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Strict spatiotemporal control of trafficking events between organelles is critical for

maintaining homeostasis and directing cellular responses. This regulation is particularly

important in immune cells for mounting specialized immune defenses. By controlling the

formation, transport and fusion of intracellular organelles, Rab GTPases serve as master

regulators of membrane trafficking. In this review, we discuss the cellular and molecular

mechanisms by which Rab GTPases regulate immunity and inflammation.
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INTRODUCTION

Eukaryotic cells have membrane bound organelles that are essential for maintaining cellular
organization and performing highly dynamic and specialized functions. These processes, which
depend on the transfer and exchange of cargo between different organelles, require communication
within cells and between cells and their environment, while maintaining the distinct identities
of these compartments. Regulated transport and trafficking of intracellular vesicles is required
to achieve these highly coordinated and spatiotemporally regulated events (for a comprehensive
review see reference Stenmark, 2009). In this context, intracellular trafficking and the immune
function of cells are linked in multiple ways and this coordination is critical for dynamic and
specialized immune defenses (Pei et al., 2012).

Firstly, intracellular trafficking regulates dynamic signaling-dependent immune responses.
During microbial infections, pathogen recognition by specific receptors leads to signaling events
that trigger appropriate immune responses. Interestingly, the activation of receptors by microbial
ligands can result in completely different responses depending on the localisation of these receptors.
The best characterized group of receptors that control dynamic signaling is the Toll-like receptors
(TLR). Activation of these pattern recognition receptors on the plasmamembrane leads to different
signals than when the receptors are activated by microbial components localized in the lumen of
endocytic vesicles (Gay et al., 2014).

Secondly, innate immunity is driven in specific cell types by different intracellular pathways,
including the uptake of macromolecules, apoptotic cells, pathogens and pathogen derived vesicles.
The general “inbound” trafficking of macromolecules into plasma membrane-derived vesicles
occurs via the endocytic pathway (Conner and Schmid, 2003). Depending on the mechanism of
uptake and the cargo being internalized, endocytosis is broadly categorized as phagocytosis, which
is restricted to certain cell types, or as pinocytosis, which is performed by all cell types (Conner and
Schmid, 2003; Huotari and Helenius, 2011).

Thirdly, lysosome-mediated microbial degradation is required for the activation of the antigen-
specific adaptive immune responses, which provides long-lasting immunity (for review, see
reference Iwasaki and Medzhitov, 2015). The processing of antigens by immune cells relies on the
endocytic and phagocytic pathways, where antigens are degraded and loaded on receptors that are
then exposed on the cellular surface. Once internalized, endolysosomal trafficking contributes to
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the degradation of the cargo for antigen presentation, which then
primes the adaptive immune responses (Vyas et al., 2008).

Finally, along with mechanisms for internalizing cargo, cells
have constitutive and regulated exocytic pathways responsible
for secreting molecules, including cytokines, hormones and
neurotransmitters (Gundelfinger et al., 2003). As the regulated
secretion of cytokines and immune mediators is critical during
immunity and inflammation, this cellular pathway plays a critical
role in these processes.

The Rab (Ras related in brain) family of small GTPases
regulates vesicular transport and determines organelle identities,
thereby functioning as central players in regulating the
intracellular and cell-cell communication required to generate
and maintain cellular homeostasis (Zerial and McBride, 2001;
Stenmark, 2009). Rab GTPases act as molecular switches
that localize to distinct intracellular membranes and regulate
intracellular trafficking at the level of vesicle budding, motility,
tethering, docking and fusion through their interactions with
specific effectors (Zerial and McBride, 2001; Stenmark, 2009).
Therefore, Rab proteins act as scaffolds that integrate signaling
and trafficking events, providing spatio-temporal control of
organelle maintenance and trafficking (Schwartz et al., 2007).
Given their critical role in regulating intracellular trafficking,
Rab GTPases modulate immune responses by regulating the
transport of immune receptors (Husebye et al., 2010), the
secretion of chemokines and cytokines (Murray et al., 2005) and
by up-regulating the critical immune surveillance processes of
endocytosis and phagocytosis (Stenmark, 2009; Flannagan et al.,
2012; Figure 1).

RAB GTPases IN INNATE IMMUNITY

Conserved microbe associated signatures, collectively referred
to as pathogen-associated molecular patterns (PAMPs) are
recognized by pattern recognition receptors (PRRs) on the
surface of immune cells. This recognition induces intracellular
signaling pathways responsible for inflammatory immune
responses (Iwasaki and Medzhitov, 2015). In order to mount
appropriate responses while avoiding chronic inflammation,
intracellular trafficking must be tightly regulated in immune
cells. Indeed, regulation occurs at least at two levels, including
trafficking of PRRs and secretion of immune modulators
(Schwartz et al., 2007). Phagocytes, namely macrophages,
dendritic cells (DCs) and neutrophils, are critical components
that drive the innate immune response. These cells engulf
and destroy invading pathogens and drive customized adaptive
immune responses (Iwasaki and Medzhitov, 2015). This process
of pathogen uptake and destruction requires the concerted
efforts of several members of the Rab family of small GTPases
(Stenmark, 2009).

Phagocytosis and Phagosome Maturation
Phagocytosis is the most important pathway implicated in
the clearance of dying cells and microbial pathogens and
hence plays a central role in tissue remodeling and immunity
(Flannagan et al., 2012). After internalization of microbes, the
initially formed nascent phagosome acquires the microbicidal

and degradative properties necessary for pathogen clearance
during a process called phagosome maturation (Flannagan et al.,
2012). Hereby, the sequence of fusion with compartments of
the endocytic pathway, as well as recycling of components
from the phagosome is essential and highly regulated by Rab
GTPases (Gutierrez, 2013). According to different proteomic
studies performed in different model systems, at least 20 Rab
GTPases are dynamically associated with phagosomes. However,
the function of many of these Rab GTPases during phagosome
maturation is still not well-characterized (Gutierrez, 2013). Rab5,
together with Rab7, is one of the best-characterized Rab proteins
in both endocytosis and phagocytosis (Vieira et al., 2003). Rab5,
Rab22A and Rab14 are among the Rab GTPases present on early
phagosomes where they regulate fusion with early endosomes
that is required for the progression of phagosome maturation
(Gutierrez, 2013). Late phagosomes are predominantly associated
with Rab7 and Rab34, which regulate their fusion with late
endocytic compartments via distinct mechanisms (Harrison
et al., 2003; Vieira et al., 2003; Seto et al., 2011; Kasmapour et al.,
2012, 2013). In addition to the fusion with specific endocytic
compartments, Rab11 and Rab10 regulate phagosomal recycling
and Rab1 and Rab2 regulate the interaction of phagosomes
with the endoplasmic reticulum (ER), post-Golgi and ER-
Golgi intermediate compartment (ERGIC) (Gutierrez, 2013).
The interferon-γ (IFN-γ) inducible GTPase Rab20 is also present
on phagosomes and links immune activation by this cytokine
with phagosome maturation (Trost et al., 2009; Pei et al., 2014).
Rab32, which is involved in the trafficking of lysosome-like
compartments, the lysosome related organelles (LROs), which
include melanosomes, lytic granules and neutrophil granules
(Dell’Angelica et al., 2000), also associates with latex bead
phagosomes and is implicated in the acquisition of the lysosomal
enzyme cathepsin D by phagosomes (Seto et al., 2011; Gutierrez,
2013). However, precisely how all these Rab proteins orchestrate
the interactions with specific subsets of early and late endosomes
in time and space is less clear. It is also unclear if there are
significant levels of redundancy in the pathway, since many of
the phagosomal Rab GTPases seem to regulate fusion with late
endocytic organelles in general. More importantly, the role of
most of these GTPases in pathogen control by immune cells is
still poorly defined.

Similarly to phagosome maturation, macropinosome
formation is also regulated by Rab GTPases (Egami et al., 2014).
In this process, Rab5 and Rab34 are required for the formation
of actin-rich membrane ruffles and macropinosomes (Sun
et al., 2003; Porat-Shliom et al., 2008). The late endosomal and
phagosomal Rab7 regulates fusion of macropinosomes with
lysosomes (Racoosin and Swanson, 1993). Furthermore, Rab20
and Rab21 are also localized to macropinosomes although the
precise function of these Rab GTPases on macropinosomes is
not clear (Egami and Araki, 2012a,b).

Several pathogens are known to subvert host cell trafficking
pathways by targeting Rab GTPases, altogether highlighting
a crucial role of Rab-dependent trafficking in immunity
(Brumell and Scidmore, 2007; Sherwood and Roy, 2013). For
instance, Legionella pneumophila recruits Rab1 to the Legionella-
containing vacuole to generate an ER-like compartment favorable
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FIGURE 1 | Overview of the Immune defense pathways regulated by the activity of Rab GTPases. Figure shows the cellular and molecular mechanisms by which Rab

GTPases regulate immunity and inflammation by controlling the formation, transport and fusion of intracellular organelles.

for bacterial replication (Kagan et al., 2004). Early endosome
localized Rab14 is critical for maintaining the phagosome
maturation arrest of mycobacteria containing phagosomes (Kyei
et al., 2006). In contrast, loss of Rab14 inhibits Salmonella
typhimurium replication, likely by promoting the maturation
and acidification of Salmonella containing phagosomes (Kuijl
et al., 2013). Recently, Rab11 has been shown to play a role in
the rupture of Shigella containing vacuoles, which is necessary
for bacterial replication and cell-to-cell spreading (Mellouk
et al., 2014). When overexpressed as a GFP fusion protein,
Rab32 is recruited to phagosomes containing Mycobacterium
tuberculosis, as well as Staphylococcus aureus where it regulates
the recruitment of the lysosomal enzyme cathepsin D (Seto et al.,

2011). However, the specific function and involvement of Rab32
in the restriction of mycobacterial replication remains to be
established. Interestingly, S. typhimurium was shown to interfere
with the recruitment of Rab32/Rab38 and Rab29 (Rab7L1) to its
vacuole, events not associated with the human-restricted S. typhi.
These observations imply that some Rab GTPases can contribute
to host specificity (Spano and Galan, 2012; Spano, 2016; Spano
et al., 2016).

Degranulation, Secretory Granules, and
Exocytosis
During the development of the immune response and
inflammation, DCs, neutrophils and tissue resident macrophages
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produce immune mediators that are crucial for the resolution
of inflammation and protecting the body against infection and
injury. Most of these immune mediators such as chemokines,
cytokines and proteases are secreted via two exocytic pathways:
constitutive secretion and regulated or “granular” secretion (Lacy
and Stow, 2011; Stow et al., 2013). Initially, newly synthesized
proteins are transported from the ER to the Golgi complex. In
the constitutive pathway these proteins then traffic from the
Golgi complex to the cell surface via vesicles and tubulovesicular
structures resulting in continuous secretion of cytokines (Stow
et al., 2009). Activation of macrophages up regulates exocytosis
causing increased cytokine release (Stow et al., 2009). In addition,
professional secretory cells like neutrophils or mast cells can
secrete proteins through regulated secretion and degranulation
(Logan et al., 2003). During regulated secretion immune proteins
get sorted from the Golgi complex to specific compartments
which include secretory granules (SGs), LROs and secretory
lysosomes, where specific stimuli then trigger their release from
the cells allowing for a rapid response (Lacy and Stow, 2011).
For example, mast cells in response to immunoglobulin E (IgE)
receptor ligation contribute to pro-inflammatory responses
(Wernersson and Pejler, 2014).

Several Rab GTPases including Rab3, Rab12, Rab27a, and
Rab37 have been implicated in the regulation of different
steps in secretory pathways associated with immune responses.
While all Rab3 isoforms have been linked to exocytosis,
Rab3d was the first non-neuronal secretory Rab identified to
localize to SGs in mast cells (Tuvim et al., 1999). Rab3d has
been implicated in maintaining SG size, however, its role in
degranulation remains unclear, as Rab3d-deficient mice do not
show changes in regulated exocytosis (Riedel et al., 2002). siRNA
mediated knockdown experiments showed that exocytosis by
endothelial-cell specific LROs calledWeibel-Palade bodies, which
are important in angiogenesis, thrombosis and inflammation,
required Rab3a, Rab3d, Rab27, and Rab15 (Zografou et al., 2012).

Rab12 is associated with SGs in atrial myocytes (Iida et al.,
1996) and implicated in promoting vesicular transport from the
cell periphery to the perinuclear region (Iida et al., 2005). The
Rab7 effector Rab7-interacting lysosomal protein (RILP) also acts
as an effector for Rab12 and it has been suggested that Rab12
counteracts the anterograde transport of SGs along microtubules
to inhibit degranulation by acting in between the RILP-dynein
complex (Efergan et al., 2016). Moreover, a screening for Rab
GTPases that regulates SG exocytosis in mast cells and hence pro-
inflammatory responses showed that Rab12 activity is directly
regulated in response to immune stimuli (Efergan et al., 2016).

A role for Rab27a in exocytosis and immunity was first
demonstrated in Rab27a-deficient mice, which show impaired
lytic granule exocytosis (Stinchcombe et al., 2001). Moreover,
Rab27a also contributes to the degranulation of neutrophil
azurophillic granules (AGs) (for reviews, see references Catz,
2014; Ramadass and Catz, 2016). In addition to direct
involvement of Rab27a, its effectors Munc13-4 and JFC1/Slp1
have also been implicated in the secretion of myeloperoxidase
from neutrophil AGs (Munafo et al., 2007; Brzezinska et al., 2008;
Johnson et al., 2011). Munc14-3 is important for the docking
of Rab27a vesicles at the plasma membrane (Johnson et al.,

2016). Rab27a-dependent exocytosis has also been implicated in
systemic inflammation through secretion of cytokines including
tumor necrosis factor-α (TNF-α) (Johnson et al., 2011) and
neutrophil infiltration in response to inflammatory stimuli
(Johnson et al., 2011; Singh et al., 2012). Rab27a down-regulation
correlates with lower neutrophil-mediated tumor cytotoxicity
(Bobrie et al., 2012; Yan et al., 2013). In contrast to Rab27a,
loss of Rab27b in immune cells only leads to a minor inhibition
of AG degranulation (Johnson et al., 2010). Rab27b shares a
71% homology with Rab27a (Fukuda, 2013) but its up-regulation
during Rab27a deficiency cannot restore the defect in exocytosis
(Johnson et al., 2010). In fact, it seems that Rab27a and Rab27b
have opposing effects on mast cell degranulation (Singh et al.,
2013). While Rab27b acts as a positive regulator of exocytosis
in mast cells, Rab27a acts as a negative regulator of stimulus-
dependent exocytosis by modulating SG tethering and docking
at the plasma membrane (Mizuno et al., 2007; Singh et al., 2013).

Studies examining insulin exocytosis and TNF-α release by
macrophages in response to lipopolysaccharide (LPS) stimulation
have suggested the importance of Rab37 in regulated exocytosis
(Mori et al., 2011; Ljubicic et al., 2013). Rab37 was originally
identified inmast cells (Masuda et al., 2000) and has recently been
demonstrated to negatively regulate mast cell granule exocytosis
(Higashio et al., 2016). Rab37 can form a complex with Rab27-
Munc13-4 on secretory granules and it has been speculated
that an effector recruited by Rab37 could be responsible for
counteracting the Rab27-Munc13-4-dependent granule secretion
(Higashio et al., 2016).

In macrophages, the membrane trafficking pathways that
control phagocytosis and cytokine secretion are interconnected.
In this way, Rab11 positive recycling endosomes provide
membrane for the internalization of pathogens at the phagocytic
cup as well as secreting during this process the pro-inflammatory
cytokine TNF-α (Murray et al., 2005).

Autophagy
The cellular degradative pathway of autophagy plays a
crucial role in regulating different aspects of the innate and
adaptive immunity as well as inflammation. During autophagy
macromolecules, organelles or invading microorganisms
can be sequestered in a double membrane structure, the
autophagosome, which fuses with lysosomes to enable the
degradation of its contents (Mizushima, 2007). Several Rab
GTPases are involved in the regulation of autophagy, among
which Rab7 is the best characterized. Rab7 is recruited to
autophagosomes where it regulates the fusion with lysosomes
(Gutierrez et al., 2004). Other Rab GTPases implicated at
different stages of autophagy are Rab1, Rab5, Rab4, Rab8, Rab9,
Rab11, Rab24, Rab32, and Rab33 (Ao et al., 2014; Szatmari and
Sass, 2014).

Rab GTPases are involved in the formation of
autophagosomes around invading bacteria, as well as in
their trafficking to lysosomes for degradation. However,
intracellular bacteria have evolved different strategies to avoid
autophagosomal targeting by interfering with different Rab
GTPases (Huang and Brumell, 2014). Virulent M. tuberculosis
prevents the accumulation of Rab7 on autophagosomes, thus
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reducing autophagosome-lysosome fusion and increasing
mycobacterial replication (Chandra et al., 2015; Hu et al., 2015).
Furthermore, due to its effects on TBK-1 (TANK binding
kinase-1) dependent autophagy flux, knockdown of Rab8b
in RAW264.7 macrophages leads to increased replication of
M. bovis BCG after induction of autophagy by starvation (Pilli
et al., 2012). The Golgi complex resident Rab30 has been shown
to be involved in the targeting of Group A Streptococcus (GAS)
to autophagosomes to restrict their replication (Oda et al.,
2016). While Rab30 knockdown does not affect the recruitment
of autophagic adaptor proteins NDP52 and p62, it decreases
the association of LC3 to GAS containing autophagosome like
vacuoles (Oda et al., 2016). Rab32, which is important for the
formation of autophagosomes (Hirota and Tanaka, 2009; Wang
et al., 2012), restricts the intracellular survival of S. typhi in
mouse macrophages (Spano and Galan, 2012). On the other
hand, the broad-host range adapted S. typhimurium secrets the
effectors SopD2 and GtgE, which act as a GTPase activating
protein (GAP) and a protease, respectively and promote evasion
of Rab32-dependent host immune responses, favoring bacterial
survival (Spano, 2016; Spano et al., 2016). This small GTPase
is also required for the restriction of intracellular Listeria
replication (Li et al., 2016). However, the specific role of Rab32-
dependent autophagy in these antimicrobial responses remains
unknown. The manipulation of the Rab GTPase network by
microbes is not only restricted to bacterial pathogens and viruses
can also interfere with Rab GTPases implicated in the autophagic
pathway. For example, Hepatitis B virus (HBV) activates Rab7
through the action of the precore protein HBe increasing the
degradation of virions (Inoue et al., 2015).

RAB GTPases IN ADAPTIVE IMMUNITY

Innate immune responses induced by pathogen recognition
instruct subsequent long lasting adaptive immunity mediated
by antigen responsive B and T lymphocytes (Iwasaki and
Medzhitov, 2015). To initiate cytotoxic immune responses, T
cells must be “activated” by the process of antigen presentation.
In antigen presenting cells (APC), pathogens or dead cells
internalized by phagocytosis and macropinocytosis are first
degraded in phagosomes and endosomes, and subsequently
degraded antigens coupled to specific membrane receptors
are transported by vesicles to the cell surface (Iwasaki and
Medzhitov, 2015). It is therefore not surprising that Rab
GTPases play a crucial role during antigen presentation
and T cell mediated immunity in APC such as DCs and
macrophages (Trombetta and Mellman, 2005). In order to
mount an effective T cell response, it is important that antigen
processing does not lead to antigen degradation. Therefore, as
a strategy to reduce antigen degradation and to drive adaptive
responses, Rab GTPase-dependent trafficking contributes to
slower acidification and phagosome maturation in DCs (Savina
and Amigorena, 2007). Rab27a-dependent trafficking of LROs
causes the recruitment of the NADPH oxidase subunit NOX2
to phagosomes (Jancic et al., 2007), where it contributes to
slower antigen processing by increasing phagosomal pH (Savina

et al., 2006) and reducing phagosomal proteolysis by affecting
cathepsins (Rybicka et al., 2012). Rab34 interacts with RILP
to regulate lysosomal positioning and fusion with phagosomes
(Cantalupo et al., 2001; Wang and Hong, 2002; Kasmapour
et al., 2012). Toll-like receptor 4 (TLR4) engagement on DCs in
response to LPS stimulation causes Rab34-dependent lysosomal
clustering thereby delaying phagosomal maturation and antigen
degradation and allowing for better T cell priming (Alloatti et al.,
2015).

Phagosomes containing microbial components that engage
TLR signaling recruit major histocompatibility complex (MHC)
class I molecules from Rab11 positive endosomal recycling
compartments (ERC) (Adiko et al., 2015). Rab11 contributes
to antigen cross-presentation by trafficking and maintaining
MHC class I molecules at the ERC (Nair-Gupta et al., 2014).
Additionally, Rab11a has been shown to recruit TLR4 from ERC
to bacteria-containing phagosomes, contributing to interferon
regulatory factor-3 signaling and IFN-β production, further
supporting its role in immune signaling (Husebye et al., 2010).
Rab8a, Rab10, Rab7b are among the other Rab GTPases that
can modulate TLR4-dependent immune responses (Wang et al.,
2007, 2010; Luo et al., 2014).

While not directly implicated in antigen presentation by
APCs, Rab9 was recently shown to mediate mitochondrial
antigen presentation (Matheoud et al., 2016). In addition to
their role in signaling and metabolic functions, mitochondria
are important in immune responses and several PAMP-
dependent signaling pathways require mitochondria-derived
reactive oxygen species (for a comprehensive review, see
reference Weinberg et al., 2015). Even though mitochondria are
implicated in autoimmunity, the mechanisms responsible for
recognition of self-antigens to develop immune tolerance are not
well known (Weinberg et al., 2015). Damaged mitochondria are
eliminated by mitophagy that in turn limits the presentation of
mitochondrial antigens. Recent work has shown the presence of
mitochondria derived vesicles (MDVs), which serve as a cellular
quality control mechanism whereby damaged mitochondrial
components like lipids and outer membrane can be delivered
to peroxisomes for degradation (Neuspiel et al., 2008). These
MDVs are important for mitochondrial antigen presentation
and require Rab9 for their formation, while their fusion with
lysosomes occurs in a Rab7-dependent manner (Matheoud et al.,
2016).

RAB GTPase EXPRESSION IN IMMUNITY
AND INFLAMMATION

Several studies on immune cells have provided evidence for
the transcriptional control of intracellular membrane trafficking
proteins. Collectively, these studies have demonstrated the role
of immune modulators and microbes in regulating Rab protein
expression (Pei et al., 2012). IFN-γ produced by natural killer
and natural killer T cells is critical for immunity against
viral and bacterial infections and contributes to macrophage
activation by increasing phagocytosis and production of
pro-inflammatory cytokines (Schoenborn and Wilson, 2007).
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Macrophages stimulated with IFN-γ show an increase in the
expression of Rab5a and Rab20, both of which are important
in phagosome maturation (Alvarez-Dominguez and Stahl, 1998;
Vieira et al., 2003; Pei et al., 2014, 2015). Furthermore, the
expression levels of Rab20 and Rab34 are up-regulated in
response to M. avium and M. smegmatis infection, with Rab10
also up-regulated by M. smegmatis infection (Gutierrez et al.,
2008).

Given the critical role of Rab5 in controlling both phagosome-
early endosome fusion and the maturation of phagosomes into
degradative compartments, cytokine-dependent regulation
of Rab5 levels could provide control over phagosomal
maturation. Along with upregulation through IFN-γ stimulation
(Alvarez-Dominguez and Stahl, 1998), Rab5 expression can be
up-regulated by interleukins (IL) 4 and 6. IL-4 induces alternate
activation of macrophages and together with prostaglandin
E2 (PGE2) induces Rab5a expression (Wainszelbaum et al.,
2006). IL-4 stimulation of macrophages also results in
prolonged retention of Rab5 on phagosomes and a delay
in phagosome acidification in a phosphoinositide 3-kinase
(PI3K)-dependent manner (Keijzer et al., 2011). Interestingly,
IL-4/PGE2 enhance proteolytic activity in phagosomes (Balce
et al., 2011). In contrast to IL-4 stimulation, overexpression
of Rab5a in macrophages results in enhanced maturation
of Listeria containing phagosomes (Alvarez-Dominguez and
Stahl, 1999). The pro-inflammatory cytokine IL-6 similarly
up-regulates Rab5 expression via activation of extracellular
signal-regulated kinase (ERK) resulting in an increased fusion
of early endosomes and phagosomes (Bhattacharya et al., 2006).
Furthermore, the induction of Rab5a increases early endosome
homotypic fusion thereby generating enlarged endosomal
compartments (Wainszelbaum et al., 2006). The different effects
in Rab5 expression after cytokine stimulation when compared
with overexpression of Rab5 fusion proteins on phagosome
maturation warrant further investigation. It also remains to be
determined whether the observed differences in phagosomal
acidification and proteolytic activity are linked to changes in
Rab5a expression and endosomal morphology.

In contrast, expression of the late endosomal Rab7 is induced
by IL-12 in a p38/MAPK-dependent manner (Bhattacharya
et al., 2006). Increased Rab7 levels enhance transport of
phagosomal cargo to lysosomes and inhibit the survival of
intracellular Salmonella (Bhattacharya et al., 2006). In addition,
the peptidoglycan constituent muramyl dipeptide, which is
present in both gram positive and gram negative bacteria, has
opposing effects on Rab5 and Rab7 levels in macrophages.
Muramyl dipeptide decreases Rab5 levels while increasing
Rab7 expression, corresponding with delivery of Salmonella to
lysosomal compartments (Mukherjee et al., 2002).

Rab20 is an IFN-γ responsive Rab GTPase implicated in
phagosome maturation and macropinocytosis (Egami and Araki,
2012a; Pei et al., 2014, 2015). IFN-γ was shown to up-
regulate both total Rab20 levels (Pei et al., 2015) and its
association with isolated bead-containing phagosomes (Trost
et al., 2009). Further supporting the role of Rab20 in immunity,
analysis of gene expression in lungs in the mouse model of
asthma showed an increase of Rab20 expression after injection

with ovalbumin (Malik et al., 2008). Furthermore, microarray
analyses revealed Rab20 expression also increases in response
to infections with pathogens including Aspergillus fumigatus
(Cortez et al., 2006), Streptococcus pyogenes (Goldmann et al.,
2007), and Listeria monocytogenes (Tchatalbachev et al., 2010). In
addition, microarray data identified an increase in Rab20 levels
during mycobacterial infection, which was dependent on NF-KB
(Gutierrez et al., 2008). Simultaneous transcriptional profiling of
M. tuberculosis and its infected host cells by microarrays showed
a significant up-regulation of Rab20 in human macrophages but
not in DCs (Tailleux et al., 2008). Remarkably, in a recent study of
genes associated with the host transcriptional signature in active
tuberculosis, Rab20 was the only small GTPase of the Rab family
found in this set of 393 genes (Berry et al., 2010).

Supporting the idea that Rab20, together with Rab32, are part
of a group of small GTPases linked to inflammation, the up-
regulation of both Rab20 and Rab32 during the acute phase of
LPS-induced brain inflammation has been reported (Liang et al.,
2012). However, the mechanisms or consequences of this up-
regulation are not known. Furthermore, high throughput siRNA
screening to identify host pathways during L. monocytogenes
infection in HeLa cells demonstrated that both Rab20 and Rab32
are required for the control of Listeria infection (Kuhbacher et al.,
2015). While the direct transcriptional regulation of Rab32 in
response to cytokines is unclear, some reports have directly linked
Rab32 to immune responses in animal models of infection (Liang
et al., 2012; Solano-Collado et al., 2016).

RAB GTPases-ASSOCIATED IMMUNE
DISORDERS

Given the critical roles of Rab proteins in immune related
processes, they have been implicated in several immune
disorders. Indeed, multiple genome-wide studies suggest that
Rab protein-dependent cellular trafficking events are involved
in immune responses (Pei et al., 2012). Disorders associated
with dysfunctional Rab GTPase pathways can result from direct
dysfunction of Rab proteins or indirectly as a result of defective
Rab protein regulators or effectors, and can be genetic or occur
during infection due to pathogen-driven processes (for reviews,
see references Mitra et al., 2011; Seixas et al., 2013).

Several of the inherited Rab-associated disorders affect LROs
and Rab27, Rab38, and Rab32 have been implicated in diseases
with underlying defects in LRO trafficking. Interestingly, Rab27a
is the only Rab GTPase that is clearly associated with an immune
dysfunction in humans. Defects in Rab27a-dependent trafficking
of melanosomes in melanocytes that affects the transfer of
melanin to keratinocytes are associated with Griscelli syndrome,
characterized by hair and skin hypopigmentation and impaired
secretion of lytic granules from cytotoxic T lymphocytes, leading
to immune-deficiencies (Menasche et al., 2000). Mutations in the
Rab escort protein 1 (REP1), which is essential for prenylation of
Rab GTPases, disrupt Rab27a trafficking through accumulation
of unprenylated Rab27a, causing choroideremia (van den
Hurk et al., 1997; Mitra et al., 2011). Moreover, defects in
Rab27a-dependent transport of melanosomes in retinal-pigment
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epithelium is speculated to contribute to its degeneration leading
to the loss of peripheral vision and night blindness associated
with the disease (Mitra et al., 2011). Mutations in the Rab
GTPase Rab38 also result in defective LRO trafficking and have
been implicated in Hermansky–Pudlak syndrome in chocolate
mice (Loftus et al., 2002). This hypopigmentation disorder is
associated with impaired clotting due to the absence of platelet
dense granules (Huizing et al., 2000). Rab38 and its close
homolog Rab32 were also reported to control Salmonella and
Listeria infection (Spano and Galan, 2012; Li et al., 2016).
Furthermore, genetic evidence supports a role for Rab32 in
controlling leprosy, caused by M. leprae (Zhang et al., 2011).
While, the best-characterized function of Rab32 is its role in
LRO trafficking, whether the Rab32-dependent LRO trafficking
contributes to phagolysosome formation and pathogen clearance
remains unknown.

Aberrant Rab protein expression is associated with diseases
where chronic inflammation is speculated to contribute to disease
causation and progression, including several types of cancers
(Chia and Tang, 2009). Several hallmarks of cancer cells, such as
altered cell polarity, require dysfunction of membrane trafficking
events regulated by Rab GTPases. While the direct involvement
of Rab proteins in cancer is not well established, abnormal
expression of various Rab GTPases has been detected in several
cancers (Chia and Tang, 2009; Goldenring, 2013), whereby
aberrant Rab expression can be linked to varying phenotypes in
different cancers. Rab25 and Rab21, which are involved in the
trafficking of integrin receptors, are for example up-regulated
in ovarian cancers and potentially promote cancer cell invasion
(Cheng et al., 2004; Pellinen et al., 2006; Caswell et al., 2007). On
the other hand, loss of Rab25 was associated with triple-negative
breast cancer and head and neck cancers (Goldenring, 2013).

In addition to aberrant Rab expression, mistargeting of
Rab GTPases or changes in their activity and localisation
by posttranslational modifications is associated with various
disorders. Chron’s disease (CD) is a type of inflammatory
bowel disease (IBD) characterized by a chronic inflammation
of the gastrointestinal tract (Landy et al., 2016). This disease
is associated with defects in cell-cell junctions resulting in
loss of mucosal barrier integrity and increased permeability
of the intestine (Teshima et al., 2012). Rab13 regulates the
structure and function of tight junctions (Marzesco et al., 2002)
and the mistargeting of Rab13 to basolateral sites observed
in CD patients (Ohira et al., 2009) suggests a contribution
of Rab13 dysfunction in CD. Several neurodegenerative
disorders, including Parkinson’s disease (PD), are associated
with inflammation, where it is believed to cause neuronal

degeneration and contribute to disease progression (Russo
et al., 2014). Multiple studies support the role of leucine-rich
repeat kinase 2 (LRRK2) in microglia-mediated inflammatory
responses through regulation of vesicle trafficking, endocytosis
and secretion (Russo et al., 2014). Interestingly, a recent
phosphoproteomic screening revealed that several Rab GTPases
act as LRRK2 substrates (Steger et al., 2016). This indicates
a potential role for LRRK2-dependent Rab phosphorylation
in regulating vesicle trafficking implicated in PD associated
neuroinflammation.

CONCLUSIONS

In the last few years it has become evident that Rab
GTPases, by regulating fundamental cellular processes, also
regulate many important aspects of immune responses. Whereas
some processes such as phagosome maturation and antigen
presentation are well described, it is often not considered
that secretion of cytokines relies on exocytosis; a membrane
trafficking pathway regulated by Rab GTPases among other
molecules. In addition, the expression of Rab GTPases is heavily
regulated by cytokines, and there is a network of Rab proteins
linked to various inflammatory processes that include Rab20
and Rab32. Future work will define the molecular basis of
Rab gene expression during disease and their role during
infection and immunity. In vivo studies with knock-out mice
have demonstrated antimicrobial roles for Rab20 (Schnettger
et al., 2017) and Rab32 (Solano-Collado et al., 2016), however
roles of other Rab proteins using in vivo models remain largely
undefined. Extending findings from in vitro studies to in vivo
models will be crucial in understanding the roles of other Rab
proteins in immune responses.
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