylation, which in turn cause variations 
in ROS production, apoptosis and cell death. Specific 
haplogroups are related to a wide range of age‑related 
diseases, such as Parkinson’s disease, Alzheimer’s disease 
and AMD.[8‑13] AMD has been associated with haplogroups 
that corresponds to Northern European haplogroups, 
e.g., J, T, and U.[14‑17] Those with H haplogroup mtDNA 
have a protection against AMD.[18] In one study, large soft 
drusen and pigment abnormalities have been connected 
to J and U haplogroups.[14] An independent predictor for 
AMD is related to the SNP defining the haplogroup T, 
which is in the NADH subunit 2 of complex I.[19] Two SNP 
variants, associated with the T haplogroup, are located in 
respiratory complex I and were 2.5 times more likely to 
be associated with advanced AMD than the age‑matched 
controls.[16]

MITOCHONDRIA AND 
AGE‑RELATED MACULAR 
DEGENERATION

Human retinal pigment epithelium  (RPE) study by 
transmission electron microscopy has shown that 
mitochondria are damaged, fragmented and disrupted in 
AMD.[20] Those findings have been further confirmed by 
immunohistochemistry in AMD retinas. Karunadharma 
et al have reported the severity of AMD is linked to a 
higher number of mtDNA lesions and fragmentations 
in RPE cells.[21] There was also less nDNA damage with 
no correlation with AMD severity. Terluk et  al study 
showed that mtDNA damage in AMD presents in RPE 
cells and not in the neural retina.[22]

TRANSMITOCHONDRIAL CYBRID 
MODEL TO STUDY AGE‑RELATED 
MACULAR DEGENERATION 
MITOCHONDRIA

We have created a transmitochondrial cybrid model 
in our lab to investigate the role of mitochondria in 
AMD. Cybrids are cell lines that have identical nuclei 
but mitochondria from different individuals. In our 
studies, ARPE‑19  cells which are an established 
human RPE cell line were treated to remove their 
natural mitochondrial DNA, yielding Rho0  cells. 
Then, platelets were isolated from patients with AMD 
and age‑matched control subjects. Platelets are used 
due to their large numbers of mitochondria without 
nuclei. Then, the platelets were fused with the Rho0 
ARPE‑19 cells devoid of mitochondria and cell lines 
were established. With this method, different cybrid 
cell lines were created which all have identical 
nuclei but mitochondria from patients with wet 

Figure 1. Left: Schematic diagram of multiple mitochondria 
within a cell. Right: Detailed structure of mitochondrion 
showing different compartments and location of mtDNA.

Figure 2. Schematic of map showing origins of different human 
mtDNA haplogroups, migration patterns and time estimates. 
From https://www.mitomap.org.
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AMD, dry AMD or age‑matched controls [Figure 3]. 
In this way, any differences in the molecular or 
functional behavior of the cybrids can be attributed 
to mitochondrial influence. In addition, we can 
correlate the clinical pictures such as type of AMD, 
response to medication, family history, etc. with the 
in  vitro cybrid findings. For example, when cybrids 
were cultured and stained with the green fluorescent 
protein that targets mitochondria, we noticed that 
the mitochondria originating from control subjects 
were much healthier than those from patients with 
AMD.[23] The cybrids with J haplogroup mtDNA (high 
risk for AMD) had significantly lower levels of ATP 
and reactive oxygen/nitrogen species production, 
but showed increased lactate levels.[24] Quantitative 
real‑time polymerase chain reaction  (qRT‑PCR) 
analyses showed J cybrids had decreased expressions 
for CFH, C3, and EFEMP1 genes which are the high 
risk genes for AMD. Alternatively, the growth rates of 
J cybrids were significantly higher than H cybrids.[24] 
Another study showed decreased gene and protein 
expression levels of complement inhibitors along 
with higher levels of complement activators in AMD 
cybrids, compared to older‑normal cybrids.[23]

Mechanisms by which gene expression and cellular 
functions are modified without changes in the gene 
sequence are “epigenetics.” Epigenetic factors are 
reversible and related to the environmental factors, but 
can be transferred to the next generations. The most 
common epigenetic changes occur by methylation 
of the cytosine at the 5 position or modifications of 
histones through methylation, acetylation, and/or 
phosphorylation. These epigenetic changes can lead to 
activation or inhibition of transcription, which regulate 
the gene expression.[25] DNA methylation levels are 
modified in cells with depleted mitochondria.[26] Besides, 
cybrids containing J haplogroups (high risk for AMD) 
have elevated total methylation levels in comparison 
with cybrids with H haplogroup mtDNA.[27,28] Further 

investigations into the role of epigenetics can potentially 
address new strategies and approaches for the treatment 
of AMD.

TARGETING MITOCHONDRIA FOR 
TREATMENTS OF AGING DISEASES

At least two different routes exist to protect the 
mitochondria. One of them is to act on endogenously 
produced compounds  (such as Humanin) and the 
other is to target particular pathways engaged in 
retaining the mitochondrial functions. The Humanin 
gene  (MT-RNR2) is located in the 16S rRNA gene of 
the circular mtDNA. Humanin is a 24 amino acid 
peptide that has anti‑apoptotic and neuroprotective 
characteristics.[29‑33] Aging causes decreased levels of 
Humanin in mice and human, and led to the assumption 
that low levels of Humanin may play a crucial role in 
age‑related diseases.[29,34] Also, it has been shown that 
this gene has been protective in models for Alzheimer’s 
disease, atherosclerosis, heart and brain ischemia and 
type I diabetes.[34‑36] Likewise, Humanin has protective 
effects against hypoxia‑induced toxicity in retinal 
ganglion cells.[37]

Higher oxidative stress and ROS levels are associated 
with a decrease in mitochondrial function. Therefore, 
antioxidant medications such as resveratol and 
memantine have been used for their protective effects 
with some promising outcomes.[38,39] Vitamin/mineral 
supplements that slowed the progression of AMD 
support the theory that suppressing ROS damage 
would be an applicable AMD management.[40‑43] Other 
strategies include using substrates or regulators of 
energy metabolism  (e.g.,  creatine, coenzyme Q10, or 
quinone analogues), preventing apoptosis by stabilizing 
mitochondrial permeability using drugs such as 
cyclosporin A, or inhibiting the mitochondrial fission 
protein Drp1 with the agents such as MDIV‑1.[44‑46] The 
field of mitochondria targeting drugs to treat retinal 
diseases, such as AMD, is a novel era with exciting 
capacity to be developed in the future.

In summary, the mitochondria from AMD patients 
are significantly damaged and may act as biomarkers for 
this disease. In vitro testing of relevant gene expression 
of AMD cybrids can potentially predict the outcome and 
response to treatment. Models can potentially be used to 
find the pharmacotherapeutic agents which may protect 
against AMD induced mtDNA damage.
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Figure 3. Schematic showing the creation of transmitochondrial 
cybrids by fusion of platelets. (originating from AMD or control 
subjects) with Rho0 RPE cells devoid of mtDNA.
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