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A B S T R A C T

Vanadium (V) is a metal that can enter the environment through natural routes or anthropogenic activity. In the
atmosphere, V is present as V oxides, among which vanadium(III) oxide (V2O3) stands out. Cytogenetic studies
have shown that V2O3 is genotoxic and cytostatic and induces DNA damage; however, the molecular mechanisms
leading to these effects have not been fully explored. Therefore, we treated human peripheral blood lymphocytes
in vitro, evaluated the effects of V2O3 on the phases of the cell cycle and the expression of molecules that control
the cell cycle and examined DNA damage and the induction of oxidative stress. The results revealed that V2O3 did
not affect cell viability at the different concentrations (2, 4, 8 or 16 μg/mL) or exposure times (24 h) used.
However, V2O3 affected the percentage of G1- and S-phase cells in the cell cycle, decreased the expression of
mRNAs encoding related proteins (cyclin D, cyclin E, CDK2 and CDK4) and increased the expression of γH2AX
and the levels of reactive oxygen species. The ability of V2O3 to cause a cell cycle delay in G1-S phase may be
associated with a decrease in the mRNA and protein expression of the cyclins/CDKs and with intracellular
oxidative stress, which may cause DNA double-strand damage and H2AX phosphorylation.

1. Introduction

Vanadium (V) is a transition metal found in nature in approximately
65 minerals; it ranks fifth among the most abundant metals in the
Earth’s crust and first in the ocean [1]. V has various oxidation states,
and its +3, +4, and +5 oxides are an environmental problem. It is
estimated that 130,000 to 260,000 tons of V are released per year,
including approximately 65,000 tons from forest fires, volcanic erup-
tions and mineral erosion; the remainder of V is of anthropogenic origin
[2]. The main sources of emissions are the burning of fossil fuels,
metallurgical mining, chemical, agricultural, energy and other indus-
trial activities [1,3,4]. The chemical species released into the environ-
ment include vanadium oxides, among which vanadium(V) oxide, a
pentoxide, is the most abundant (V2O5), followed by oxides in oxidation
states IV and III (V2O4 and V2O3, respectively) [5,6]. In recent years,
some companies have attempted to reduce V2O5 emissions, as V2O5 is
corrosive to the metal parts of machinery and causes other oxides to be

released (such as V2O3) by manufacturing catalysts that prevent the
formation of V2O5 [7,8]. The effects of occupational and environmental
exposure to V are well documented, and environmental exposure can
cause respiratory distress, organ damage, and possibly death [9,10].

Previous studies have investigated the in vitro and in vivo effects of
vanadium oxides. In animals, exposure to 1.56 mg/m3 V2O5 via inha-
lation caused neuronal death in Wistar rats, whereas 0.02 M V2O5 in CD-
1 mice led to hyperplasia of the bronchiolar epithelium, small inflam-
matory foci, and sloughing of nonciliated bronchiolar cells. Addition-
ally, intraperitoneal administration of 4.7, 9.4, or 18.7 mg/kg V2O3
induced chromosomal aberrations and altered cell division in the bone
marrow cells of CD-1 mice, as well as in Chinese hamster ovary cells
(24.9 μg/mL) [11–17]. However, the degree of toxicity depends on the
oxidation state of the metal, with each oxide exerting its own effects.
Cytogenetic assays revealed that V2O3 is cytotoxic and genotoxic in
leukocytes and lymphocytes (1–16 μg/mL). Metal decreases the mitotic
index and the cell proliferation index, increases premature centromere
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separation and produces single-strand breaks in DNA [16–20]. The re-
sults of chromosomal damage are inconclusive; in vivo structural chro-
mosomal aberrations are increased [16,19], but this effect is not
observed in human leukocyte and lymphocyte cultures [16–20].

DNA damage is known to activate several cellular responses through
complex protein networks, including cell cycle control and DNA repair
proteins [21]. Single- and double-strand breaks in DNA are detected by
proteins such as ataxia-telangiectasia mutated Rad3-related (ATR) and
ataxia-telangiectasia mutated (ATM); both signaling pathways converge
on the phosphorylation of histone H2AX [22,23], and H2AX expression
provides an indicator of DNA damage due to xenobiotic exposure [22,
24,25]. γH2AX recruits Brca1 and 53BP1 (p53) [26,27], the latter of
which is responsible for cell cycle sensing, to repair DNA damage (cell
survival) or to activate cell death signals, such as those for apoptosis
[28]. V2O3 induces genotoxicity; however, DNA damage sensor proteins,
such as p53, do not change (2–16 μg/mL) in human lymphocyte cultures
[12], so damage may be sensed by other proteins, such as γH2AX.
Therefore, in the present study, we focused on the effects of vanadium
(III) oxide on the cell cycle; the expression of both mRNAs to generate
their proteins, which control the cell cycle; the expression of a DNA
damage sensor protein (γH2AX); and the assessment of oxidative stress
in human peripheral blood cells in vitro.

Hence, we investigated whether exposure to this compound induces
cell cycle arrest due to decreased mRNA and protein levels triggered by
DNA damage through oxidative stress. To achieve this goal, we treated
isolated cells with V2O3, and the DNA content was determined for
analysis of the cell cycle and reactive oxygen species (ROS) production
via flow cytometry; moreover, the protein levels of cyclins, and γH2AX
were evaluated via Western blotting, and the mRNA expression levels of
cyclins and were assessed via PCR. In this way, we helped elucidate the
genotoxic and cytostatic mechanism of V₂O₃.

2. Materials and methods

2.1. Reagents

The following reagents were used for the development of the pro-
tocols: vanadium(III) oxide (V2O3, CAS 1314–34–7 with 99.99 % pu-
rity), which was macerated and dissolved in distilled water;
Histopaque®-1077; 5(6)-carboxyfluorescein diacetate mixed isomers
(CFDA); ethidium bromide (BE); phosphate-buffered saline (PBS); and
propidium iodide from Sigma–Aldrich, Inc. (MO, USA). PB-MAXTM
Karyotyping Medium was from Gibco BRL-Invitrogen Corporation
(NY, USA). Acrylamide, N,N-methylene-bis-acrylamide, glycine, sodium
dodecylsulfate (SDS), `N,`N,`N,`N,`N-tetra-methyl-ethylenediamine
(TEMED), tris hydroxymethyl-aminomethane (Tris), ammonium per-
sulfate, and the Bio-Rad protein assay mixture were obtained from Bio-
Rad Laboratories (CA, USA).

The protease inhibitors aprotinin and leupeptin, the primary anti-
bodies anti-cyclin D (sc-246), anti-cyclin E (sc-248), anti-CDK 2 (sc-
6248), anti-CDK 4 (sc-53636), anti-actin (sc-8432), and anti-γH2AX (sc-
517348), the horseradish peroxidase-conjugated secondary antibody m-
IgGk BP-HRP (sc-516102), the goat anti-mouse IgG-HRP, Tween-20, the
Luminol Reagent sc-2048 for western blotting and dihydrorhodamine
123 (sc-203027) were obtained from Santa Cruz Biotechnology, Inc.
(CA, USA). Ethylenediaminetetraacetic acid (EDTA) was obtained from
BD Diagnostics Mexico. TRIzol Reagent, ReverAid First Strand cDNA (K-
1622) and Maxima SYBR Green/ROX qPCR Master Mix (K-0221) were

Table 1
Primer sequence. A reference gene (GAPDH) was used to evaluate the expression of P53, P21, CYCLIN D, CYCLIN E, CDK2 and CDK4.

Gen Forward Reverse pb

GAPDH 5 ́GGAGCGAGATCCCTCCAAAAT 3 ́ 5 ́GGCTGTTGTCATACTTCTCATGG 3 ́ 197
P53 5 ́CTGGCCCCTGTCATCTTCTG 3 ́ 5 ́ CCGTCATGTGCTGTGACTGC 3 ́ 242
P21 5 ́ TGAGCGATGGAACTTCGACT 3 ́ 5 ́ GACAGTGACAGGTCCACATGG 3 ́ 210
CICLINA D 5 ́TACTTCAAGTGCGTGCAGAAGGAC 3 ́ 5 ́ TCCCACACTTCCAGTTGCGATCAT 3 ́ 498
CICLINA E 5 ́ TCCTGGATGTTGACTGCCTT 3 ́ 5 ́ CACCACTGATACCCTGAAACCT 3 ́ 109
CDK 2 5 ́ CCTGGATGAAGATGGACGGA 3 ́ 5 ́ TGGAAGAAAGGGTGAGCCA 3 ́ 99
CDK 4 5 ́ CAGATGGCACTTACACCCGT 3 ́ 5 ́ GTTTCCACAGAAGAGAGGCTTTC 3 ́ 150

The genes were purchased from Alpha DNA, PROBIOTEK.

Table 2
Viability of human lymphocyte cultures before treatment (0 h) and 24 h after
exposure to V2O3.

V2O3 treatment in μg/mL Viability (%)

0 h 24 h

0 (without) 99.5 ± 0.5 97.7 ± 2.6
2 98.7 ± 1.5 95.5 ± 4.7
4 99.1 ± 0.5 95.5 ± 1.9
8 99.0 ± 0.8 96.2 ± 1.7
16 98.5 ± 1.7 97.0 ± 3.4

Data are presented as the mean ± SD, from three independent experiments
performed in duplicate (n = 6).

Fig. 1. Estimation of the percentage of cells in G1, S and G2/M phase of human lymphocytes treated with 0 (untreated), 2, 4, 6, 8 and 16 µg/mL V2O3 for 24 h. Data
are presented as the means ± SDs of three independent experiments performed in duplicate (n = 6).
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obtained from Thermo Fisher Scientific (MA, USA).

2.2. Lymphocyte cultures and treatments

Peripheral blood samples were collected from three volunteers via
the Vacutainer® system. Lymphocytes were isolated with Histopaque®-
1077 and incubated at 1×107 in 5 mL of culture medium for 48 h at 37
◦C. Twenty-four hours after culture initiation, V2O3 treatments were
administered at concentrations of 2, 4, 8 or 16 μg/mL, and the mixture
was incubated for 24 h; an untreated group (0 μg/mL) was established.
The concentrations used were selected according to previous reports. To
ensure that the added vanadium dissolved in the medium, we assessed
all the cell cultures at the end of each test and ensured that there were no
particles or precipitates. The procedures involving human volunteers
who provided written informed consent were obtained from each blood
donor, adhered to the guidelines of the Helsinki and Tokyo Declarations
and were approved by the Committee of Ethics and Biosecurity of the
FES-Zaragoza, UNAM (registration number FESZ-CE/21–118–01).

2.3. Cell viability

Cell viability was assessed at the beginning and end of the exposure

time to V2O3 via dual staining with fluorochromes (0.125 μg/μL CFDA
and 0.025 μg/μL BE). Ten microliters of the cell sample was placed in
10 μL of the fluorochrome mixture (1:1) and incubated for 15 min.
Subsequently, under a fluorescence microscope (Nikon HFX-DX Opti-
phot-2 with Filter G-2A), 100 cells per culture were sorted by separating
viable cells (emitting green fluorescence) from nonviable cells (nuclei
fluorescing red).

2.4. Cell cycle analysis of DNA content

After 24 h of exposure to V2O3, the DNA content in the different
phases of the cell cycle was analyzed via flow cytometry. The cells were
fixed, permeabilized and incubated in staining solution (0.1 % Triton X-
100/PBS, 200 μg/mL RNase A and 50 μg/mL propidium iodide). A total
of 1×104 cells were acquired on a BD FACSAriaTM II cytometer (Becton
Dickinson and Company, CA, USA.) Histograms were constructed via
WinMDI 2.9 software developed by Joseph Trotter. The number of
nuclei in each phase of the cell cycle (G1, S and G2/M) was estimated via
the free software Cylchred developed by T. Hoy, Cardiff University.

Fig. 2. The relative intensity of cyclin D, cyclin E, CDK4 and CDK2 proteins from human lymphocyte cultures treated with 0 (untreated), 2, 4, 8 and 16 µg/mL V2O3
for 24 h. Data are presented as the means ± SDs to three independent experiments with their duplicates (n = 6). * p < 0.05, ** p < 0.01 compared to the untreated
group (ANOVA-Tukey).
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2.5. Analysis of protein expression levels

At the end of the treatments, proteins were obtained by lysing the
cells with RIPA buffer (150 mM NaCl, 5 mM EDTA, 1 % Nonidet P-40,
0.1 % SDS, 1 mM DTT, 1 mM NaVO4, 1 mM Na2HPO4, 5 mM Na2HPO4
and 10 mM NaH2PO4) and protease inhibitors. The protein concentra-
tion was determined via the use of the Bio-Rad protein assay reagent.

The proteins were subsequently separated via 12 % polyacrylamide
gel electrophoresis (SDS–PAGE) by applying a constant current of
100 V, transferred to a Bio-Rad PVDF membrane by electroblotting with
a constant current of 145 mA, blocked with 5 % TBST fat-free milk
powder (0.05 % Tween 20 in Tris-buffered saline) and then incubated
overnight at 4 ◦C with one of the following primary antibodies: anti-
cyclin D, anti-cyclin E, anti-CDK4, anti-CDK2, anti-γH2AX or anti-
actin (the latter as a loading marker).

The membrane was incubated with the secondary antibody for
90 min, washed and subsequently incubated with luminol Western re-
agent. Proteins of interest were visualized as bands. The relative in-
tensity of the proteins was assessed via ImageJ 1.45 software (NIH, USA;
available at http://rsb.info.nih.gov/ij).

2.6. RNA extraction and cDNA synthesis

Total RNA was isolated from 1×107 cells via the standard TRIzol
extraction method and recovered in 40 μL of molecular biology grade
water, after which its purity and quantity were determined via a bio-
photometer (Eppendorf AG 22331). In addition, the integrity of the total
RNA was determined via horizontal agarose gel electrophoresis (1 %).

The RNA samples were reverse transcribed into cDNA in a total
volume of 20 µl with 5 µl of total RNA, 1 µl of oligo primer (dT) and a
RevertAid First Strand cDNA Synthesis Kit containing 5X reagent buffer,
an RNase inhibitor, dNTPs and RevertAid M-MuLV RT, following the
supplier’s instructions. The reaction was carried out at 42 ◦C for 60 min
and finally for 5 min at 70 ◦C. The reaction tubes containing the reverse
transcription (RT) preparations were subsequently cooled in an ice
chamber for PCR amplification of the cDNA.

2.7. Polymerase chain reaction (PCR)

The specific primer sequences and product sizes are listed in Table 1.
GAPDH was used as a constitutively expressed gene to normalize the
expression levels of the target genes. The reaction mixture for RT–PCR
(10 mM dNTPs, 50 mM MgCl2, 10x PCR buffer (50 mM KCl, 20 mM Tris-

Fig. 3. Relative mRNA intensity of cyclin D, cyclin E, CDK4 and CDK2 in human lymphocyte cultures treated with 0 (untreated), 2, 4, 8 and 16 µg/mL V2O3 for 24 h.
Data are presented as the means ± SDs from three independent experiments with duplicate samples (n = 6). * p < 0.05, ** p < 0.01 compared to the untreated group
(ANOVA-Tukey).
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HCl at pH 8.3) and RNase-free water) was placed in a thermal cycler
under the following conditions: 95 ◦C for 120 s, 95 ◦C for 15 s, 64 ◦C for
30 s, and 72 ◦C for 60 s. The last three steps were repeated for 30 cycles,

followed by a step of 72 ◦C for 5 min. The PCR products were loaded
onto an agarose gel (1 %) together with the GAPDH-derived PCR
products from the different samples. With the help of the Bio-Rad pro-
gram of the ChemiDoc™ kit, the relative intensity of gene expression
was obtained.

2.8. Assessment of ROS

Dihydrorhodamine 123 (DHR) dye was used to assess the level of
intracellular ROS in the form of hydrogen peroxide (H2O2). The cells
were incubated with 10 μM DHR for 30 min in the dark at 37 ◦C, and the
excess dye was removed with PBS. Samples were assessed by flow
cytometry (BD FACSAria II from BDBiosciences®) to acquire 2×104 cells
at 505 nm excitation and 529 nm emission, and analyses were per-
formed on a Floreada.io. system (2022) (https://floreada.io/).

2.9. Statistical analyses

The data obtained were analyzed via Prism 9.0.1 software for Mac
and are presented as the means ± standard deviations (SDs) of three
independent experiments performed in duplicate (n = 6). For identifi-
cation of the significant differences between the treated and untreated
groups, ANOVA was applied with Tukey’s (equal variances) or Dun-
nett’s (different variances) post hoc test; p < 0.05 or p < 0.01 was
considered a significant value.

3. Results and discussion

3.1. Cell viability

An important mechanism of metal toxicity is delivery to the inside of
the cell. Substances that are poorly soluble may be absorbed; vanadium
compounds can enter through ionic channels, undergo passive diffusion,
and undergo endocytosis. Notably, vanadium ions preferentially use
receptor-mediated endocytosis by binding to transferrin. Additionally,
entry into the cell is not altered by amino acids, phosphate, or other
possible vanadium binders present in the cell culture medium [18,
29–32].

The viability test with CFDA-BE is an indicator of metabolic activity
and death due to cell membrane damage. The different treatments with
V2O3 did not affect the viability of lymphocytes (Table 2). In untreated
cultures, viability was greater than 97 %, whereas in treated cultures,
viability was greater than 95 %. Treatment with V2O3 did not change the
percentage of viable lymphocytes after 24 h of treatment, and the results
correspond with previous reports for this compound [12,20] and for
other vanadium oxides [18,33] in human lymphocytes and leukocytes.
However, V and its compounds are known to induce cell toxicity at
concentrations ≥ 200 µM and exposure times of 48 h or more [34,35].

3.2. Cell cycle

For the analysis of DNA content to determine the different phases of
the cell cycle, we observed a trend in which the percentage of cells in the
G1 phase decreased while the proportion of cells in the S phase
increased, mainly in cultures treated with 8 and 16 μg/mL V2O3. (45.57
± 9.26 G1 phase of the control group vs. 33.08 ± 2.98 and 34.27 ±

10.23 at concentrations of 8 and 16 μg/mL vanadium, respectively).
Although these results are not statistically significant, we concluded that
there is a cell cycle delay in the G1 to S transition (Fig. 1). Vanadium
oxides are cytostatic, as they reduce the proportion of cells entering
mitosis and decrease the number of times a cell divides [17,36,37].
Cytogenetic studies of human lymphocyte cultures have shown that
V2O3 increases the average generation time by 26–32 h [20], indicating
disturbances in cell cycle progression. In this study, we detected a
decrease in the number of cells in the G1 phase and an increase in the
number of cells in the S phase of the cell cycle. Although our results are

Fig. 4. Normalized data on the relative intensity of γH2AX (DNA damage
sensor) protein from human lymphocyte cultures treated with 0 (untreated), 2,
4, 8 and 16 µg/mL V2O3 for 24 h are presented. Data are presented as the means
± SDs of three independent experiments with duplicate samples (n = 6). * p <

0.05, ** p < 0.01 compared to no treatment (ANOVA-Tukey).

Fig. 5. Estimation of the percentage of cells fluorescing by DHR oxidation in
human lymphocytes treated with 0 (untreated), 2, 4, 8 and 16 µg/mL V2O3 for
24 h. Data are presented as the means ± SDs of three independent experiments
performed in duplicate (n = 6). * p < 0.05 compared to the untreated group
(ANOVA-Dunnett).
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not statistically significant, physiological delays in the transition from
G1 to S were observed, which may be related to the decrease in the
expression of proteins that control the progression from one phase to the
next. Previous reports support our results, in which V salts have been
found to induce delays in the G1/S transition, in S, and in G2/M in
different human cell lines, such as C141, MCF7, EC109, and AsPC-1 [30,
38–41].

3.3. Protein and mRNA expression levels

Data on protein expression levels revealed that the exposure of
lymphocytes to V2O3 decreases the relative intensities of cyclins and
CDKs. In relation to cyclins, differences were observed at a concentra-
tion of 16 μg/mL for cyclin D and at 8 and 16 μg/mL vanadium(III) for
cyclin E, whereas for CDK2 (2 and 16 μg/mL) and CDK4 (2, 8 and 16 μg/
mL), a decrease was observed at various concentrations (Fig. 2).

In contrast, the mRNA expression levels of cyclin D remained un-
changed; however, a decrease in PCR products for cyclin E was observed
at low concentrations (2 and 4 μg/mL), and a significant decrease was
observed at various concentrations for CDK4 (8 and 16 μg/mL) and
CDK2 (2, 8 and 16 μg/mL) (Fig. 3).

Cell cycle progression depends on the association of cyclins/CDKs.
The cyclin D/CDK4 complex is necessary for the cell to exit the G0 phase,
whereas the cyclin E/CDK2 complex keeps pRb phosphorylated and
allows the cell to complete the G1 phase and enter the S phase [42]. In
this study, the mRNA and protein expression levels of cyclin D, cyclin E,
CDK2 and CDK4 decreased upon administration of V2O3; as a result, the
cycle is momentarily arrested by lymphocytes, as the protein expression
levels needed to form cyclin/CDK complexes are not reached.

V compounds have been shown to modify the expression levels of

some RNAs [43], as well as cyclin and CDK proteins involved in cell
cycle regulation [12,31,41,44]. V compounds have been shown to
inhibit mRNA synthesis by reacting with nucleotides; in addition, these
compounds activate protein phosphatases, kinases, or enzymes involved
in the degradation of these polymers [45–47], which can subsequently
lead to decreased expression of RNAs as gene products. Notably, the
delay we observed may also be related to vanadium(III)-induced DNA
damage, as cells that incur damage stop their cycle to repair DNA
lesions.

3.4. DNA damage sensor protein γH2AX

With respect to the results obtained for the expression levels of
γH2AX, a concentration-related increase was observed, with significant
differences at concentrations of 8 and 16 μg/mL V2O3 (Fig. 4). γH2AX is
a sensor of the DNA damage response and is indicative of double-strand
breaks.

Our results show that the relative intensity of γH2AX increases. V2O3
induces single-strand breaks in DNA in peripheral blood leukocytes in
vitro (1, 2, 4 or 8 μg/mL) [18] and chromosomal damage in in vivo
experimental models [16,19], effects that have been observed with
other V compounds (VCl3, V2O4 and V2O5) [19,20,30,48].
Double-strand breaks in DNA are the most damaging effects to the cell
because they are related to the formation of structural chromosomal
aberrations [16,19], and vanadium(IV) has been demonstrated to
induce this type of damage in human lymphocytes [18,37]. V2O3
treatment induces H2AX phosphorylation, revealing that this chemical
species can induce double-chain injury, directly or indirectly (by intra-
cellularly changing the oxidation state from III to IV).

γH2AX regulates repair pathways such as p53, which is responsible

Fig. 6. Mode of action of V2O3. Within cells, V2O3 can exist as a compound or ion, and its presence modifies the structure or function of biomolecules, including the
phospholipids of lysosomes and mitochondria. This modification leads to the release of their contents and an increase in ROS. H2O2 reacts with V3⁺ to produce ⋅OH,
contributing to DNA damage. In this case, either ROS or vanadium in the form of a cation or compound promotes single-strand breaks (SSBs) and double-strand
breaks (DSBs) in DNA, as demonstrated by H2AX phosphorylation. This process leads to cell cycle arrest by decreasing the gene expression of mRNAs and the
protein expression of cyclins and CDKs.
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for cell cycle arrest, among other functions; however, V2O3 does not
modify p53 expression levels and does modify H2AX phosphorylation.
Therefore, this alternative pathway may be responsible for the cell cycle
delays observed in response to V2O3 treatment.

4. ROS

The induction of DHR oxidation was obtained by FSC/SSC dot plots,
in which V2O3 treatment increased the fluorescence intensity at all
concentrations, with significant differences at 2 (p < 0.01) and 4 μg/mL
(p < 0.01) (Fig. 5). Although significant differences were not observed
for some concentrations (for 8 and 16 μg/mL, they are at the limit of
significance), the increase in these concentrations was at least 0.6 times
greater than that of the control; therefore, this increase is important
enough to discuss.

In addition, vanadium(III) oxide in lymphocyte cultures increases
oxidative stress. DNA damage is linked to ROS, and VV has been shown
to promote the production of H2O2 [32,49] and VIII the formation of
radicals, such as ⋅OH [50–52], which can lead to the oxidation of
nitrogenous bases. As previously determined, when multiple lesions
occur continuously on both strands of DNA, double-strand breaks can
occur in this molecule [52,53]. Although increased H2O2 was observed
in this work, H2O2 cannot directly damage DNA; the products of H2O2
are the causative agents, such as ⋅OH, which may be generated through
the reaction of H2O2 with V2O3 (VIII + H2O2 → VO2+ + ⋅OH + H+ or
2 VIII + H2O2 → 2VO2+ + 2 H+). In this reaction, VO2+ (VIV) can enter
the redox, Fenton or Haber-Weiss reactions and increase the effects [3,
50,54,55].

Finally, in this work, we found that V2O3 does not affect cell viability;
however, it delays the cell cycle in the G1-S phase. This delay is asso-
ciated with a decrease in the mRNA levels of cyclins/CDKs, as well as
their protein levels, in addition to causing intracellular oxidative stress,
which may cause DNA double-strand damage and H2AX phosphoryla-
tion (Fig. 6). These effects may explain the induction of chromosome
damage observed in other experimental models. Further studies are
needed to specify the type of DNA damage, elucidate the pathway that
detects DNA damage, and identify the repair mechanisms induced by
V2O3.
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México project PAPIIT IN229220 and IN210324.

CRediT authorship contribution statement
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zation, Validation, Supervision, Resources, Methodology. Edelmiro
Santiago-Osorio: Visualization, Validation, Supervision, Conceptuali-
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