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Brain functional connectivity (FC) is often assessed from fMRI data using seed-based methods, such as those of detecting
temporal correlation between a predefined region (seed) and all other regions in the brain; or using multivariate methods, such
as independent component analysis (ICA). ICA is a useful data-driven tool, but reproducibility issues complicate group inferences
based on FC maps derived with ICA. These reproducibility issues can be circumvented with hybrid methods that use information
from ICA-derived spatial maps as seeds to produce seed-based FC maps. We report results from five experiments to demonstrate
the potential advantages of hybrid ICA-seed-based FC methods, comparing results from regressing fMRI data against task-related
a priori time courses, with “back-reconstruction” from a group ICA, and with five hybrid ICA-seed-based FC methods: ROI-based
with (1) single-voxel, (2) few-voxel, and (3) many-voxel seed; and dual-regression-based with (4) single ICA map and (5) multiple
ICA map seed.

1. Introduction

Functional connectivity (FC), broadly defined, is “correla-
tions between remote neurophysiological events” [1]. There
are a number of approaches for the detection of FC from
blood-oxygen level dependent (BOLD) signals measured
by functional magnetic resonance imaging (fMRI) of the
brain. A commonly implemented approach is a “seed-based”
approach that can be applied with a general linear model
(GLM) using time course regressors derived from selected
brain regions to find other brain regions having correlated
BOLD signal activity patterns [2, 3]. Another commonly
used data-driven approach is independent component anal-
ysis (ICA), which derives spatiotemporal components (pairs

of spatial maps and associated time courses) through
blind signal source separation and linear decomposition
of fMRI data [4, 5]. Independent component (IC) spatial
maps represent constellations of brain regions that are
partially synchronized with the corresponding component
time courses. ICA in this article is synonymous with spatial
ICA, the most common implementation of ICA used with
fMRI data, which allows components to be temporally
correlated, but restricts them to be spatially independent.

Both the seed-based approach and ICA have produced
similar FC maps in experiments where no experimentally-
derived time course was available (e.g., resting-state) [6–8].
Both approaches have produced pairs of spatial maps and
associated time courses comparable to those produced by



2 International Journal of Biomedical Imaging

standard GLM techniques that regress fMRI data against
experimentally derived a priori hemodynamic response
functions, in experiments driven by task activities with
known time courses [9–17]. The results derived with
ICA are sometimes more consistent with expected BOLD
response patterns than those derived with the a priori, task-
related approach, especially for transient task-related BOLD
responses or responses whose time courses are difficult to
predict beforehand [4, 18–21]. ICA does not require an
a priori time course or choice of seed region, making it
ideal for exploratory studies. In some cases, ICA can be
more sensitive, specific, and accurate in showing functionally
connected regions than seed-based approaches [22, 23], as
we demonstrate with an example (Experiment 1).

Despite potential advantages of ICA over task-related or
seed-based GLM approaches in visualizing correlated brain
activity, ICA reproducibility issues may complicate or limit
ICA’s use in the generation of FC maps to be used for group
comparison. Temporally correlated ICs can sometimes be
expressed as a single component [4, 24, 25], and vice versa
[26]. Iterative ICA algorithms that use a random seed can
produce different sets of components on separate analyses
performed on exactly the same data [27, 28]. From one ICA
to the next such components can appear to be modified,
split into two components, or to “disappear” completely
by having their variance redistributed across multiple com-
ponents [29]. Such variations in ICs also occur during
“bootstrapping,” where individual ICAs are performed on
separate portions of a dataset involving similar tasks [27, 28],
and when analyzing separate subjects performing the same
tasks [16]. ICA’s variability in parsing fMRI data variance
into separate ICs can complicate comparison of an IC spatial
map generated from one subject’s (or session’s) data to
similar IC spatial maps generated from other subjects’ (or
sessions’) data [30], because the signal sources represented by
each IC in any group of relatively homologous ICs (ICs with
closely matching spatial patterns across subjects/sessions)
may not exactly match the signal sources represented by the
other ICs in the group. Addressing these ICA reproducibility
issues is a subject of ongoing research [12, 16, 31, 32].

Some of these reproducibility issues may be avoided
by comparing FC spatial maps generated through seed-
based methods. Such methods usually select seed brain
regions based on information derived from theoretical
considerations [33], task-related GLM studies [34–36], or
ICA studies [10]. Deriving seed information from ICA can
be considered a hybrid ICA-seed-based approach where
the exploratory power of ICA is utilized to select a seed
from a huge number of possible choices. Literature on
the subject of the potential benefits and limitations of
such an approach is scarce. However, other ICA-based
approaches for addressing these reproducibility issues have
been described [12, 26, 31, 37, 38]. Two of the most widely
implemented of these approaches that can be applied in a
data-driven fashion, without a priori time courses, or any
other prior knowledge from an experimental paradigm, are
the “back-reconstruction” [12, 37] and “dual-regression”
[31, 39] methods. Both methods use data from a group ICA
performed on the temporally concatenated fMRI datasets of

all subjects/sessions in a group as the source of data to derive
individual subject/session spatial maps that can then be
compared to draw inferences about individual or subgroup
differences. Here, we report the results of comparing five
hybrid ICA-seed-based methods to each other and to these
two methods, using standards of comparison derived from
knowledge of visuomotor experimental paradigms involved
during collection of fMRI data, and from results of fMRI
analyses with task-related GLM methods (i.e., GLM applied
using time course regressors derived from the experimental
paradigms).

2. Theory

The GLM is often expressed in matrix notation as [3, 20, 40–
43]

X = Gβ + ε, (1)

where X is a t × v matrix (of fMRI data after preprocessing)
containing one row for each point in time (volume acquisi-
tion) and one column for each point in space (voxel). Each
row represents the spatial map (BOLD signal at each voxel) of
a volume of data (t = number of volumes), and each column
represents the time course for a single voxel (v = number of
voxels). G is a t×s design matrix where each column contains
the hypothesized time course of the BOLD response for a
signal of interest (s = number of signals of interest) or for
a covariate of no interest. β is an s× v matrix where each row
contains a spatial map of parameters to be estimated (one
parameter for each voxel) corresponding to one of the time
courses (the ith row of β corresponds to the ith column of
G). ε is a t × v matrix of residual errors. The parameters
in β can be estimated through standard, least-square linear
regression techniques, minimizing the sums (across all time
points) of the squared residual error terms for each voxel.
These maps of parameter estimates (with other information,
such as the parameter estimate standard errors) can be used
for hypothesis testing of each time course of G in various
regions of the brain. They can also provide the basis for group
comparison statistics, derived from comparing the spatial
maps for different conditions or different groups of subjects.

The spatial maps of β in (1) are uniquely determined by
least-square linear regression if the time courses in the design
matrix G are completely specified and none of the time
courses are colinear. Similarly, the time courses in G can be
uniquely determined through GLM by regressing the fMRI
data against completely specified, non-colinear spatial maps
in β. This relationship is readily apparent if we convert (1) to
an equivalent form by transposing matrices on both sides of
the equation and apply the identities (A + B)T = AT + BT

and (AB)T = BTAT to yield

XT = βTGT + εT. (2)

Least-square linear regression to determine the time courses
in G proceeds in the same manner as for determination of
the spatial maps of β in (1), except that the sums (across all
voxels) of the squared residual error terms for each time point
are minimized to determine G.
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ICA, like GLM, is based on a linear model. For a general
case, one may consider including an error term in a standard
ICA model, like the model used in probabilistic independent
component analysis (PICA) [11]. In this study, we use this
form of ICA model, where the relationships among the
preprocessed fMRI data, spatial maps, and time courses can
be expressed as

X = MC + E. (3)

X here is defined in the same manner as for (1) and
represents the same data, while M, C, and E are matrices
that represent time courses, spatial maps, and error terms
in the same format as for G, β, and ε, but that generally
do not contain the same matrix values, and the number of
time courses and associated spatial maps in M and C may
differ from the number in G and β. The entries in E are
error terms that represent predominately random, Gaussian
noise. They are derived using principle component analysis
(PCA) with dimensionality reduction to separate the data
into E and a portion that represents predominately neural
signals and structured, nonrandom noise (MC). ICA then
solves for both M and C simultaneously using only the fMRI
data (minus E) and some assumptions concerning the form
that the solution should take (e.g., nonrandom components
whose spatial maps are statistically independent).

In this article we broadly define seed-based FC as the
result of a two-step process. The first step derives one or
more time courses from one or more “seeds” (spatial maps
or portions thereof) and the fMRI data being analyzed.
The second step regresses (GLM) the fMRI data against
the time courses to derive corresponding FC spatial maps.
A simple case of seed-based FC is region-of-interest-based
(ROI-based) FC derived by averaging the fMRI data time
courses of each voxel within a predefined ROI (the “seed”)
to produce a time course against which the fMRI data is
regressed to yield a single FC spatial map. A more complex
case of seed-based FC involves dual regression, a process
where fMRI data is regressed against a set of predefined
spatial maps to derive a set of time courses against which the
fMRI data is regressed once more to produce a corresponding
set of FC spatial maps [31]. If the predefined spatial maps
consist of some spatial maps of interest and some nuisance
covariate maps of no interest, then the corresponding time
courses and FC maps can also be divided into those of
interest and those of no interest.

3. Materials and Methods

3.1. Overview. Five experiments were performed to evaluate
the performance of the five hybrid ICA-seed-based FC
methods. Experiment 1 illustrated the potential advantages
of a hybrid ICA-seed-based method over a seed-based
method that does not utilize information from ICA, using
natural data from an fMRI run, with artificial data added.
Experiment 2 tested the performance of the five hybrid
methods, comparing results to those obtained from task-
related GLM, using six runs of data from a single participant.
Experiment 3 tested the performance of the five hybrid

methods, comparing results to those obtained from task-
related GLM and two methods for extracting information
about individual subjects, based on group ICA. The data
source was an fMRI run from each of 14 participants. Finally,
in Experiments 4 and 5 the effects that ICA dimensionality
might have on the hybrid methods were evaluated by
repeating Experiment 3 using a smaller (5) and larger (30)
number of ICs (instead of 14).

3.2. Participants

3.2.1. Experiments 1 and 2. A right-handed adult male
volunteer was recruited after informed consent, from among
students in an fMRI lab course at Columbia University.
Handedness was determined by the laterality quotient
(+100) from the Edinburgh Handedness Inventory [44, 45].
The study was approved by an Institutional Review Board at
Columbia University.

3.2.2. Experiments 3–5. 14 healthy, right-handed adults
were recruited in accordance with institutional guidelines
approved by the Medical College of Wisconsin and the
University of New Mexico School of Medicine.

3.3. Experimental Paradigms

3.3.1. Experiments 1 and 2. fMRI data were collected from an
experiment originally intended as a pilot study of attachment
theory [46–48]. The participant provided digitized (elec-
tronic) photos of a male friend, a female friend, photos of
his parents taken during his childhood, and recent parental
photos. To these six photos were added a photo of a famous
person similar in appearance to each of the young parental
images and a photo of a complete stranger similar to each
of the older parental photos. The participant was briefly
shown the images in advance of the experiment to ensure
recognition of the famous faces and lack of recognition of
the strangers.

The photo images were processed using Adobe Photo-
shop Elements (version 2.0) to make them as similar as
possible in appearance apart from the forms of the faces.
Background scenes were eliminated and replaced with a dark
grey background, making a smooth transition in brightness
toward the edges of the face image to avoid sharp boundaries
at the periphery of the faces. Photos were converted from
color to grayscale and adjusted for brightness, contrast, head
size, and blurriness of image (making sharper photos grainier
and blurrier). The facial images were cropped from the chin
up, leaving enough room at the top to ensure that the bridges
of the nose were vertically at the center of each image. The
width of each image was cropped to whatever length was
necessary to show the face from ear to ear. Each photo was
pixelized to 72 dpi with a height of 400 pixels.

The participant provided the names of each person in the
photos. Strangers were represented by the words “a woman”
or “a man.” Word images of the names were generated by
Presentation software (version 10.2), adjusted in size so that
the longest names (Rita Hayworth and Frank Sinatra) took
up half of the full width of the image display, the same as
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for the widest photos. The heights of capital letters were
approximately 10 times smaller vertically than the photos.
The word images were colored either blue or green and
shown on a medium-gray background. The photos were
shown on the same background and colored either blue-gray
or green-gray using 30% opacity.

The 10 photos and names in two different colors yielded
a total of 40 images (Figure 1), which were each shown in
pseudorandomized order exactly once during each of the six
runs. The pictures were each presented for an average of
9.0 seconds (random durations of 7.5–10.5 seconds), with
a blank, medium-gray screen shown between images for 0.5
seconds, yielding an average run time of 380 seconds. The
subject was given about 1 minute rest in between runs. He
was given ear plugs, had his forehead taped down, and was
equipped with a button-box while in the scanner.

In order to maximize attention and brain activity and
minimize sources of data noise, the subject was instructed
to be as still as possible (avoiding swallowing) during fMRI
runs, focusing eyes on the center of the screen at all times
(trying to avoid blinking during image presentation), and
to press one button for blue images and another for green
images as soon as he was sure of the color of the image. He
was asked to concentrate as continuously and exclusively as
possible on the person corresponding to each image as it was
being shown, and to imagine that he was greeting the person
in a usual setting where he might see the individual (e.g., for
famous people, on television).

3.3.2. Experiments 3–5. fMRI data were used from a study
of the association between brain hemispheric lateralization
patterns and motor task complexity [49]. The publicly
available data was downloaded from The fMRI Data Center
(http://www.fmridc.org/, accession number 2-2003-114E5).
Eight runs were collected in that study, with each run
involving either a complex or a simple motor task, and
either the left or right hand; two runs were collected for
each of these four cases. Each run involved 10, 24-second-
long blocks. Each block involved 12 seconds rest followed
by 4, 3-second trials where the participants were shown
sequences of five digits (1, 2, or 3) and responded by
pressing buttons corresponding to the sequence shown (1
= index finger, 2 = middle finger, and 3 = ring finger). The
complex condition consisted of heterogeneous sequences,
which always used three fingers and four transitions, whereas
the simple condition involved repetition of the same digit
in each trial. The digits were displayed for 2.5 seconds, and
approximately 2 seconds were required for participants to
manually enter the digits.

We only used data from the first run of the complex
condition performed with the right hand, for the following
reasons. First, we chose only one run in order to minimize
memory requirements on our 32-bit architecture computers.
Second, we chose the complex condition rather than the
simple condition because the complex condition involved
use of each of the three fingers in every trial, thereby
providing a more even use of the corresponding brain
regions during the latter half of each block. Third, we chose
the first run rather than the second run, because we reasoned

that the effects of fatigue would probably make the brain’s
response to the task weaker during the second run, but this
choice was somewhat arbitrary. Finally, we chose the right
hand rather than left, because a quick scan and processing
of the data with ICA and GLM for the first two subjects
revealed that the activation in response to use of the right
hand appeared to be stronger than in response to use of the
left hand.

3.4. Data Acquisition

3.4.1. Experiments 1 and 2. Images were acquired using
a 1.5T General Electric (GE) TwinSpeed MRI scanner.
Functional scans were performed using EPI-BOLD (TR =
2000 ms; TE = 38 ms; flip angle = 90 degrees; FOV = 19.2 cm;
64 × 64 matrix; 29 oblique-axial slices 4.5 mm thick; skip
0 mm; interleaved acquisition; voxel size = 3 × 3 × 4.5 mm).
Immediately after the functional scans, a 10-minute, high
resolution, T1-weighted structural MRI image was acquired
using the 3D SPGR sequence (186 slices; 256 × 256; FOV =
256 mm; voxel size = 1× 1× 1 mm).

3.4.2. Experiments 3–5. Images were acquired using a 1.5-
T GE Signa scanner. Echo-planar (EP) images were col-
lected using a single-shot, blipped, gradient-echo EP pulse
sequence (TR = 4000 ms; TE = 40 msec; FOV = 24 cm;
64 × 64 matrix; 22 contiguous sagittal 6-mm thick slices;
voxel size = 3.75×3.75×6 mm). Prior to functional imaging,
high-resolution 3D spoiled gradient-recalled at steady-state
anatomic images were collected: TR = 24 msec, TE = 5
msec, flip angle = 40 degrees, number of excitations = 1,
slice thickness = 1.2 mm, FOV = 24 cm, and resolution =
256× 128.

3.5. Image Preprocessing. fMRI image preprocessing for
all experiments was carried out using FSL (version 4.1),
FMRIB’s Software Library (http://www.fmrib.ox.ac.uk/fsl)
[50, 51], involving nonbrain removal using BET [52]; motion
correction with MCFLIRT [53]; slice-timing correction
for interleaved acquisitions using Fourier-space time-series
phase-shifting; highpass temporal filtering using Gaussian-
weighted least-squares straight line fitting (with σ = 27.5
seconds for Experiments 1 and 2, and σ = 50 seconds
for Experiments 3–5); spatial smoothing using a Gaussian
kernel with full-width half-maximum 8 mm; coregistration
to high-resolution T1-weighted images; and normalization
of all images to standard space (MNI, Montreal Neurological
Institute atlas, using resolutions of 3 × 3 × 3 mm for
Experiments 1 and 2, and 4 × 4 × 4 mm for Experiments
3–5, which were the smallest voxel sizes that did not result in
memory overflow errors while performing group ICAs) with
affine registration, FSL FLIRT [53, 54].

3.6. ICA Processing

3.6.1. Experiments 1 and 2. ICAs were performed using
PICA [11] as implemented in FSL’s MELODIC (Multivariate
Exploratory Linear Decomposition into Independent Com-
ponents) version 3.09, which can be considered a variant
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MomFrank Sinatra

Figure 1: Examples of photos and names displayed during fMRI data collection.

of FastICA [55] where components are estimated simulta-
neously rather than one at a time. This process involved
masking of nonbrain voxels, voxelwise demeaning of the
data, normalization of the voxel-wise variance, whitening,
projection into an N-dimensional subspace using PCA,
and decomposition into N time courses and corresponding
spatial maps (spatiotemporal ICA components) by optimiz-
ing for non-Gaussian spatial source distributions using a
fixed-point iteration technique [55]. N was estimated using
the FSL default, Laplace approximation [11, 56]. Estimated
component maps were divided by the standard deviation
of the residual noise and thresholded by fitting a mixture
model to the histogram of intensity values. For Experiment
1, IC spatial maps were thresholded conservatively, using a
mixture model and alternative hypothesis testing approach,
with the “mmthresh” parameter set to 0.95. For Experiment
2, the FSL default value of mmthresh = 0.5 was used.

ICs produced with PICA can vary, even if repeated with
identical fMRI data, because PICA is an iterative approach
based on a random seed [11]. For this reason, in Experiments
1–3 we repeated PICA 10 times every time it was used, so that
we could arrive at a best estimate by averaging the 10 sets
of component spatial maps and time courses in the series
[37]. However, we found that for Experiments 1–3, in all
10 cases PICA produced component spatial maps and time
courses that from visual inspection appeared to be identical.
An examination of the exact time course values revealed that
in most cases they were identical, and when they were not,
in all cases they differed from the first PICA results in the
series by less than 3 × 10−5 (for time courses normalized
to zero mean and unit variance), a figure comparable to
rounding error. For this reason, rather than averaging, we
used the results from the first PICA in each series of 10.
The reason we encountered negligible differences among
members of each series of 10 may have been that we chose
a very small value (10−8) of “epsilon,” the minimum error
change parameter used to determine at what point the ICA
algorithm has converged on a single solution. At this setting
of epsilon, convergence generally required relatively few steps

(less than 300), and allowing many steps did not help in
cases of nonconvergence; so we used the default maximum
number of iterations before restart (500).

3.6.2. Experiments 3–5. Group ICA was performed with
MELODIC, using parameters as for Experiments 1 and
2, with the multisubject temporal concatenation option,
which performed PICA on the normalized data from all 14
participants, temporally concatenated into a single group
fMRI “run.” Some or all of the group ICs were the seed
source for the five hybrid ICA-seed-based approaches. In
addition, a group ICA was performed using the Group
ICA of FMRI Toolbox (GIFT, v1.3 g) implemented in Mat-
lab (http://icatb.sourceforge.net/), using two data-reduction
steps. This group ICA approach, described in [12], like
PICA began with subjectwise, temporal concatenation of
the fMRI data, followed by whitening and projection into
an N-dimensional subspace using PCA. N was specified
to be the same as the number of components that were
estimated for the PICA group ICA (derived using the Laplace
method). Group ICs were then generated using Infomax (the
GIFT default), a neural network algorithm that attempts to
minimize the mutual information of the network outputs
[12, 30, 57]. Finally, individual-subject spatial maps and
time courses corresponding to each group IC were derived
using the “regular” back-reconstruction method [12]. Z-
score scaling was applied to the group and individual-subject
spatial maps, normalizing them to zero mean and unit
variance. These maps were thresholded for figure display at
z > 3.1 (one-tailed P < .001) as in [12, 58].

3.7. GLM Processing. Individual-subject spatial maps not
derived directly from ICA were derived with GLM by
regressing fMRI data against one or more time courses
using FSL FEAT with FILM local autocorrelation correction
[59] to generate Gaussianised, z-statistic images reflecting
parameter estimates in relation to their standard errors and
degrees of freedom. The time course for each task-related
GLM analysis was generated by convolving an experimentally
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Figure 2: Spatial maps and time courses derived from task-related GLM, ICA, seed-based approach, and hybrid ICA-seed-based approach.
Numbers below axial brain slices indicate z-coordinate (MNI). Blue lines: time courses from linear model. Red lines: fMRI data deviating
from model, at voxel with best fit to model. (a) Task-related GLM. (b) Natural IC. (c) Artificial IC. (d) Seed-based FC. (e) Hybrid FC, seed
from natural IC. (f) Hybrid FC, seed from artificial IC. The bright yellow dots (d–f) show seed locations.

derived time course against a Gaussian function with peak
lag = 5 seconds and σ = 2.8 seconds. Time courses
derived from seed-based approaches were not modified.
For Experiments 1, 3, 4, and 5, z-statistic images were
processed by maximum-height thresholding voxels based on
Gaussian Random Field Theory (GRFT) to a corrected, one-
tailed significance of P ≤ .05 [60]. For Experiment 2, z-
statistic images were thresholded by cluster size determined
by counting contiguous (26-neighbor) voxels with P < .01
(one-tailed, z > 2.3) and applying GRFT to determine a
corrected cluster size threshold corresponding to one-tailed
significance of P ≤ .05 [60]. We chose the more conservative
voxel-thresholding approach for Experiments 1, 3, 4, and
5 because we judged that tightly controlling false positives
would be more suitable for the visual-inspection-based
comparisons of Experiment 1 and the assessments of receiver
operating characteristics of Experiments 3–5. We chose the
more sensitive cluster-based thresholding for Experiment 2
in order to better visualize “activation” in the right temporal
occipital fusiform cortex (rTOF), where the “fusiform face
area” (FFA) is located, a region commonly involved during
experimental tasks with imagined or perceived images of
faces [61–63]. Such “activation” was present in the rTOF
for task-related GLM analyses in 5/6 runs with cluster-based
thresholding, compared with only 3/6 runs with voxel-based
thresholding.

3.8. Experiment 1. Task-related GLM was applied to the
preprocessed fMRI data from Run 1 (Figure 2(a)), and the
location (MNI coordinates 21, −93, 9) of the voxel with the
highest z-score (10.6) was determined. Artificial signal was
added to the axial slice containing that voxel, creating an
artificial component whose variance was comparable to the
variance of the natural occipital component (Figure 2(b)).
The artificial signal was added to the voxel at coordinates

21, −93, 9 in addition to all voxels in three large triangular
regions outside of the occipital cortex (Figure 2(c)). The
artificial signal consisted of a square wave with a period
of 60 seconds (30 volumes) and amplitude at each voxel
corresponding to ±0.5% of the mean MR signal intensity
for the voxel over time. Adding the artificial signal before
fMRI preprocessing would have better simulated neural
signal, but we added it after preprocessing to sharpen image
boundaries for the illustrative purposes of this experiment.
Both components were visualized with ICA (Figures 2(b) and
2(c)).

The voxel at coordinates 21, −93, 9 was chosen as the
seed to produce an ROI-based FC map containing both
the natural and artificial components (Figure 2(d)). We
repeated this seed-based FC analysis twice more (Figures 2(e)
and 2(f)), choosing the voxel in the z = 9 slice with the
highest z-score from the natural (coordinates 12,−99, 9) and
artificial (coordinates 30, 9, 9) IC spatial maps. Results were
compared with visual inspection, and statistics were gathered
on sensitivity and specificity for correctly identifying voxels
where artificial signal had been added.

3.9. Experiment 2. We compared the results of task-based
GLM to the results of five hybrid ICA-seed-based FC meth-
ods using preprocessed fMRI data without added artificial
signal. The seed source for each method was the collection of
IC spatial maps (13 in all) derived from ICA of Run 3’s fMRI
data. The spatial map and time course of the last (ranked in
descending order of explained variance) of these components
(IC13) resembled the spatial map and time course derived
from task-related GLM (Figure 3(a)). Run 3 was chosen
because it was the run whose task-related GLM analysis
had the highest z-score (11.9) in any voxel: we hypothesized
that Run 3 might therefore be most representative of the
activation pattern we were studying.
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Figure 3: Spatial maps and time courses for Run 3, derived from (a) task-related GLM; hybrid ICA-seed-based approaches using the average
time course from (b) a single voxel, (c) a few voxels, or (d) many voxels; dual regression using seed spatial information from (e) an IC spatial
map or (f) an entire set of IC spatial maps; (g) ICA; and (h) regression of the fMRI data against the IC time course. Run 3 was the source of
seed spatial information.

The first hybrid method (single-voxel seed, SV) used the
voxel (coordinates −12,−102, 3) in IC13 with the highest z-
score (18.27) as the seed for ROI-based FC. Thus, FC maps
were derived for each of the five target runs (i.e., nonseed
Runs 1, 2, 4, 5, and 6) by regressing their fMRI data against
their seed voxel time course (i.e., the time course of the voxel
at coordinates −12,−102, 3 for the run being analyzed). The
second hybrid method (few-voxel seed, FV) derived ROI-
based FC using the same procedure, but the regressor for
each run was the average time course over a few seed voxels.
Those were the voxels (five in all) whose z-score was higher
than 17.27, one less than the highest z-score. We thresholded
by z-score rather than arbitrarily choosing the number of
voxels to be used. The third hybrid method (many-voxel
seed, MV) derived ROI-based FC using as the regressor
the average time course over many seed voxels, chosen as
close to 100 in number as possible by thresholding with
whole z-scores. A threshold of z > 13 yielded 118 voxels.
The fourth hybrid method (dual regression with single-IC
seed, DRS) used IC13’s spatial map as the seed for dual-
regression-based FC. The fMRI data for each of the target
runs was regressed against IC13’s spatial map using FSL’s
dual regression program (beta version 0.3) to yield a time
course, against which the fMRI data was regressed to produce
an FC map for each run. The fifth hybrid method (dual
regression with all ICs as the seed source, DRA) used all 13
ICs as the seed for dual-regression-based FC, using the same
procedure as for the fourth method, to yield time courses
against which the fMRI data was regressed to produce

corresponding FC maps for each target run. The FC map
corresponding to IC13 was treated as the FC map of interest.

Each hybrid method was evaluated qualitatively through
visual inspection of all spatial maps and time courses
generated in this experiment and quantitatively according to
the following criteria.

(1) FC map correlation with task-related GLM spatial map
from same run> 0: we did not assume that a successful
hybrid method FC map would correlate highly with
the task-related GLM map from the same run because
the correlations of the GLM maps from the six
runs with each other were in the range 0.13–0.45,
and differences in latency of hemodynamic responses
[64, 65] could potentially result in considerable
differences between the FC maps and task-related
GLM maps. However, we did expect the spatial maps
to be similar in the occipital cortex, the rTOF, and
possibly other brain regions; so we expected the
maps to be at least somewhat correlated. FSL’s fslcc
utility was used to calculate the correlation coefficient
between the FC spatial map and task-related GLM
spatial map for each of the five target runs and the
mean correlation was compared to zero with a two-
tailed, one-sample t-test. All correlation values in
this study were Fisher z-transformed before statistical
testing and calculation of confidence intervals.

(2) FC map correlation with task-related GLM spatial map
from same run > FC map correlation with task-related
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Figure 4: Spatial maps and time courses for Run 2: (a) task-related GLM; hybrid ICA-seed-based approaches, using the average time course
from (b) a single voxel, (c) a few voxels, or (d) many voxels; and dual regression using seed spatial information from (e) an IC spatial map
or (f) an entire set of IC spatial maps. Run 3 was the source of seed spatial information.

GLM spatial map from seed run: for hybrid ICA-
seed-based methods to be considered successful, the
resulting FC maps should be unique to the fMRI data
being regressed rather than merely a reflection of the
seed source spatial maps or fMRI data. This criterion
was a test of this expectation. However, we expected
the hybrid FC maps from target runs to correlate with
the task-related GLM spatial map from the seed run
because the latter was correlated with the task-related
GLM spatial maps from target runs (correlation
coefficients ranging from 0.25 to 0.44). Nonetheless,
we expected the hybrid FC maps to be more strongly
correlated with the task-related GLM maps from
the same run than from the seed run. We tested
this criterion for each hybrid method with a two-
tailed, paired two-sample t-test, comparing the mean
correlation between hybrid FC maps and the task-
related GLM spatial map from the corresponding run
to the mean correlation between FC maps and the
task-related GLM spatial map from the seed run.

(3) FC map correlation with task-related GLM spatial
map from same run—a comparison of each method’s
mean correlation with that of the other four hybrid
methods: depending upon the results of a one-way
repeated-measures ANOVA omnibus test of differ-
ences in mean correlations (α = 0.05), paired t-tests
(two-tailed) were performed to test for individual
differences in means between methods. A Bonferroni
correction for multiple comparisons with α = 0.05
was applied (significance at P < .005 for each of the
10 method pairs compared).

(4) Overlap of thresholded voxels from FC map with
task-related GLM spatial map from same subject—
a comparison of each method’s overlap across runs

with the other four methods of deriving individual-
subject FC maps: we examined the percentage of
the thresholded voxels in the task-related GLM map
that were also thresholded in the corresponding
hybrid FC map. Before making this comparison,
we eliminated the effects that the thresholding level
might have in making this comparison by adjusting
the thresholding z-scores of the FC maps so that
each map had the same number of thresholded
voxels as the task-related GLM map from the same
run. This adjustment was equivalent to making the
number of false negatives (negative voxels falling
within the thresholded task-related GLM map) equal
to the number of false positives (positive voxels falling
outside of the thresholded task-related GLM map).
We then compared the percentage overlap for each
method to the other four methods, across the six
runs, using the Wilcoxon signed rank test (two-
tailed). This test was not sufficiently powered after
correction for multiple comparisons, but we included
it to provide a qualitative comparison with the results
of Experiments 3–5.

(5) Comparable sensitivity to task-related GLM in detect-
ing activation in the rTOF: the rTOF was the target
area for this sensitivity criterion for two reasons. The
first reason was that an increase in activity of portions
of the rTOF (and some adjacent brain regions),
the FFA, has been reported in response to a wide
variety of stimuli involving real or imagined images
of faces [61–63, 66, 67]. The exact locations of these
portions of the rTOF have varied across subjects and
have varied depending upon the context of facial
presentation (e.g., unfamiliar versus famous faces)
[61, 68–70]. We did not know the exact location
of the FFA in our data because no FFA localizer
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Figure 5: Spatial maps and time courses for Run 4: (a) task-related GLM; hybrid ICA-seed-based approaches, using the average time course
from (b) a single voxel, (c) a few voxels, or (d) many voxels; and dual regression using seed spatial information from (e) an IC spatial map or
(f) an entire set of IC spatial maps. Run 3 was the source of seed spatial information. No activation was detected in the rTOF in (b) and (c).

scan had been performed, but we expected some
activation in the rTOF in response to viewing faces.
For this reason we liberally defined our criterion for
success to be any thresholded voxels found within
the rTOF, defined as voxels whose probability of
belonging to the rTOF was ≥0.5 according to the
Harvard-Oxford Cortical Structural Atlas (HOCSA)
provided with FSL. By this criterion, the task-related
GLM method was successful in 4/5 target runs (no
activation was found for Run 5, not shown). The
low level of “activation” in the rTOF compared with
other portions of the occipital cortex was the second
reason for targeting the rTOF: we wanted a test that
could distinguish task-related GLM from methods
with poorer sensitivity. We expected that less sensitive
imaging methods would not show any activation.
in the rTOF because such activation was barely
detectable with task-related GLM. We also reasoned
that this test might reveal potential weaknesses with
the hybrid approaches because the rTOF was not in
close proximity to the regions with the highest z-
scores in the GLM- and ICA-derived spatial maps,
and therefore the hybrid approaches could not
benefit from the effects of smoothing or a tendency
for activation patterns to be clustered, making voxel
activation patterns similar to those of neighboring
voxels. In order to test for statistically significant
differences, we compared task-related GLM results
with those from each of the hybrid methods using a
two-tailed Wilcoxon signed-rank test with α = 0.05.
Due to the small sample size, the only condition
for which a statistically significant difference between
task-related GLM and hybrid methods could have
been detected would have been the case where a
hybrid method did not find rTOF activation in any
of the five target runs, and only if we did not correct
for multiple comparisons (exploratory study).

3.10. Experiment 3. We compared the results of task-based
GLM to the results of seven methods of deriving individual-
subject FC maps from a group ICA. The group ICs were
derived with PICA (FSL) for the first five methods, and
with Infomax (GIFT) for the other two. The group IC of
interest for each of these methods was selected with visual
inspection by comparing group IC spatial maps with the
group task-related spatial map (Figure 6(a)) derived from
multilevel linear modeling with FSL FLAME (FMRIB’s Local
Analysis of Mixed Effects) [71, 72] performed on the lower-
level, task-related GLM results from all 14 participants (i.e.,
a “random-effects” analysis). For PICA, the second of 14 ICs
ranked by IC variance (PICA IC2, Figure 6(b)) was chosen;
for Infomax, the fourteenth (Infomax IC14, Figure 6(c)).
The spatial maps of these ICs were similar in appearance and
highly correlated (r = 0.61).

The first five methods were the same as the hybrid ICA-
seed-based methods tested in Experiment 2 (i.e., ROI-based:
single-voxel, few-voxels, and many voxels; dual-regression-
based: single IC map and all IC maps), using the PICA
group ICs as the seed source. For the first method (SV),
the seed voxel was located in a region that according to the
HOCSA probably corresponded to the left precentral (40%
probability) or postcentral gyrus (19%), at MNI coordinates
−38,−22, 60. The z-score in PICA IC2 at this point was
13.69. For the second hybrid method (FV), thresholding at
z = 12.69 yielded 8 more voxels, contiguous with the first
voxel. For the third hybrid method (MV), we used the target
seed volume from Experiment 2 (100 voxels × 27 μL) rather
than the target number of voxels (100) because we did not
wish the seed volume to become disproportionately large.
Thresholding at z = 11 yielded 40 voxels (closest to the
target of 42), which were also contiguous. The fourth hybrid
method (DRS) used PICA IC2’s spatial map as the seed for
dual-regression-based FC. The fifth hybrid method (DRA)
used all 14 PICA group ICs as the seed for dual-regression-
based FC, choosing PICA IC2’s spatial map as the FC map of
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Figure 6: Group spatial maps derived from (a) task-related GLM; (b) group ICA, PICA, N = 14; (c) group ICA, Infomax, N = 14; (d) group
ICA, PICA, N = 5; and (e) group ICA, PICA, N = 30. N is the number of ICs generated.

interest. The fifth method as implemented in this experiment
is the same as the “multisubject ICA and dual regression”
approach described in [31], which can be considered a
special case of DRA where the seed ICs are taken from a
group ICA performed on the same data being analyzed with
the hybrid method. The sixth method (back-reconstruction
with Infomax, BR-I) derived the individual-subject ICs using
the back-reconstruction method. The seventh method (DRS
with Infomax, DRS-I) was added to evaluate what effect the
choice of method for derivation of group ICs might have on
the resulting FC spatial maps and time courses. This method
used dual regression based on a single IC map selected from
the group ICs derived with Infomax. We chose the dual-
regression, single-map method because overall the fourth
method produced spatial maps that most closely resembled
the task-based GLM-derived spatial maps.

Each of the seven methods for deriving FC maps
from group ICs was evaluated qualitatively through visual
inspection of all spatial maps and time courses generated in
this experiment and quantitatively according to the following
criteria.

(1) FC map correlation with task-related GLM spatial map
from same subject > 0: the same test as described for
Experiment 2, but performed for each method across
the 14 subjects.

(2) FC map correlation with task-related GLM spatial map
from same subject > FC map correlation with group
IC map of interest (spatial prior): the same test as
described for Experiment 2, but performed for each
method across the 14 subjects, using the group IC
map (from PICA for the first five methods, and
Infomax for the other two methods).

(3) FC map correlation with task-related GLM spatial map
from same subject—a comparison of each method’s
mean correlation with that of the other six FC methods:
depending upon the results of a one-way repeated-
measures ANOVA omnibus test of differences in

mean correlations (α = 0.05), two-tailed, paired t-
tests were performed to test for individual differences
in means between methods. A Bonferroni correction
for multiple comparisons with α = 0.05 was applied
(significance at P < .0024 for each of the 21 method
pairs compared).

(4) Overlap of thresholded voxels from FC map with
task-related GLM spatial map from same subject—a
comparison of each method’s overlap across subjects
with the other six methods of deriving individual-
subject FC maps: the same test as described for
Experiment 2, but performed for each method across
the 14 subjects. A Bonferroni correction for multiple
comparisons with α = 0.05 was applied (significance
at P < .0024 for each of the 21 method pairs
compared).

(5) ROC PAUC from FC maps, using task-related GLM
spatial maps as the standards of comparison: for
each subject and method evaluated, the partial area
under the curve (PAUC) of the receiver operating
characteristic (ROC) of the FC maps was calculated
with FSL’s fslmaths program. The task-related, GLM-
derived map for each subject was used as the “true”
standard of comparison. We chose for our PAUC
the area between 0 and the largest false positive rate
(LFPR) that we could accept, as in [73], because we
did not wish to include area under portions of the
ROC curve that would not be utilized in practice.
We accepted the default suggested value for LFPR
from the fslmaths program because false positive
rates above this number (0.05) corresponded to the
(unacceptable) situation where the number of false
positives exceeded the total number of thresholded
voxels in the reference maps (i.e., the number of
thresholded voxels in the reference task-related GLM
spatial maps in almost all cases was below 5% of the
total number of voxels in the brain). We compared
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the PAUC values for each method to the other 6
methods, across the 14 runs, using the Wilcoxon
signed rank test (two-tailed).

3.11. Experiment 4. We wanted to evaluate how the hybrid
methods might perform using a considerably different
number of ICs. To do so, we repeated the 5 evaluations from
Experiment 3 for the 5 hybrid methods only, using seed
group ICs generated with PICA that was set to produce only
5 ICs from the group data instead of 14 (the second of which
was selected as the component of interest). We used the same
number of seed voxels for the SV, FV, and MV methods as
were used for Experiment 3. There is no consensus on how
to select the optimal number of components [74], but some
suggested methods for specifying dimensionality include
the Laplace method, Bayesian information criterion (BIC),
minimum description length (MDL), and Akaike’s informa-
tion criterion (AIC) [11, 12, 16]. We used each of these
methods to estimate the number of components (through
options in FSL MELODIC), resulting in dimensionalities of
11 (Laplace), 11 (AIC), 6 (MDL), and 5 (BIC). We chose the
smallest dimensionality because we had already explored the
highest number of components in using the Laplace option.
The reason we ended up with 14 components instead of 11 is
because MELODIC only rarely converged on a solution using
a dimension of 11; so we accepted the MELODIC default
alternative suggestion of 14.

3.12. Experiment 5. We repeated Experiment 4 using a much
higher ICA dimensionality than was used in Experiments
3 and 4, to explore those effects that high dimensionality
might have on hybrid method results. Statistical testing
for Experiments 2–5 was performed with SPSS 12.0 for
Windows.

4. Results

4.1. Experiment 1. ICA generated 17 components from Run
1. Upon visual inspection, one spatial map (Figure 2(b))
resembled the natural visual cortex component from GLM
and one (Figure 2(c)) resembled the artificial component.
The time course of the natural component (Figure 2(b))
resembled the time course of the voxel with the highest z-
score from the task-related GLM time course (Figure 2(a)),
and the square wave pattern of the artificial signal was
evident in the time course of the artificial component
(Figure 2(c)), despite the obvious presence of a considerable
amount of noise. The natural component represented 2.46%
of the total variance in the fMRI data (ranked 13th among
components), and the artificial component represented
2.81% of the total variance (ranked 8th). Thresholded voxels
of the artificial component spatial map corresponded to the
voxels where signal had been added, with 100% sensitivity
and specificity.

The ROI-based FC map (Figure 2(d)) derived using the
voxel at MNI coordinates 21, −93, 9 as the seed contained
thresholded voxels corresponding to both the natural and
artificial components. Only 19 of the 984 voxels where artifi-
cial signal had been added were not represented in the map,

corresponding to a sensitivity of 98.1%. The corresponding
time course appeared to be somewhat similar to the time
courses of both the natural and artificial components. It was
not possible to discern the unique relationship that existed
among the voxels involved with the natural component,
or the unique relationship that existed among the voxels
involved with the artificial component, because the spatial
maps and time courses corresponding to the natural and
artificial components were represented together in a single
spatial map and time course.

The ROI-based FC map (Figure 2(e)) derived using the
voxel with the highest z-score in the natural component
spatial map showed robust activation in the occipital cortex
without any activation in the voxels from the artificial
component, except for the voxel at coordinates 21, −93,
9. The corresponding time course appeared very similar to
the time course of both the voxel with the highest z-score
from the task-related GLM (Figure 2(a)) and the natural
component (Figure 2(b)). Similarly, the ROI-based FC map
(Figure 2(f)) derived using the voxel with the highest z-
score in the artificial component spatial map identified all
of the voxels where artificial signal had been added (100%
sensitivity), while only 10 of the whole brain’s remaining
90,295 voxels were also thresholded (99.99% specificity). The
corresponding time course was similar to the square wave
pattern of the artificial signal. Thus, for these two cases
the hybrid ICA-seed-based approaches resulted in spatial
maps and time courses that were very similar to the seed IC
spatial maps. It was possible to discern the two components
as separate entities from these spatial maps and time
courses.

4.2. Experiment 2. Figure 3(a) shows the spatial map and
time course derived from task-related GLM for Run 3.
Figures 3(b)–3(e) show the FC spatial maps and time courses
derived from the first four hybrid methods using Run
3’s IC13 as the seed source and fMRI data from Run 3.
Figure 3(f) shows the FC spatial map and time course derived
from the fifth hybrid method using all of Run 3’s ICs as the
seed source, with fMRI data from Run 3. Figure 3(g) shows
IC13’s spatial map and time course, and Figure 3(h) shows
the spatial map that resulted from regressing the fMRI data
against IC13’s time course. Visual inspection revealed that
the spatial maps and time courses in Figures 3(a)–3(h) were
very similar to each other. Some thresholded voxels in the
rTOF were found in all seven of these spatial maps.

Figure 4(a) shows the spatial map and time course
derived from task-related GLM for Run 2, which was the run
with the second-highest z-score (11.5) in any voxel, derived
from task-related GLM in response to viewing faces. Figures
4(b)–4(e) show the FC spatial maps and time courses derived
from the first four hybrid methods using Run 3’s IC13 as the
seed source, with fMRI data from Run 2. Figure 4(f) shows
the FC spatial map and time course derived from the fifth
hybrid method using all of Run 3’s ICs as the seed source,
with fMRI data from Run 2. Visual inspection revealed that
the spatial maps and time courses in Figures 4(a)– 4(f) were
very similar to each other. Each spatial map showed an arm
of a cluster extending rostrally from the right lateral occipital
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Table 1: Experiment 2: mean correlations of hybrid ICA-seed-based maps with maps from task-related GLM, over the five target (nonseed)
fMRI data sets. “Same” indicates mean correlation of hybrid method FC maps with task-related GLM derived from the same fMRI dataset.
“Seed” indicates mean correlation of hybrid method FC maps with task-related GLM map from Run 3’s fMRI dataset, the seed source.

Source of time course regressor(s)
Mean correlation with task-related map

(95% Confidence Interval)
Same = Seed Null Hypothesis Test

Same Seed t df P

Single voxel (SV) 0.71 (0.63–0.78) 0.23 (0.15–0.31) 11.3 4 <.001

Average over 5 voxels (FV) 0.71 (0.64–0.77) 0.23 (0.15–0.30) 15.2 4 <.001

Average over 118 voxels (MV) 0.79 (0.75–0.83) 0.33 (0.28–0.38) 19.1 4 <.001

Regression against 1 spatial map (DRS) 0.72 (0.66–0.77) 0.28 (0.21–0.35) 11.5 4 <.001

Regression against all spatial maps (DRA) 0.74 (0.69–0.79) 0.40 (0.39–0.41) 8.7 4 .001

Table 2: Experiment 2: mean percentages of thresholded task-related GLM maps that are covered by thresholded FC maps generated with
each hybrid ICA-seed-based method. The right-most column gives percentages after adjusting the z-score used to threshold the FC maps up
or down so that number of false positives equals number of false negatives.

Source of time course regressor(s)
Percent of Task-Related Map Covered (95% Confidence Interval)

Before Threshold Adjustment After Threshold Adjustment

Single voxel 94 (92–97) 78 (72–83)

Average over 5 voxels 94 (92–97) 78 (73–83)

Average over 118 voxels 95 (93–98) 87 (84–90)

Regression against 1 spatial map 95 (93–98) 84 (81–87)

Regression against all spatial maps 96 (94–97) 83 (80–85)

cortex into the rTOF, visible in the axial slice at z = −21 in
Figures 4(a)–4(f).

Figure 5(a) shows the spatial map and time course
derived from task-related GLM for Run 4, which was the
run whose highest z-score (10.4) in any voxel was the lowest
among the six runs. Figures 5(b)–5(e) show the FC spatial
maps and time courses derived from the first four hybrid
methods using Run 3’s IC13 as the seed source, with fMRI
data from Run 4. Figure 5(f) shows the FC spatial map and
time course derived from the fifth hybrid method using all
of Run 3’s ICs as the seed source, with fMRI data from
Run 4. Visual inspection revealed that the spatial maps and
time courses in Figures 5(a)–5(f) were similar to each other.
However, no thresholded voxels were found in the rTOF for
the first two hybrid methods (the single-voxel and few-voxel
hybrid methods). Other than these two cases and the task-
related GLM map for Run 5, at least one thresholded voxel
was found in the rTOF in all task-related and FC spatial
maps.

Results from the quantitative analyses were as follows.

Criterion 1. All mean correlations (“Same” column in
Table 1) were significantly greater than zero (P < .001).
In addition, the range of mean correlations (0.71–0.79)
compared favorably with the range of correlations of the
task-related GLM maps with each other (0.13–0.45).

Criterion 2. For each hybrid method, the mean correlation
between hybrid FC maps and the task-related GLM spatial
map from the same run was greater than the mean corre-
lation between hybrid FC maps and the task-related GLM
spatial map from the seed run, with P ≤ .001 (Table 1).

Criterion 3. The omnibus test of differences in mean corre-
lations (“Same” column, Table 1) was nonsignificant (F =
2.1,P = .13).

Criterion 4. The threshold-adjusted overlap percentages
were comparable for each hybrid method (Table 2). The MV
approach had better coverage of its task-related GLM maps
for all five target runs than the SV, FV, and DRA approaches
(P = .043), but this result was nonsignificant after correction
for multiple comparisons.

Criterion 5. No statistically significant differences were
found between the five target-run, task-related GLM maps
and the five target-run FC maps for each of the five hybrid
methods: 4/5 of the task-related GLM maps contained at
least one thresholded voxel in the rTOF compared with 4/5
of the FC spatial maps for the single-voxel and few-voxel
hybrid methods and 5/5 of the FC spatial maps for the many-
voxel hybrid method and for both dual regression hybrid
methods.

4.3. Experiment 3. Results from the quantitative analyses
were as follows.

Criterion 1. All mean correlations (“Task-Related” column
in Table 3) were significantly greater than zero (P < .001).

Criterion 2. Except for DRA (nonsignificant), FC maps
generated with the hybrid methods were significantly more
correlated with the corresponding task-related GLM maps
than with the group IC seed sources (Table 3). In contrast, FC
maps generated with BR-I were significantly less correlated
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Table 3: Experiment 3: mean correlations of sbject-specific FC spatial maps with (1) the task-related GLM map for the same subject (“Task-
Related” column) and (2) the group IC of interest (“Group IC” column). Results of a paired t-test comparison of the mean correlations are
shown in the rightmost columns. Higher correlations with the task-related maps than with the group IC of interest are an indication that
the results reflect the individual-subject data without being overly biased by spatial features of the group IC. The group ICs were generated
with PICA or Infomax. These results were based on group ICAs that produced 14 components.

Method of Generating Maps
Group ICA
Source

Mean Correlation With Subject-Specific
Map (95% Confidence Interval)

Same = Seed Null Hypothesis Test

Task-Related Group IC t df P

Single-voxel seed PICA 0.84 (0.77–0.89) 0.52 (0.48–0.55) 7.7 13 <.001

9-voxel ROI seed PICA 0.85 (0.79–0.89) 0.53 (0.49–0.57) 8.2 13 <.001

40-voxel ROI seed PICA 0.86 (0.80–0.90) 0.54 (0.49–0.58) 8.9 13 <.001

Dual regression, 1 spatial map PICA 0.88 (0.84–0.91) 0.55 (0.52–0.58) 10.0 13 <.001

Dual regression, all spatial maps PICA 0.53 (0.47–0.59) 0.59 (0.56–0.61) −2.3 13 .04

Back-reconstruction Infomax 0.30 (0.22–0.38) 0.62 (0.58–0.66) −10.4 13 <.001

Dual regression, 1 spatial map Infomax 0.81 (0.73–0.87) 0.43 (0.40–0.46) 6.6 13 <.001

Table 4: Experiment 3: mean percentages of thresholded task-related GLM maps that are covered by the thresholded subject-specific FC
maps generated with each method below. The right-most column gives percentages after adjusting the z-score used to threshold the FC maps
so that number of false positives equals number of false negatives. For the BR-I method, adjusting the threshold helped to compensate for
what might have been an overly conservative thresholding, but the results for this method were still significantly lower those than for the
other six methods used.

Method of Generating Maps Group ICA Source
Percent of Task-Related Map Covered

(95% Confidence Interval)

Before Threshold
Adjustment

After Threshold
Adjustment

Single-voxel seed (SV) PICA 57 (46–69) 63 (54–73)

9-voxel ROI seed (FV) PICA 61 (51–71) 64 (55–74)

40-voxel ROI seed (MV) PICA 65 (55–75) 66 (56–75)

Dual regression, 1 spatial map (DRS) PICA 78 (70–85) 71 (64–78)

Dual regression, all spatial maps (DRA) PICA 28 (20–36) 50 (43–57)

Back-reconstruction (BR-I) Infomax 9 (6–12) 29 (21–36)

Dual regression, 1 spatial map (DRS-I) Infomax 59 (47–72) 56 (45–68)

with the corresponding task-related GLM maps than with the
Infomax group IC of interest (IC14).

Criterion 3. The omnibus test showed that the mean
correlations (“Task-Related” column in Table 3) differed
significantly across methods (F = 80.3,P < .001). Post hoc,
paired t-test analyses with Bonferroni correction revealed
that the mean correlation for BR-I was significantly lower
than the mean correlations for the other six methods; the
mean correlation for DRA was significantly lower than the
mean correlations for the remaining five methods; and
the mean correlation for DRS-I was lower than the mean
correlation for DRS.

Criterion 4. The threshold-adjusted overlap percentages
were significantly lower for BR-I than those for the other six
methods and significantly greater for DRS than for DRA and
DRS-I (Table 4).

Criterion 5. The ROC PAUCs were significantly lower for
BR-I than for the other six methods; significantly greater for

DRS than those for DRA and DRS-I; and significantly greater
for MV than for DRS-I (data not shown).

Qualitative Analyses. We examined the data qualitatively to
understand why these results were better (more like the task-
related GLM results) for some of the subjects than for others.
An examination of the ROC curves and PAUCs by subject
(across methods) revealed that 13 of the subjects showed
highly similar patterns and ranged in mean adjusted PAUC
(scaled to a maximum possible area of 1) from 0.52 to 0.79.
In contrast, one of the subjects (Subject 8) had a mean
adjusted PAUC of 0.24, and the data for this subject appeared
to deviate in many respects from the others. Therefore, we
selected Subject 8’s data for further study and compared this
data to that from Subject 1 (highest mean PAUC). The ROC
curves for Subject 1 and Subject 8 are shown in Figures 7
and 8.

For Subject 1, the FC maps derived with each method
showed a fairly robust “activation” in sensorimotor (pri-
marily left) and visual cortices (Figures 9(b)– 9(h)), and
the corresponding time courses showed the expected cyclical
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Table 5: Experiment 4: mean correlations of subject-specific FC spatial maps with (1) the task-related GLM map for the same subject (“Task-
Related” column) and (2) the group IC of interest (“Group IC” column). Results of a paired t-test comparison of the mean correlations are
shown in the rightmost columns. These results were based on a group ICA that produced 5 components.

Method of Generating Maps
Group ICA
Source

Mean Correlation With Subject-Specific
Map (95% Confidence Interval)

Same = Seed Null Hypothesis Test

Task-Related Group ICA t df P

Single-voxel seed (SV) PICA 0.57 (0.45–0.68) 0.47 (0.43–0.51) 2.0 13 .06

9-voxel ROI seed (FV) PICA 0.81 (0.73–0.86) 0.53 (0.49–0.57) 5.8 13 <.001

40-voxel ROI seed (MV) PICA 0.83 (0.77–0.87) 0.56 (0.52–0.60) 7.0 13 <.001

Dual regression, 1 spatial map (DRS) PICA 0.77 (0.67–0.83) 0.59 (0.57–0.61) 3.7 13 .002

Dual regression, all spatial maps (DRA) PICA 0.57 (0.46–0.65) 0.62 (0.59–0.64) −1.2 13 .24
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Figure 7: ROC curves for Subject 1, on the interval from 0 to 0.05.
Subject 1’s task-related, GLM-derived spatial map was used as the
“true” standard of comparison. The points where the number of
false positives (FPs) was equal to the number of false negatives (FNs)
fall along the FP = FN line shown above. This helps to explain why
the results of the ROC PAUC analyses (Experiments 3–5, Criterion
5) were so similar to the results of the threshold-adjusted overlap
analyses (Experiments 3–5, Criterion 4).

time course of brain activity in response to the 10 repeated
24-second blocks of the experimental paradigm (Figures
10(b)–10(h)). These spatial maps and time courses resem-
bled Subject 1’s task-related GLM spatial map (Figure 9(a))
and time course (Figure 10(a)). For Subject 8 we also saw
“activation” in sensorimotor and visual cortices (Figures
11(b)–11(h)) but the regions of “activation” were smaller
and not as clearly lateralized to the left as for Subject 1.
The activation pattern for Subject 8’s task-related GLM map
(Figure 11(a)) was smaller and missing posterior portions
of the sensorimotor cortex that were visible for Subject 1.
Subject 8’s FC maps bore some resemblance to the task-
related GLM map, except in the case of BR-I, which appeared
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Figure 8: ROC curves for Subject 8, on the interval from 0 to 0.05.
Subject 8’s task-related, GLM-derived spatial map was used as the
“true” standard of comparison.

not to bear any resemblance (spatial correlation 0.10 and
threshold-adjusted “activation” overlap 0.3%); however, the
spatial correlation of BR-I’s FC map (Figure 11(g)) with
Infomax IC14 (Figure 6(c)) was 0.59. The FC time courses
for Subject 8 (Figures 12(b)–12(h)) resembled Subject 8’s
task-related GLM time course (a priori time course in blue,
Figure 12(a)) with 10 equidistant peaks roughly discernable,
but these were not as close to the task-related GLM time
course as for Subject 1.

We also examined the data to understand why the results
were better for some of the FC methods than for others.
The DRS and DRA methods differed greatly in how well
their FC maps matched the corresponding task-related GLM
maps, yet the only difference between the two methods
was that 13 nuisance regressors were added to the linear
model for DRA. Some of those regressors had a very similar
time course to that of PICA IC2, and all but one of the
14 ICs had a peak in its time course power spectrum at
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Figure 9: Spatial maps derived from Subject 1’s fMRI data using (a) task-related GLM; (b) single-voxel hybrid method (SV); (c) few-voxel
hybrid method (FV); (d) many-voxel hybrid method (MV); (e) dual regression, single IC hybrid method (DRS); (f) dual regression, all IC
hybrid method (DRA); (g) back-reconstruction with Infomax (BR-I); and (h) dual regression, single IC hybrid method, Infomax group IC
seed source (DRS-I).

0.042 Hz (the frequency corresponding to the block period
of the experiment), with most of those peaks being the
highest peak for the component. Also, most of the IC spatial
maps included some subthreshold or barely suprathresh-
old “activation” in the left sensorimotor brain region.
Inspection of the Infomax ICs revealed similar relation-
ships between Infomax IC14 and the other Infomax group
ICs.

4.4. Experiment 4. Results from the quantitative analyses
were as follows.

Criterion 1. All mean correlations (“Task-Related” column
in Table 5) were significantly greater than zero (P < .001).

Criterion 2. Except for the SV and DRA methods, FC maps
generated with the hybrid methods were significantly more
correlated with the corresponding task-related GLM maps
than with the group IC seed sources (Table 5).

Criterion 3. The omnibus test showed that the mean
correlations (“Task-Related” column in Table 5) differed
significantly across methods (F = 19.1,P < .001). Posthoc,
paired t-test analyses with Bonferroni correction revealed
that the mean correlations for FV, MV, and DRS were
significantly greater than those for SV and DRA.

Criterion 4. The threshold-adjusted overlap percentages
were significantly lower for SV than those for FV, MV, and
DRS; and significantly lower for DRA than those for MV
(Table 6).

Criterion 5. The ROC PAUCs were significantly lower for SV
than those for FV and MV and significantly lower for DRA
than those for MV (data not shown).

Qualitative Analyses. We examined the data qualitatively to
understand why the results in Experiment 4 were better for
the FV, MV, and DRS methods than those for SV, which
had not been the case in Experiment 3. Examination of
the PICA group ICs from Experiments 3 and 4 showed
that the spatial maps and time courses for the group ICs
of interest (IC2, in both cases) were highly similar (r =
0.70) for both experiments, but while Experiment 3’s IC2
had the highest z-scores in a large contiguous region in
the left sensorimotor cortex, Experiment 4’s IC2 had its
highest z-scores distributed to voxels in the same region of
the sensorimotor cortex and to smaller regions in caudal
and ventral portions of the left visual cortex, in peripheral
brain regions. For this reason, in Experiment 4 the SV
method chose a seed voxel in the visual cortex rather than
in the sensorimotor cortex. In contrast, the FV and MV
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Figure 10: Time courses derived from Subject 1’s fMRI data using (a) task-related GLM; (b) single-voxel hybrid method (SV); (c) few-voxel
hybrid method (FV); (d) many-voxel hybrid method (MV); (e) dual regression, single IC hybrid method (DRS); (f) dual regression, all IC
hybrid method (DRA); (g) back-reconstruction with Infomax (BR-I); and (h) dual regression, single IC hybrid method, Infomax group IC
seed source (DRS-I). Blue lines: time courses from linear model. Red lines: fMRI data where deviating from model, at voxel with best fit to
model.

Table 6: Experiment 4: mean percentages of thresholded task-related GLM maps that are covered by the thresholded subject-specific FC
maps generated with each hybrid method below. The right-most column gives percentages after adjusting the z-score used to threshold the
FC maps so that number of false positives equals number of false negatives. In contrast with Experiment 3, the results for the SV method
were significantly lower than those for the FV, MV, and DRS methods. The difference between Experiments 3 and 4 was that Experiment 4
was based on a group ICA that produced 5 components rather than 14. As explained in the text, the differences in results between these two
experiments can be accounted for by subtle differences between the seed-source ICs, which led to markedly different brain locations for the
single-voxel seed.

Method of Generating Maps Group ICA Source
Percent of Task-Related Map Covered

(95% Confidence Interval)

Before Threshold
Adjustment

After Threshold
Adjustment

Single-voxel seed (SV) PICA 15 (6–24) 25 (15–35)

9-voxel ROI seed (FV) PICA 47 (35–59) 54 (43–65)

40-voxel ROI seed (MV) PICA 57 (45–69) 57 (46–68)

Dual regression, 1 spatial map (DRS) PICA 46 (33–60) 44 (32–56)

Dual regression, all spatial maps (DRA) PICA 33 (22–44) 40 (29–50)

methods chose seed voxels that were split between the
visual and sensorimotor cortices, with most voxels in the
latter.

4.5. Experiment 5. Results from the quantitative analyses
were as follows.

Criterion 1. All mean correlations (“Task-Related” column
in Table 7) were significantly greater than zero (P < .001).

Criterion 2. FC maps generated with the DRA method were
significantly less correlated with the corresponding task-
related GLM maps than with the group IC seed sources
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Figure 11: Spatial maps derived from Subject 8’s fMRI data using (a) task-related GLM; (b) single-voxel hybrid method (SV); (c) few-voxel
hybrid method (FV); (d) many-voxel hybrid method (MV); (e) dual regression, single IC hybrid method (DRS); (f) dual regression, all IC
hybrid method (DRA); (g) back-reconstruction with Infomax (BR-I); and (h) dual regression, single IC hybrid method, Infomax group IC
seed source (DRS-I).

(Table 7). FC maps generated with the other four hybrid
methods were significantly more correlated with the corre-
sponding task-related GLM maps than with the group IC
seed sources.

Criterion 3. The omnibus test showed that the mean
correlations (“Task-Related” column in Table 7) differed
significantly across methods (F = 62.4,P < .001). Posthoc,
paired t-test analyses with Bonferroni correction revealed
that the mean correlations for SV, FV, MV, and DRS were
significantly greater than those for DRA and the mean
correlations for DRS were significantly greater than for those
FV (P = .004, uncorrected) and MV (P = .004), but not SV
(P = .006).

Criterion 4. The threshold-adjusted overlap percentages
were significantly lower for DRA than those for SV, FV, MV,
and DRS (Table 8).

Criterion 5. The ROC PAUCs were significantly lower for
DRA than those for SV, FV, MV, and DRS (data not shown).
In Experiments 3–5, the P-values for the comparisons using
ROC PAUC were very similar to those obtained from using
threshold-adjusted overlap. Differences in reported statistical
significance only occurred for cases where P-values fell close
to the threshold for statistical significance.

Qualitative Analyses. We examined the data qualitatively to
understand why the results in Experiment 5 were similar to
those from Experiment 3, but not Experiment 4. The group
IC spatial maps for Experiments 3 and 5 were very similar
in appearance (Figures 6(b) and 6(e)) and highly correlated
(0.87). This similarity apparently resulted in very similar
locations for the seed voxels for the SV, FV, and MV methods.
The main difference in the locations was that the seed voxels
for Experiment 5 appeared to be shifted posteriorly by one or
two voxels compared with those from Experiment 3.

5. Discussion

The main purpose of this study was to perform a small-scale
comparison of several hybrid ICA-seed-based methods of
FC assessment to determine which, if any, of these methods
might merit further evaluation in larger-scale studies, to
determine their potential usefulness compared with other,
standard methods of assessing FC. All five hybrid methods
performed well in each of four experiments (Experiments
2–5), producing spatial maps that were consistently signifi-
cantly and highly spatially correlated (>0.7 for FV, MV, and
DRS; >0.5 for SV; and >0.4 for DRA) with the corresponding
task-related GLM maps. These correlations were significantly
higher than the corresponding correlations with the seed
sources, except for the SV method in Experiment 4 and



18 International Journal of Biomedical Imaging

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Time (volumes)

Figure 12: Time courses derived from Subject 8’s fMRI data using (a) task-related GLM; (b) single-voxel hybrid method (SV); (c) few-voxel
hybrid method (FV); (d) many-voxel hybrid method (MV); (e) dual regression, single IC hybrid method (DRS); (f) dual regression, all IC
hybrid method (DRA); (g) back-reconstruction with Infomax (BR-I); and (h) dual regression, single IC hybrid method, Infomax group IC
seed source (DRS-I).

the DRA method in Experiments 3–5, indicating that the
spatial maps produced were a reflection of the individual
subject/session’s data rather than possibly being unduly
influenced by the seed source. Also, in Experiment 2 the
hybrid methods were not inferior to task-related GLM in
their capacity to detect “activation” in the rTOF from fMRI
data collected during multiple runs where images of faces
were viewed. These results suggest that, at least for some
applications, it is possible to derive FC maps with GLM,
based on seeds from an exploratory ICA, resulting in FC
maps that resemble the seed IC(s); yet the FC maps are
unique to the fMRI data being analyzed. This study also
demonstrates that the ICA and FC analyses need not be
derived from the same data.

The main motivation for exploration of hybrid ICA-
seed-based FC methods is the possibility that such meth-
ods will allow production of FC spatial maps and time
courses without the limitations of each method performed
separately. Hybrid ICA-seed-based FC methods utilize the
exploratory power of ICA in the generation of one or more
seed ICs, while providing a rationale for choice of seed.
Such a rationale may be helpful in cases where a choice
of seed based on theoretical considerations might seem
arbitrary and chosen from a large number of possibilities,
although some theoretical considerations might still be
needed to select the seed IC or IC of interest. Hybrid
ICA-seed-based FC methods might have the discerning

power of ICA to provide accurate information about special
relationships that exist among subpopulations of voxels in
FC maps, as demonstrated in Experiment 1. This capacity
can be particularly helpful in cases where GLM seed-based
FC maps would otherwise be generated from seed voxels
where multiple components overlap. Finally, hybrid ICA-
seed-based FC methods allow circumvention of statistical
complications arising from reproducibility issues associated
with group comparison of spatial maps produced by ICA,
because the last step of such methods involves GLM rather
than ICA. For the SV, FV, and MV hybrid methods this
last step is a standard ROI, seed-based assessment of FC,
where ICA has provided the choice of seed ROI. The DRS
hybrid method is not much different conceptually, because
rather than averaging the voxel time courses within an ROI, a
“weighted average” is performed through least-square linear
regression, which heavily weights the values of the derived
time course toward those of the voxels with highest z-scores
in the seed IC.

Previous investigations into the potential benefits of
hybrid ICA-seed-based FC approaches have not been
reported in the literature, to the authors’ knowledge.
However, a number of approaches designed to utilize the
exploratory power of ICA while addressing reproducibility
issues involved with group comparison of ICA-derived
spatial maps have been described [12, 26, 31, 37, 38, 75,
76]. Some of these require prior temporal information
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Table 7: Experiment 5: mean correlations of subject-specific FC spatial maps with (1) the task-related GLM map for the same subject (“Task-
Related” column) and (2) the group IC of interest (“Group IC” column). Results of a paired t-test comparison of the mean correlations are
shown in the rightmost columns. These results were based on a group ICA that produced 30 components.

Method of Generating Maps
Group ICA
Source

Mean Correlation WithSubject-Specific
Map(95% Confidence Interval)

Same = SeedNull HypothesisTest

Task-Related Group ICA t df P

Single-voxel seed (SV) PICA 0.82 (0.75–0.88) 0.48 (0.44–0.52) 7.5 13 <.001

9-voxel ROI seed (FV) PICA 0.84 (0.77–0.89) 0.49 (0.45–0.53) 7.5 13 <.001

40-voxel ROI seed (MV) PICA 0.85 (0.79–0.89) 0.50 (0.45–0.54) 8.3 13 <.001

Dual regression, 1 spatial map (DRS) PICA 0.88 (0.84–0.92) 0.51 (0.48–0.54) 9.8 13 <.001

Dual regression, all spatial maps (DRA) PICA 0.43 (0.36–0.49) 0.52 (0.48–0.55) −4.0 13 .002

Table 8: Experiment 5: mean percentages of thresholded task-related GLM maps that are covered by the thresholded subject-specific FC
maps generated with each hybrid method below. The right-most column gives percentages after adjusting the z-score used to threshold the
FC maps so that number of false positives equals number of false negatives. The results are similar to those from Experiment 3, with DRA
covering less of the task-related maps than the SV, FV, MV, and DRS methods.

Method of Generating Maps Group ICA Source
Percent of Task-Related Map Covered

(95% Confidence Interval)

Before Threshold
Adjustment

After Threshold
Adjustment

Single-voxel seed (SV) PICA 54 (44–63) 62 (52–71)

9-voxel ROI seed (FV) PICA 58 (48–68) 63 (53–72)

40-voxel ROI seed (MV) PICA 62 (52–72) 64 (54–74)

Dual regression, 1 spatial map (DRS) PICA 76 (68–85) 69 (61–78)

Dual regression, all spatial maps (DRA) PICA 12 (7–16) 43 (36–50)

[37, 38, 76] and are therefore not suitable when such infor-
mation is unavailable, as in resting-state studies. Among
methods suitable for resting state studies, one of the first pro-
posed methods is BR-I [12], compared in this study. It makes
intuitive sense that restricting ICs for all subjects to be based
on a single group ICA would limit the intersubject variability
for spatial maps corresponding to each component, but it
remains unclear whether this results in truly homologous
groups of ICs to be compared (i.e., ICs based on signals
having exactly the same neural origins) across subjects.
Another problem with the “back-reconstruction” approach
is reproducibility across studies: the stochastic nature of ICA
means that group ICs derived in one study might not exactly
match the ICs from another study with different participants.
For example, even consistently reproducible ICs such as
the “default mode” component [8, 74] can sometimes be
split into two components [77, 78]. These issues are also
potentially problematic with the “multisubject ICA and dual
regression” approach [31].

Seed-based approaches can address this last issue by
utilizing fixed spatial priors to facilitate reproducibility across
studies. Such maps can be derived from ICA or task-
related GLM or artificially constructed based on theoretical
considerations. Instead of deriving seed spatial maps from
all subjects being compared, it may be advantageous in some
cases to derive seed spatial maps from an outside reference
group of subjects. For example, it might be desirable to
compare FC results from a current study with those of a
previous study by deriving FC from exactly the same seed

maps that were used in the previous study, particularly if
the previous study involves a much larger sample size. When
healthy and diseased samples of subjects are compared, it
might be advantageous in some cases to use seed maps
derived from exclusively healthy or exclusively diseased
subjects, rather than seed maps derived from a mixed sample.
Finally, in cases where a group IC of interest appears (by
chance) to be fragmented into multiple ICs, rather than
attempting to piece together the fragments or to use them
individually as seeds for dual-regression-based FC analysis,
it might be better to choose seeds from a previously derived
IC or set of ICs that are deemed prototypical of the spatial
patterns of interest.

Another approach that utilizes fixed spatial priors is
spatial semiblind spatial ICA (SSS-ICA) [26]. SSS-ICA uses
predetermined spatial maps to guide ICA toward more
correct solutions and was demonstrated to yield higher
signal-to-noise ratios than Infomax ICA [57] and ICA-
with-reference algorithms (ICA-R) [79], particularly with
an accurate spatial prior under low-noise conditions [26].
It would be useful to know to what extent SSS-ICA might
unduly influence the resulting spatial maps to resemble the
spatial priors. SSS-ICA was reported not to be influenced
by an incorrect spatial prior in the absence of noise [26],
but further exploration of this question would be helpful.
Another reported ICA method involving spatial priors that
can be used without a priori temporal information is fixed-
average spatial ICA (FAS-ICA) [75], which is similar to
hybrid ICA-seed-based FC methods because it involves
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regression of fMRI data against spatial maps generated with
ICA. With FAS-ICA, the spatial maps used as seeds are
generated by averaging the IC spatial maps derived from
performing BR-I on multiple fMRI runs for the same subject
under one condition; then the fMRI data from another
condition is regressed against the complete set of averaged IC
spatial maps (averaged across homologous ICs from different
runs) to generate corresponding time courses. If one were to
add, as a final step to FAS-ICA, regression of the individual-
subject fMRI data against those time courses to generate
corresponding spatial maps, this would be equivalent to the
DRA approach described here (using an averaged set of IC
spatial maps derived with BR-I as the seed spatial maps).

The hybrid ICA-seed-based FC methods FV, MV, and
DRS performed the best overall in Experiments 2–5. The
high correlations, overlaps, and ROC PAUCs with the
hypothesis-driven, reference task-related GLM spatial maps
serve as confirmation that those hybrid methods produced
meaningful and valid results that reflected brain neural
activity. However, the relatively “poor” results obtained in
some cases by the SV and DRA methods and in every case
by the BR-I method do not serve as a disconfirmation of
the validity of those methods. For example, it is possible
that the results from both BR-I and task-related GLM were
highly valid, accurately reflecting brain activity during the
experiment described in [49]. These methods may have
reflected somewhat separate elements of the total brain
activity that was occurring during the experiment. From
the qualitative analyses for Experiment 3 it appeared as if
the spatial and temporal properties of the task-related GLM
were split among several Infomax group IC’s, and the same
was true for the PICA group ICs, which helps to explain
why the DRA spatial maps were not as closely related to
the task-related GLM maps as were the spatial maps of
the other hybrid methods. Although these findings do not
indicate that the DRA and BR-I methods are inferior to
the first four hybrid methods, they do not provide support
for their use either; and a reason to be discouraged from
using these two methods and any method that directly
generates with ICA the spatial maps to be used for groupwise
comparisons is the risk of not making a valid comparison
across homologous-looking components, due to a seemingly
random (because we do not fully understand this process)
distribution of fMRI variance into the various components.
Until we know more about the conditions under which
ICA will split variance from one component into separate,
temporally related components, it may be safer to use seed-
based or hybrid seed-based methods to derive FC maps used
for group inferences.

The hybrid (and seed-based) FC methods are also
affected by factors that can decrease the validity of group
inferences, but these are issues that are more easily under-
stood and addressed and that affect nearly all types of
fMRI data analyses. For example, factors that might have
contributed to the somewhat different appearance of Subject
8’s task-related GLM and FC maps compared with the other
subjects include differing activities during the experiment,
differing intensities of responses, differing brain hemody-
namic responses or response times, differing brain anatomy,

differing localization of areas of brain function, and differing
specialization of functions used to perform the same task
[80]. Although the latter four factors can be problematic
and invalidate or reduce the sensitivity of results of fMRI
analyses, these are relatively easier to understand and are
amenable to being addressed with experimental measures.
For example, a brain localizer scan or improved methods
of coregistration of different brains to each other and to a
standard brain can help to reduce the effect of such factors
[81, 82].

Which among the hybrid ICA-seed-based FC methods
SV, FV, MV, and DRS is best is unclear and may depend
upon the FC application in question. The SV method has
the advantage of being the easiest to report and reproduce,
because the only information needed is the coordinates of
a single voxel. The SV method should in most cases be
comparable to the FV and MV methods (as in Experiments
2, 3, and 5), because after spatial smoothing, the voxel’s
time course and variance will become more similar to its
neighbors. However, Experiment 4 underscored a potential
weakness of the SV method. In order for the SV method
to work well, the single voxel should preferably be placed
in the middle of a large area of activation, typical for the
type of activity being studied. If the voxel is placed in the
periphery, on the border between brain areas with widely
differing functions, or in a brain area not well representative
of the activity being studied, then use of the FC maps that
result may not be suitable for groupwise comparison due
to heterogeneity of the spatial maps and time courses that
may result. Thus, if we use the SV method, it is important
to inspect the data to determine the appropriateness of the
location of the single voxel. If automated methods are used
it may be safer to use the DRS method, which includes
information from the entire seed spatial map and which
performed the best overall in Experiments 2–5.

We mention four study limitations. First, different
thresholding levels and scaling used for spatial maps derived
with PICA and Infomax may have caused the PICA-derived
maps to appear more robust than the Infomax-derived
maps, even though we were using a relatively conservative
thresholding level for PICA-derived maps. However, the
primary measures we used for statistical testing (spatial
correlation, threshold-adjusted overlap, and PAUC) were not
influenced by spatial map scaling and threshold cutoffs.
Second, the dimensionalities used in Experiments 3 and
4 were both lower than those typically reported in the
literature for group ICA, where the number of components
has often been set manually to a round number such
as 20 or 30 [39, 58, 75, 83, 84], and when estimated
automatically has typically been greater than 15 [6, 85].
One possible explanation for the low estimates in our
study could be that they accurately reflected a relatively low
amount of structured noise in the fMRI data [29], but the
most appropriate choice of dimensionality is not clear and
therefore remains somewhat arbitrary. However, the hybrid
methods as a group performed well for the wide range of
dimensionalities tested in this study. Third, although we
have demonstrated that the hybrid methods can work on
task-related data, we have not demonstrated that they can
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work on resting-state data, for which such hybrid methods
are primarily intended. We chose experimental paradigms
associated with activation of visual and sensorimotor brain
regions because such paradigms generally result in strong
and predictable fMRI activation patterns, which facilitated
confirmation of the validity of the FC spatial maps and
time courses derived with hybrid methods. Also, the use of
such paradigms is commonly reported in the literature for
testing of FC- and ICA-related methods and to compare
FC- and ICA-related spatial maps to those derived based on
hypothesis testing with a priori time courses related to the
experimental paradigm [12, 26, 35, 37, 75, 86]. We believe
that the comparisons here can be extrapolated to resting-
state studies because a number of studies have demonstrated
the parallels between resting-state activity and task-related
activity. For example, group ICA studies have demonstrated
that 8–10 group ICs (depending upon the group ICA method
used) can consistently be found across subjects, resting-
state sessions, and within sessions (with bootstrapping) with
BOLD signal changes of up to 3%, comparable to those
found for task-related studies [6, 87, 88]. In [23], single-
subject ICs exhibited an extremely high degree of consistency
in spatial, temporal, and frequency parameters within and
between subjects. Reproducibility across subjects and ses-
sions was also found for resting-state, ROI-based FC [89],
and although such ROI-based FC was found to frequently
correspond to structural connections as measured with
diffusion spectrum imaging tractography, some FC was not
explained by direct structural connections [90]. In resting
state, the activity of such functionally connected regions
is frequently correlated with functionally related areas [35,
78] and such activity levels are modulated by task activity
[85], resulting in increased FC in functionally relevant areas
being exercised by the experimental paradigm [10]. Fourth,
another possible limitation in the conclusions that may be
drawn from this study concerns the question of whether it
is appropriate to measure task-related brain activity using
seed-based FC measures, which are fundamentally different
than measures based on a priori time courses, because the
time courses of the former are based upon the temporal
variations at one or more brain regions, while the time
courses of the latter are based upon the temporal variations
that are expected in response to an experimental paradigm.
The differences between these approaches should not differ
by much provided that the seed location corresponds to a
brain location whose activity is sufficiently synchronous with
the hemodynamic response to the experimental paradigm.
As long as the chosen location is functionally related to the
experimental task, this should not be a problem (unlike the
case for the SV method in Experiment 4).

In conclusion, our experiments demonstrate that at
least four of the hybrid ICA-seed-based FC methods tested
(SV, FV, MV, and DRS) can produce spatial maps and
time courses that correspond closely to what would be
expected from knowledge of the experimental paradigm in
play during fMRI data collection and from examination of
spatial maps and time courses generated with task-related
GLM, based on hypothesis testing with a priori time courses.
We hope that further empirical and theoretical studies will

help to elucidate what methods for data-driven extraction
of components (spatial maps and time courses) are most
likely to improve the validity of groupwise comparisons. Our
findings suggest that one or more hybrid ICA-seed-based
methods should be included in such studies. Until we know
more about factors that govern the seemingly stochastic
nature of how ICA parses fMRI variance into temporally
related components, it may be safer to use hybrid ICA-seed-
based FC methods to generate ICA-related spatial maps and
time courses used for groupwise comparison. The use of such
methods effectively channels exploratory information from
ICA into the realm of seed-based FC, which for years has
been widely accepted, understood, and implemented by the
imaging community [1, 2, 91, 92].
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